

Product Specification

XBLW SN75176/SN65176

Multipoint RS-485/RS-422

Description

The SN75176/SN65176 is a high speed differential TRI-STATE® bus/line transceiver designed to meet the requirements of EIA standard RS485 with extended common mode range (-7V to +12V), for multipoint data transmission . In addition, it is compatible with RS-422 .

The driver and receiver outputs feature TRI-STATE capability, for the driver outputs over the entire common mode range of -7V to +12V. Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state . DC specifications are guaranteed over the 0 to 70° C temperature and 4 .75V to 5 .25V supply voltage range .

Features

- Meets EIA Standard RS485 for Multipoint Bus Transmission and is Compatible with RS-422.
- > Small Outline (SOIC) Package Option Available for Minimum Board Space.
- > 22 ns Driver Propagation Delays.
- ➤ Single +5V Supply.
- > -7V to +12V Bus Common Mode Range Permits ±7V Ground Difference Between Devices on the Bus.
- > Thermal Shutdown Protection.
- ➤ High Impedance to Bus with Driver in TRISTATE or with Power Off, Over the Entire Common Mode Range Allows the Unused Devices on the Bus to be Powered Down.
- > Combined Impedance of a Driver Output and Receiver Input is Less Than One RS485 Unit Load, Allowing up to 32 Transceivers on the Bus.
- 70 mV Typical Receiver Hysteresis.

Connection and Logic Diagram

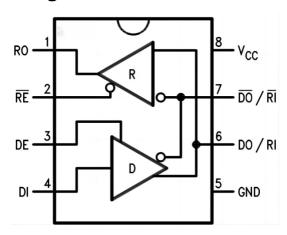


Figure 1. Top View

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam

during storage or handling to prevent electrostatic damage to the MOS gates.

Order Information

Product Model	Package Type	Marking	Packing	Packing Qty
SN65176N	DIP-8	SN65176N	Tube	2000/Box
SN65176DTR	SOP-8	SN65176	Tape	2500/Reel
SN75176N	DIP-8	SN75176N	Tube	2000/Box
SN75176DTR	SOP-8	SN75176	Tape	2500/Reel

Absolute Maximum Ratings (1)(2)

Supply Volta	age, VCC	7 V
Control Inpu	ut Voltages	7 V
Driver Inpu	ut Voltage	7 V
Driver Outp	ut Voltages	+15V/ - 10V
Receiver Inp	out Voltages	+15V/ - 10V
Receiver Out	tput Voltage	5 .5V
Continuous Power Dissipation @25°C	for SOIC Package	675 mW(3)
Continuous Power Dissipation @25 C	for PDIP Package	900 mW(4)
Storage Tempe	erature Range	−65 ° C to +15 0 ° C
Lead Temperature (S	2 60 ° C	
ESD Ratir	ng (HBM)	500V

^{(1)&}quot;Absolute Maximum Ratings" are those beyond which the safety of the device cannot be verified. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

- (3) Derate linearly @ 6.11 mW/°C to 400 mW at 70°C.
- (4) Derate linearly at 5.56 mW/°C to 650 mW at 70°C.

Recommended Operating Conditions

	Min	Max	Units
Suppl yVol tage, VCC	4 .75	5 .25	V
Units Voltageat AnyBusTerminal (SeparateorCommonMode)	-7	+12	V
OperatingFreeAirTemperatureTA			
SN75176	0	+70	°C
SN65176	-40	+105	°C
Differential InputVol tage, VID(1)	- 12	+12	V

⁽¹⁾ Differential - Input/Output bus voltage is measured at the noninverting terminal A with respect to the inverting terminalB.

Electrical Characteristics(1) (2)

 $0^{\circ}C \le TA \le 70^{\circ}C$, 4.75V < VCC < 5.25V unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{OD1}	Differential Driver Output Voltage (Unloaded)	I _O = 0				5	٧
V _{OD2}	Differential Driver Output	See (Figure 2)	$R = 50\Omega$; (RS-422) (3)	2			٧
	Voltage (with Load)		$R = 27\Omega$; (RS-485)	1.5			٧
ΔV_{OD}	Change in Magnitude of Driver Differential Output Voltage For Complementary Output States					0.2	V
V _{OC} Δ V _{OC}	Driver Common Mode Output Voltage Change in Magnitude of Driver	See (Figure 2)	R = 27Ω			3.0	V
	Common Mode Output Voltage For Complementary Output States					0.2	٧

⁽¹⁾ All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

- (2) All typicals are given for VCC = 5V and TA = 25° C.
- (3) All worst case parameters for which this note is applied, must be increased by 10% for SN75176. The other parameters remain valid for -40°C < TA < +85°C.

