
Dwg. No. :<u>H23-5300</u> 承認字號 Issued Date: <u>202312/27</u>

			Issued Date. <u>202312/</u>
	r :		
(客 戶)			
Part No.	:		
(貴公司料號))		
SP	ECIFI	CATION 承	N FOR APPROVAL 認 書
	ription : <u>Or</u> 牛名稱)	ganic Conductive F	Polymer Hybrid Aluminum Electrolytic Capacitors
	n Series : _{隆 系 列)}		HBW Series
	n Part No.: 逢料號)	ŀ	HBW220M1VTT-0506K
		TEL: +886-4-24181 nufacturing Sites Lelon Electronics 147, Sec. 1, Guogu TEL: +886-4-24181 Lelon Electronics	Corp. lang Rd,. Dali District, Taichung, Taiwan 856 FAX: +886-4-24181906 (Huizhou) Co., Ltd.
		Guangdong, China TEL: +86-752-8768	Zone, Baihua Town, Huidong County, Huizhou City, 2222 FAX: +86-752-8768199 (Suzhou) Co., Ltd.
		1220, Zhongshan N Development Zone	Jorth Rd., Wujiang Economic and Technological Technological Suzhou City, Jiangsu, China 57588 FAX: +86-512-63457791
			Approval Signatures 貴公司承認印
pproval	Check	Design 作 ざ	
核准 R&D EC. 27. 2023 . Y. Huang	確認 R&D DEC. 27. 2023 J.H.Xiong	作成 R&D DEC. 27. 2023 Z. X. Sun	
			Please Return One Copy with Your Appr 承認後請寄回本圖一

RDD0346A, A4, 970102

Part Numbering System

Product Code Guide - Conductiv Polymer Hybrid

① Series: Series is represented by a three-letter code. When the series name only has two letters, use a hyphen, "-", to fill the third blank.

② Capacitance: Capacitance in μF is represented by a three-digit code. The first two digits are significant and the third digit indicates the number of zeros following the significant figure. "R" represents the decimal point for capacitance under 10μF.
Example: Capacitance 10 47 56 100 220 470 560

mple:	Capacitance	10	47	56	100	220	470	560
	Part number	100	470	560	101	221	471	561

③ Tolerance:

K = -10% ~ +10%	M = -20% ~ +20%	V = -10% ~ +20%

(4) Rated voltage: Rated voltage in volts (V) is represented by a two-digit code

Rated Voltage (V)	16	20	25	35	50	63	80
Code	1C	1D	1E	1V	1H	1J	1K

⑤ Package:

SMD Type	TR = Reel package TT = Reel package of plastic
Radial Type	BK = Bulk Package SA = Straight Leader Taping CC = Cutting Leader

6 Terminal (SMD) / Rubber Type (Radial):

SMD Type	 - = Standard product A = For application 10 G ("A" must be used with automotive control code " K " together) V = Anti-vibration structure 	
Radial Type	- = Standard product (used flat rubber bung)	1

(2) Case size: The first two digits indicate case diameter and the last two digits indicate case length in mm.

SMD	ϕDxL	6.3×5.8	6.3×7.7	8×10	10×10	10×12.5	10×16.5
Туре	Code	0606	0608	0810	1010	1013	1016
Radial	φ D×L	6.3×6	6.3×8	8×10	10×10	10×12	
Туре	Code	0606	0608	0810	1010	1012	

Note: When a case size is required and not shown in the table, please contact with us for further discussion.

(8) Application:

None = General Purpose

K = Automotive (AEC-Q200)

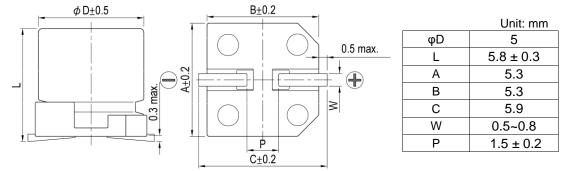
When a supplement code following a blank digit code of Pb-free leader and coated case (standard design), use a hyphen, "-", to fill the blank digit. When the automotive control code is required, please contact with us for further discussion.

