Features - Low RDS(on) @VGS=10V - 5V Logic Level Control - 100% UIS Tested - Pb-Free, RoHS Compliant ### **Applications** - Load Switch - · Switching Circuits - High Speed line Driver - Power management | V(BR)DSS | Rds(ON) Typ | I⊳ Max | | | | |----------|--------------|--------|--|--|--| | 100V | 7.5mΩ @10V | 901 | | | | | | 10.2mΩ @4.5V | 80A | | | | TO-220 #### **Order Information** | Product | Package | Marking | Packing | |-----------|---------|---------|------------| | DWP6R810M | TO-220 | 6R810M | 50PCS/Tube | ## **Absolute Maximum Ratings** Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. | Symbol | Parameter | Rating | Unit | | | | | | | | |---|-------------------------------------|----------------------|------------|----|--|--|--|--|--|--| | Common Ratings (Ta=25°C Unless Otherwise Noted) | | | | | | | | | | | | V _{GS} | Gate-Source Voltage | | ±20 | V | | | | | | | | V _{(BR)DSS} | Drain-Source Breakdown Voltage | | 100 | V | | | | | | | | T _J | Maximum Junction Temperature | | 150 | °C | | | | | | | | Tsrg | Storage Temperature Range | | -50 to 150 | °C | | | | | | | | Mounted on Large Heat Sink | | | | | | | | | | | | Ірм | Pulse Drain Current Tested① | 250 | А | | | | | | | | | l _D | Continuous Drain Current | T _A =25°C | 80 | Α | | | | | | | | ID | Continuous Diain Current | T _A =70°C | 64 | | | | | | | | | PD | Maximum Power Dissipation | 83 | W | | | | | | | | | EAS | Avalanche energy, single pulsed ② | 317.4 |] vv | | | | | | | | | Ruc | Thermal Resistance Junction-Ambient | 1.5 | °CW | | | | | | | | | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | | | | |--|--|---|-----|------|-----|------|--|--|--|--| | Static Electrical Characteristics @ T _J = 25°C (unless otherwise stated) | | | | | | | | | | | | V _{(BR)DSS} | Drain-Source Breakdown Voltage | Vgs=0V ID=250μA | 100 | - | - | V | | | | | | IDSS | Zero Gate Voltage Drain Current(T _A =25°C) | Vps=100V, Vgs=0V | - | - | 1 | μA | | | | | | IDSS | Zero Gate Voltage Drain Current(T _A =125°C) | VDS=80V, VGS=0V | - | - | 100 | nA | | | | | | lgss | Gate-Body Leakage Current | Vgs=20V, Vps=0V | - | - | 100 | nA | | | | | | V _{GS(TH)} | Gate Threshold Voltage | Vps=Vgs, lp=250µA | 1.0 | 1.4 | 2.5 | V | | | | | | RDS(ON) | Drain-Source On-State Resistance② | Vgs=10, ID=20A | - | 7.5 | 10 | mΩ | | | | | | RDS(ON) | Drain-Source On-State Resistance② | Vgs=4.5V, lp=15A | _ | 10.2 | 14 | mΩ | | | | | | Dynamic Electrical Characteristics @ T _J = 25°C (unless otherwise stated) | | | | | | | | | | | | Ciss | Input Capacitance | | - | 3656 | - | pF | | | | | | Coss | Output Capacitance | V _{DS} =50V,V _{GS} =0V,
f=1MHz | - | 446 | - | pF | | | | | | Crss | Reverse Transfer Capacitance | | - | 8.7 | - | pF | | | | | | Rg | Gate Resistance | f=1MHz | | 4 | | Ω | | | | | | Qg | Total Gate Charge | Vds=50V | - | 49 | _ | nC | | | | | | Qgs | Gate Source Charge | ID=10A, | - | 8.4 | _ | nC | | | | | | Q _{gd} | Gate Drain Charge | VGS=10V | - | 6.4 | - | nC | | | | | | Switching | Characteristics | | | | | | | | | | | t d(on) | Turn on Delay Time | | - | 14.6 | - | ns | | | | | | tr | Turn on Rise Time | VDD=50V,
ID=1A, | - | 32.8 | _ | ns | | | | | | td(off) | Turn Off Delay Time | R _G =6Ω,