⁽²⁾ If Military/Aerospace specified devices are required, please contact the HG Sales Office/Distributors for availability and specifications.

Electrical Characteristics (1)(2) (continued)

 $0 \text{ °C} \leq \text{TA} \leq 70 \text{ °C}$, 4.75V < VCC < 5.25V unless otherwise specified

Symb o I	P aram 6			on dition s	Min	Tv p	Max	Units
						· / F		
VIH	Input High Voltage				2			V
VIL	Input Low Voltage						8.0	
V CL	Input Clamp Voltage	DI, DE,	RE, E	IIN = - 18 mA			- 1.5	
IIL	Input Low Current			VIL = 0.4V			-200	pА
Iıн	Input High Current			VIH = 2 .4 V			20	pА
IIN	Input Current	DO / RI, DO /	Vcc = 0 V or	VIN = 12V			+1.0	mA
		RI	5 . 2 5 V D E = 0 V	VIN = -7V			-0.8	mA
V тн	Differential Input Th	-		VCM ≤ + 12 V	-0. 2		+0 .2	V
ΔVTH	Receiver Input	Hysteresis	V	CM = 0 V		70		mV
V он	Receiver Output	High Voltage	IOH	= -40 0 pA	2.7			V
Vol	Output Low Voltage	RO	IOL =	: 16 (3) mA			0 .5	V
I oz r	OFF- State (Hig Output Current	. ,		CC = Max ' ≤ VO ≤ 2 .4V			±20	рA
RIN	Receiver Input	Resistance	-7V ≤	VCM ≤ +12 V	12			kQ
I cc	Supply	Current	No Load(3)	Driver Outputs Enabled			55	mA
				Driver Outputs Disabled			35	mA
Iosd	Driver Short- (Circuit Output	Vo	= -7 V (3)			-250	mA
	Curre	nt	Vo	o=+12V (3)			+250	mA
I osr	Receiver Short-Circui	t Output Current	V	o = 0 V	- 15		-85	mA

Switching Characteristics

VCC = 5.0V, TA = 25 °C

Symb o I	Parameter	Conditions	Min	Тур	Max	Unit s
t PLH	Driver Input to Output	RLDIFF=60Q		12	22	ns
t PHL	Driver Input to Output	CL1=CL2=100pF		17	22	ns
t r	Driver Rise Time	RLDIFF=60Q			18	ns
tf	Driver Fall Time	CL1=CL2=100pF (Figure 4 and Figure 6)			18	ns
tzн	Driver Enable to Output High	CL=100pF(Figure5andFigure7)S1 Open		29	100	ns
tzı	Driver Enable to Output Low	CL=100pF(Figure5andFigure7)S2 Open		3 1	60	ns
t LZ	Driver Disable Time from Low	CL=15pF(Figure5andFigure7)S2 Open		13	30	ns
t HZ	Driver Disable Time from High	CL=15pF(Figure5andFigure7)S1 Open		19	2 00	ns
t PLH	Receiver Input to Output	CL=15pF(Figure3andFigure8)		30	37	ns
t PHL	Receiver Input to Output	S1 and S2 Closed		32	37	ns
tzL	Receiver Enable to Output Low	CL=15pF(Figure3andFigure9)S2 Open		15	20	ns
t zн	Receiver Enable to Output High	CL=15pF(Figure3andFigure9)S1 Open		11	20	ns
t LZ	Receiver Disable from Low	CL=15pF(Figure3andFigure9)S2 Open		28	32	ns
t HZ	Receiver Disable from High	CL=15pF(Figure3andFigure9)S1 Open		13	35	ns