(9) Supplement code (Optional):

For special control purpose

Lelon P/N: HBW220M1VTT-0506K

LELON ELECTRONICS CORP.


HBW $22 \ \mu\text{F} / 35 \ \text{V} - 5 \phi \times 5.8 \text{L}$

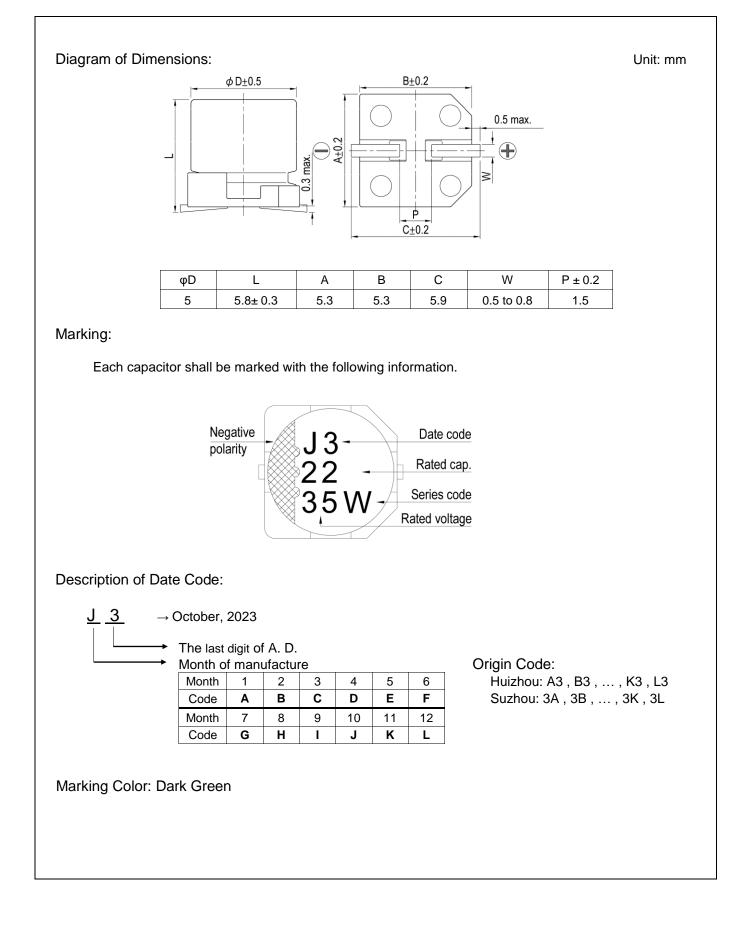
Page: 1 / 1

CUSTOMER :

CUSTOMER P/N:

PRODUCT DIMENSIONS

Items					Performance					
Rated Voltage V _R	35 V									
Capacitance C _R		22 µF (
Category Temperature Range				-	55℃ ~ +125℃	· · · · · · · · · · · · · · · · · · ·				
Capacitance Tolerance				-2	0 % ~ +20 %		(120 H	lz, 20℃)		
Surge Voltage Vs					$40.3 V_{\text{DC}}$					
Leakage Current (20°C)					$I_{\text{LEAK}} \leqq 7.7 \ \mu\text{A}$		After 2	? minutes		
Tan δ					≦ 0.12		(120 H	lz, 20℃)		
ESR max.					100 m Ω		(100k	Hz, 20°C)		
Ripple Current (I _{AC, R} / rms)					550 mA		(100k	Hz, 125℃		
Ripple Current (mA) and	Frequency		Hz)	$120 \leq f < 1k$	$1k \leq f < 10k$	$10k \leq f < 100k$	100k≦ f <500k			
Frequency Multipliers		Multiplier		0.1	0.3	0.6	1.0			
	Items			durance	st					
	Test	Time	4,000 Hrs at 125℃; <i>V_R I_{AC, R}</i>			1,000 Hrs at	1,000 Hrs at 125°C			
Endurance and Moisture	Cap.	Change	Within ±30 % of initial value			Within ±30 % of initial value				
Resistance	Tan	δ	Le	ss than 200% o	specified value	e Less than 20	Less than 200% of specified value			
	ESR		Less than 200% of specified value			E Less than 20	Less than 200% of specified value			
	Leak	age Current*	Wi	thin specified va	llue	Within specifi	ed value			
	Shelf Life: After storage for 1000 hours at +125 °C ±2 °C with no voltage a stabilized at +20 °C (With voltage treatment)							n being		
Vibration	Test frequency range 10 Hz ~ 2 kHz, acceleration max. 5 g 's (displacement amplitude max. 1.5 mm) for 20 minutes, 12 cycles each of 3 orientations.							.5 mm) for		
Standards				AEC-Q2	00-REV E, IEC	60384-4				
Remarks				RoHS C	ompliance, Halo	ogen-free				


Marking: Each capacitor shall be marked with the following information.

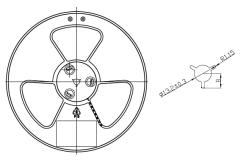
	$\underline{J} \underline{3} \rightarrow$		October	, 2023			
Negative - J 3 - Date code			The suffi Month of				
Rated cap.	Month	1	2	3	4	5	6
	Code	А	В	С	D	E	F
Series code	Month	7	8	9	10	11	12
Rated voltage	Code	G	Н	I	J	K	L

Marking color: Dark Green

* Please refer to "Precautions and Guidelines for Aluminum Electrolytic Capacitors" section in Lelon's catalog for further details.

Publication Date	December 27, 2023	Approval Signatures:	Approved	Checked	Designed
Revision Date			R & D	R & D	R & D
Version No.	1	Please return one copy with your approval	DEC. 27. 2023 H. Y. Huang	DEC. 27. 2023	DEC. 27. 2023 Z. X. Sun

1. Carrier Tape

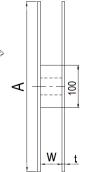
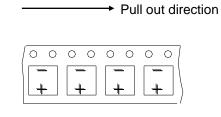


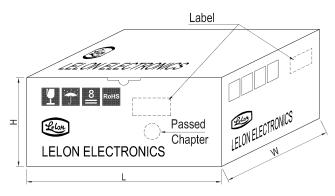
						Unit: mm
$\phi D xL$	А	В	F	Р	T2	W
5 × 4.4	5.7	5.7	5.5	12	4.8	12.0
5 × 5.7 / 5.8	5.7	5.7	5.5	12	6.2	12.0
6.3 × 4.4					4.8	
6.3 × 5.8 / 5.9					6.2	
6.3 × 6.4	7.0	7.0	7.5	12	7.2	16.0
6.3 × 7.0					7.6	
6.3 × 7.7					8.3	
6.3 × 9.5*			11.5	16	9.8	24.0
8 × 6.7			7.5	12	7.4	16.0
8 × 7.7	8.7	8.7			8.4	
8 ×10					11.0	
8 ×12*			11 5		12.5	24.0
10 × 7.7			11.5	16	8.7	24.0
10 × 9.9 / 10	10.7	10.7			11.0	
10 ×12.6 *					13.0	
10 ×16.5 *					17.5	
Tol.	± 0.2	± 0.2	± 0.1	± 0.1	±0.2	±0.3

Note: The case size in the above table is marked with "*", which means the marked with "*" in figure is 0.5 mm.