V _G S=10V | - | 62.2 | - | ns | | | | | | ti | Turn Off Fall Time | | - | 28.4 | - | ns | | | | | | Source Dra | ain Diode Characteristics | | | | | | | | | | | Isd | Source drain current(Body Diode) | T _A =25℃ | _ | _ | 65 | А | | | | | | V _{SD} | Forward on voltage② | Tj=25℃, IsD=10A,
VGS=0V | - | _ | 1.2 | V | | | | | Notes: ① Pulse width limited by maximum allowable junction temperature $[\]textcircled{2} \ \, \text{Limited by TJmax, starting TJ} = 25^{\circ}\text{C}, \ \, \text{L} = 0.3 \text{mH,RG} = 25\Omega, \ \, \text{IAS=46A,VGS} = 10 \text{V}. \ \, \text{Part not recommended for use above this value}$ ③ Pulse width ≤ 300µs; duty cycle≤ 2%. ## **Typical Characteristics** Fig1. Typical Output Characteristics Fig3. On-Resistance vs. Drain Current and Gate Fig5. Drain-Source Voltage vs Gate-Source Voltage Fig2. Normalized Threshold Voltage Vs. Temperature Fig4. On-Resistance vs. Gate Source Voltage Fig6. Typical Source-Drain Diode Forward Voltage # **Typical Characteristics** Fig7. Typical Capacitance Vs. Drain-Source Voltage Fig8. Typical Gate Charge Vs. Gate-Source Voltage Fig7. Normalized Maximum Transient Thermal Impedance Fig10. Switching Time Test Circuit and waveforms Fig11. Unclamped Inductive Test Circuit and waveforms # **TO-220 Mechanical Data** | CVA (BOI | MM | | INCH | | | MM | | | INCH | | | | | |----------|-------|-------|-------|-------|-------|-------|--------|----------|---------|-------|-----------|-------|-------| | SYMBOL | MIN | NOM | MAX | MIN | NOM | MAX | SYMBOL | MIN | NOM | MAX | MIN | NOM | MAX | | A | 4.40 | 4.57 | 4.70 | 0.173 | 0.180 | 0.185 | Øp1 | 1.40 | 1.50 | 1.60 | 0.055 | 0.059 | 0.063 | | Al | 1.27 | 1.30 | 1.33 | 0.050 | 0.051 | 0.052 | e | | 2.54BSC | | 0.1BSC | | | | A2 | 2.35 | 2.40 | 2.50 | 0.093 | 0.094 | 0.098 | e1 | - 1 | 5.08BSC | | 0.2BSC | | | | ь | 0.77 | - 20 | 0.90 | 0.030 | 120 | 0.035 | Hl | 6.40 | 6.50 | 6.60 | 0.252 | 0.256 | 0.260 | | Ъ2 | 1.23 | 20 | 1.36 | 0.048 | 1.0 | 0.054 | L | 12.75 | | 13.17 | 0.502 | 12 | 0.519 | | С | 0.48 | 0.50 | 0.52 | 0.019 | 0.020 | 0.021 | Ll | 20 | - | 3.95 | 12 | 12. | 0.156 | | D | 15.40 | 15.60 | 15.80 | 0.606 | 0.614 | 0.622 | L2 | 2.50REF. | | | 0.098REF. | | | | D1 | 9.00 | 9.10 | 9.20 | 0.354 | 0.358 | 0.362 | Øp | 3.57 | 3.60 | 3.63 | 0.141 | 0.142 | 0.143 | | DEP | 0.05 | 0.10 | 0.20 | 0.002 | 0.004 | 0.008 | Q | 2.73 | 2.80 | 2.87 | 0.107 | 0.110 | 0.113 | | Е | 9.70 | 9.90 | 10.10 | 0.382 | 0.389 | 0.398 | 0.1 | 5" | 7* | 9" | 5* | 7* | 9" | | E1 | - | 8.70 | 20 | | 0.343 | : | θ 2 | 1" | 3° | 5° | 1" | 3° | 5" | | E2 | 9.80 | 10.00 | 10.20 | 0.386 | 0.394 | 0.401 | | | | | | | | ### **Legal Disclaimer** The Dowell Technology given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Dowell Technology hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. #### Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Dowell Technology Office (www.dowellsemi.com). ### Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Dowell Technology Office. I Dowell Technology components may be used in life-support devices or systems only with the express written approval of Dowell Technology, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.