Switching Time Waveforms

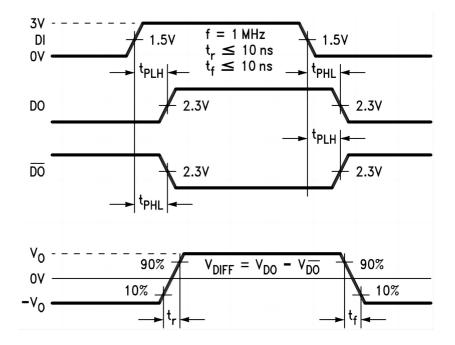


Figure 6. Driver Propagation Delays and Transition Times

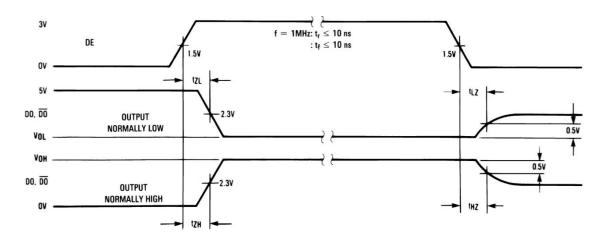
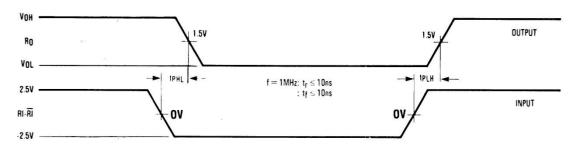



Figure 7. Driver Enable and Disable Times

Note: Differential input voltage may may be realized by grounding RI and pulsing RI between +2.5V and -2.5V Figure 8. Receiver Propagation Delays

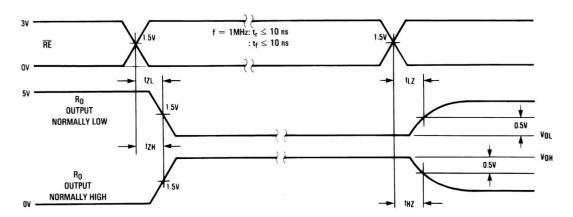


Figure 9. Receiver Enable and Disable Times

Function Tables

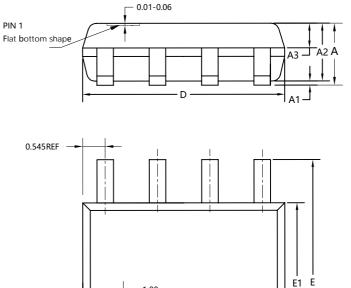
Table 1. SN75176 Transmitting(1)

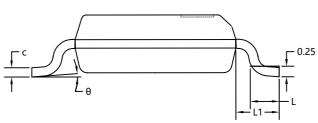
Inputs		Line Condition	Outputs		
RE	DE	DI		DO	DO
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
Х	0	X	X	Z	Z
Х	1	X	Fault	Z	Z

X — Don't care condition Z — High impedance state Fault — Improper line conditions causing excessive power dissipation in the driver, such as shorts or bus contention situations **This is a fail safe condition

Table 2. SN75176 Receiving(1)

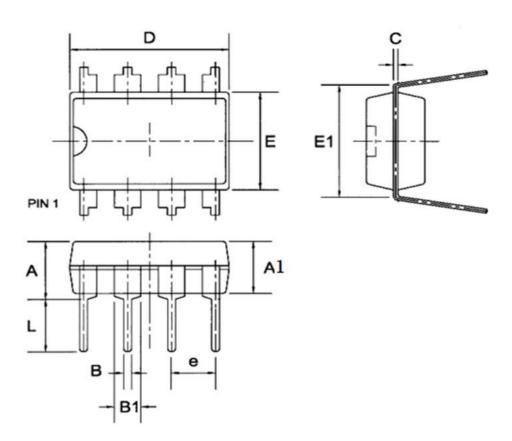
	Inputs		
RE	DE	RI- R I	RO
0	0	≥ +0.2V	1
0	0	≤ -0.2V	0
0	0	Inputs Open**	1
1	0	X	Z


(1) X — Don't care condition Z — High impedance state Fault — Improper line conditions causing excessive power dissipation in the driver, such as shorts or bus contention situations **This is a fail safe condition


Package Outline Dimensions

SOP-8

1.05


ø0.80

SYMBOL		MILLIMETER			
STINDOL	MIN	MIN NOM			
А	1.55	1.65	1.75		
A1	0.10	0.15	0.20		
A2	1.35	1.45	1.55		
А3	0.60	0.70	0.80		
b	0.30	0.40	0.50		
С	0.17	0.20	0.25		
D	4.80	4.90	5.00		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
e	1.27BSC				
L	0.50	0.60 0.70			
L1	1.05REF				
θ	0°	4°	8°		

DIP-8

	Dimensions in Millimeters					
Symbol	Min	Nom	Max			
A			4.31			
A1	3.15	3.30	3.65			
В	0.38	0.46	0.51			
B1	1.27	1.55	1.77			
С	0.20	0.25	0.30			
D	8.95	9.40	9.45			
Е	6.15	6.20	6.65			
E1		7.60				
e		2.54				
L	3.00	3.30	3.60			

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for lifesupport,military,and aerospace applications,and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.