2. Reel Package

Fig. 2-1


Fig. 2-2 Reel Polarity

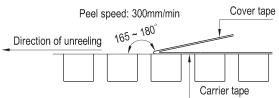
Case size	5φ	6.3φ	8φ×6.5 ~ 7L	8φ×10 ~12L	10φ
W	12.5	16.5	16.5	24.5	24.5
А	381	381	381	381	381
t	2.1	2.1	2.1	2.1	2.1

3. Packing Specification

3-1 Carrier Tape

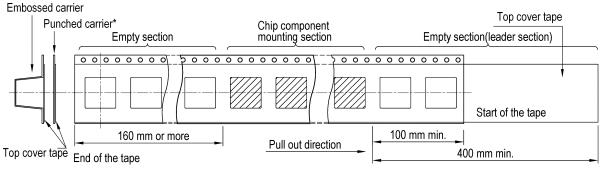
		Unit: pcs
Case size	Q'ty / Reel	Q'ty / Box
5ϕ	1,000	10,000
$6.3\phi \times 4.4L$	1,500	15,000
6.3 <i>¢</i>	1,000	10,000
$6.3 \phi \times 9.5 L$	500	5,000
$8\phi \times 6.7 \sim 7.7L$	1,000	10,000
8φ×10L	500	5,000
8φ×12L	400	4,000
10φ×7.7 ~ 10L	500	5,000
10φ×12.6L	400	4,000
10φ×16.5L	300	3,000

				Unit: mm		
Case size	5ϕ	6.3ϕ , $8\phi \times 6.7L$	8φ×7.7 ~ 12L	10ϕ		
Н	210	250	330	330		
W, L	395					


3-2 Label

Lelon	P/N:OCV471M0JTR-0812	RoHS JUL.20.2018
PO:GME-0E19319	LEL:OCV471M0JTR-0812	QTY: 4,000 pcs TOL: ± 20%
OCV 470	uF 6.3 v TR OV-470M0J0812-TR0	size: 8.0X12.0

4. Sealing Tape Reel Strength


4.1 Peel angle: 165 to 180°C refered to the surface on which the tape is glued.

- 4.2 Peel speed: 300mm per minutes
- 4.3 The peel strength must be $0.1 \sim 0.7$ N under these conditions.

5. Packing Method

- 5.1 The leader length of the tape shall not be less than 400 mm including 10 or more embossed sections in which no parts are contained.
- 5.2 The winding core is provided with an over 160 mm long empty section; punched carrier is only suitable for ϕ D \leq 5 mm.

6. Other: Specifications stated above is in accordance with JIS C 0806-3.

Endurance characteristic:

-	urance charac	
No.	Item	Conditions Specification
1	Rotational	Step1: $125 \pm 3^{\circ}C(30 \text{ minutes})$ Capacitance Within $\pm 20\%$ of initial value.
	Temperature	Step2: -55 ± 3 C (30 minutes) change
	Test	Max. transfer time: 1 minute Tanδ Less than 200% of specified value
		According to the step 1 to step 2, and do 1,000 cycles. Leakage Current Within specified value
		ESR Less than 200% of specified value
		Physical No broken and undamaged
2	High Temperature	1. Capacitors shall be placed in oven with application frated ripple current for 4,000 +72 / -0 Capacitance change Within ± 30% of initial value
	Endurance Life	hours at 125°C. Tanδ Less than 200% of specified value
		2. Then the capacitor shall be subjected to standard atmospheric conditions for 4 hours, after which Current Within specified value
		measurements shall be made. ESR Less than 200% of specified value
		Physical No broken and undamaged
3	High Temperature	After 1,000 +48 / -0 hours test at 125°C without rated working voltage. And then the capacitor shall change Within ± 30% of initial value
	Shelf Life Test	be subjected to standard atmospheric conditions for $Tan\delta$ Less than 200% of specified value
		4 hours, after which measurements shall be made.
		Current Villin specified value
		ESR Less than 200% of specified value
		Physical No broken and undamaged
4	Un-biased Humidity	Capacitors shall be exposed for 2,000 +48 / -0 hourrs in an atmosphere of $85\% \pm 5\%$ R. H. at $85 \pm 3^{\circ}$ C. Capacitance change Within $\pm 30\%$ of initial value.
		And then the capacitor shall be subjected to standard $Tan\delta$ Less than 200% of specified value
		atmospheric conditions for 4 hours, after which measurements shall be made.Leakage CurrentWithin specified value
		ESR Less than 200% of specified value
		Physical No broken and undamaged
5	Vibration Test	Capacitor is placed in the PCB and fixed by glue .Setting the acceleration (5g) and frequency (10 change Within ± 10% of initial value
		$\sim 2,000 \text{ Hz}$) according to the test condition, vibration Tan δ Within specified value
		4Hrs from three directions (X-Y-Z).
		ESR Within specified value
		Physical No broken and undamaged
6	Biased Humidity	Capacitors shall be rated working voltage for 2 000 Capacitance
Ŭ		+48 / -0 hours in an atmosphere of $85\% \pm 5\%$ R. H. Within $\pm 30\%$ of initial value.
		at $85 \pm 3^{\circ}$ C. Tan δ Less than 200% of specified value
		And then the capacitor shall be subjected to standard Leakage atmospheric conditions for 4 hours, after which Current Within specified value
		measurements shall be made. ESR Less than 200% of specified value
		Physical No broken and undamaged
7	Surge Voltage Test	The capacitor shall be subjected to 1,000 cycles at $15 \sim 35^{\circ}$ C. Protective series resistor a 1K Ω $15 \sim 35^{\circ}$ C.
		each consisting of a charge period of 30 ± 5 Tan δ Within specified value
		seconds, followed by discharge period of approximately 5.5 minutes. Leakage Current Within specified value
		ESR Less than 200% of specified value
		Applying voltage: Physical No broken and undamaged
		Rated Voltage (V) 16 25 35 50 63 80
		Kated Voltage (V) 10 25 35 30 03 80 Surge Voltage (V) 18.4 28.8 40.3 57.5 72.5 92.0

No.	ltem	Conditions		Specification	
8	Resistance to	IR Reflow	Capacitance	Within ± 10% of initial value.	
	Soldering Heat Test	T4	change Tanδ	Within specified value	
		T3 {217°C	Leakage	Within specified value	
			Current ESR	Within specified value	
			Physical	No broken and undamaged	
		Time (sec)			
		Propost $(T1 \sim T2, ^{\circ}C)$ $150 \sim 180$			
		Time (t1) (max., secs) 120			
		Temp. (T3, °C) 200 217 230 Duration Time (t2) t2a t2b t2c			
		(max., secs) 70 50 40			
		Peak Temp. (T4, °C) 250 260 Time (t3, secs) 5			
		Reflow cycles 2 1			
		* Please contact our representative if your condition			
		is higher. * Please ensure that the capacitor became cold			
		enough to the room temperature (5°C ~ 35 °C)			
		before the second reflow. * Consult with us when performing reflow profile in			
9	Board Flex Test	IPC / JEDEC (J-STD-020) Capacitor is placed in the PCB and pressed to	Capacitance		
0	Board Flox Fost	deviate from original fulcrum less than 2 mm for	change	Within \pm 10% of initial value.	
		60 (+5) seconds. Pressure rod	Tanδ Leakage	Within specified value	
			Current	Within specified value	
		R230 Board	ESR Physical	Within specified value No broken and undamaged	
		+	Пузісаі	No bloken and undamaged	
		R5			
		45±2 45±2			
10	Terminal	Test condition: Capacitor is placed in the PCB by	Capacitance	Within ± 10% of initial value.	
	Strength Test	solder paste and do high temperature test (reflow) 2 twice to endurance the power of 1.8 kg for 60	change Tanδ	Within specified value	
		seconds, no dropping condition.	Leakage	Within specified value	
			Current Physical	No broken and undamaged	
11	Mechanical	Capacitor is placed in the PCB and fixed. Setting the	Capacitance	Within ± 10% of initial value.	
	Shock	acceleration (100 g) and time (6 ms) according to the test condition, shock 6 times from three directions (X-	change Tanδ	Within specified value	
		Y-Z).	Leakage	Within specified value	
			Current ESR	•	
			Physical	Within specified value No broken and undamaged	
12	Physical		Within specified value		
13	Dimension Resistance to	Step 1: Put the capacitor into IPA ($25 \pm 5^{\circ}$ C);	- F		
	Solvents	Step 2: The dipping time is 3 +0.5 / -0 minutes; Step 3: Brush the capacitor for 10 times; Conduct the steps 1 ~ 3 for 3 cycles.	The print can	not fall off or be obscure	
14	Electrical Characterization	Whether there is abnormality about electrical characterization in the test that under the ensurance temperature (the lowest, the highest, atmospheric temperature).	Appearance:	No abnormality	

No.	Item	Conditions				Specification				
15	Characteristics at High and Low	Step	Temperature (°C)	Measurememt		【100k Hz】				
	Temperature	1	20 ± 2	ESR and Imp.		Impedanc	e / ESR		Ratio	7
		2	-25 ± 3, -55 ± 3	ESR and Imp.		Z _(-25°C) /			≤ 1.5	-
		3	125 ± 2	ESR and Imp.		Z _(-55°C) /			≤ 2.0	-
		[Criteri	a]			ESR _(-25^{°C}) /	ESR _{(20^{°C}})	≤ 1.5	_
		-	nce ratio (100k Hz	± 10k Hz)		ESR(-55°C) /	ESR(2010)	≤ 2.0	_
			00k Hz ± 10k Hz)							
16	Solderability Test	Test 1: Pre-conditioning: Execution according to RDD0302 (SolderabilityTest Method), item 4.4.2-1 (chart 3) Solder bath temperature: $235 \pm 5^{\circ}$ C Duration: $5 \pm 0 / -0.5$ seconds Test 2: Pre-conditioning: Execution according to RDD0302 (Solderability Test Methode), item 4.4.2-1 (chart 3) Solder bath temperature: $215 \pm 3^{\circ}$ C Duration: $5 \pm 0 / -0.5$ seconds Test 3: Pre-conditioning: Execution according to RDD0302 (Solderability Test Methode), item 4.4.2-1 (chart 3) Solder bath temperature: $260 \pm 5^{\circ}$ C			Sn is more than 95% in the surface of terminal					
17	Venting Test	Duration: 7 ± 0.5 seconds 1. Applicable to the capacitors with case size is 10 φ mm and larger. 2. Test condition: DC test: Applying inverse DC rated voltage with current to the capacitor. Where case diameter: φD ≤ 22.4 mm: 1 A DC max. φD > 22.4 mm: 10 A DC max. Note: (1) When the pressure relief vent operated, the capacitor shall avoid any danger of fire or explosion of capacitor element(terminal and metal foil etc.) or cover. (2) When the pressure relief device does not open with the voltage applied over 30 minutes, the								
18	Coating Case	test is considered to be passed. The color of coating case will turn light khaki from colorless with long duration in high temperature.								
40	Land Datter	Should there is any concern with the color changing of coating case, please consult with us.						JS.		
19	Land Pattern	Recommended pad pattern and size								
		G Y				Case size	L	and siz	е	
							G	Y	Х	
			(f f f f f f f f f f f f f f f f f f f			6.3 <i>¢</i>	1.9	3.5	1.6	
						8¢	3.0 4.0	3.5	2.5	
		10 <i>φ</i>						4.0	2.5]

Precautions and Guidelines for Aluminum Electrolytic Capacitors

1. Guidelines for Circuit Design (General / Application guidelines for using electrolytic capacitors)

Selecting of a right capacitor is a key to a good circuit design. (1) Polarity

Most of the aluminum electrolytic capacitors are polarized. Therefore, they must be installed with the correct polarity. Usage in the reverse polarity results into a short-circuit condition that may damage or even explode the capacitor. In addition, it may influence circuit functionality. A bi-polar electrolytic capacitor should be installed when polarity across a capacitor is unstable / reversible. It should be, however, noted that usage of both polar and bi-polar capacitors are limited to DC applications. They must NOT be used for AC application.

(2) Operating Voltage

Applied DC voltage must not exceed rated voltage of the capacitor. Applying higher voltage than its rated voltage across a capacitor terminals cause overheating due to higher leakage currents and capacitor dielectric/insulation deterioration that will ultimately affect a capacitor's performance. The device, however, is capable of working under short-time transient voltages such as DC transients and peak AC ripples. Reverse voltages higher than 1 Volt within a specified temperature limit or AC voltages are not permissible. Overall, using capacitors at recommended operating voltages can prolong its lifespan. Note that the result of DC voltage overlapped with peak ripple voltage should not exceed rated voltage.

(3) Ripple Current

One of the key functions of any capacitor is removal of the ripple current i.e. the RMS value of AC flowing through a capacitor. But, a ripple current higher than rated ripple current will drop resultant capacitance, cause undue internal heating and thus reduces life span of the capacitor. In extreme cases, internal high temperature will cause the pressure relief vent to operate while destroying the device. Overall, it is important to note that an electrolytic capacitor must be used within a permissible range of ripple current. Indicators like temperature coefficient of allowable ripple current are generally used to determine life expectancy of the capacitor, but to avoid related complex calculations and for the sake of simplicity, we haven't provided temperature coefficient in the catalogue. But it offers key indicators like maximum operating temperature for calculation of life expectancy at a given temperature.

(4) Operating Temperature

Capacitors should be used within a permissible range of operating temperatures. Using capacitor at a higher temperature than maximum rated temperature will considerably shorten its life. In the worst-case scenario, high temperature can cause pressure relief vent to operate and the device will get destroyed. Using capacitors at an ambient room temperature assure their longer life.

(5) Leakage Current

Leakage current flows through a capacitor when DC voltage is applied across it. Leakage current varies with changes in ambient temperature and applied DC voltage level and its time of application. Overvoltage situation, presence of moisture, and thermal stresses, especially occurring during the soldering process can enhance leakage current. Initial leakage current is usually higher and does not decrease until voltage is applied for a certain period of time. It is recommended to keep initial leakage current within specified levels.

(6) Charge and Discharge

Regular electrolytic capacitors are not suitable for rapid charging/discharging circuits. Such usage may either cause reduction in overall capacitance or damage due to overheating. Lelon provides special assistance for selecting appropriate capacitors for rapid charging/discharging circuits.

(7) Surge Voltage

The Surge voltage rating is referred as the maximum DC overvoltage that may be applied to an electrolytic capacitor for a short time interval of 30 seconds at infrequent time intervals not exceeding 5.5minutes with a limiting resistance of $1k\Omega$. Unless otherwise described on the catalogue or product specifications, please do not apply a voltage exceeding the capacitor's voltage rating. The rated surge voltages corresponding to rated voltages of electrolytic capacitors are presented as follows:

Rated Voltage(V)	4	6.3	10	16	25	35	50
Surge Voltage(V)	4.6	7.3	11.5	18.4	28.8	40.3	57.5
Rated Voltage(V)	63	80	100	160	200	250	315
Surge Voltage(V)	72.5	92	115	184	230	288	347
Ourge Voltage(V)	12.5	52	110	104	200	200	541
Rated Voltage(V)	350	400	420	450	500	525	
Surge Voltage(V)	385	440	462	495	550	578	

(8) Condition of Use

The capacitors shall NOT be exposed to:

- (a) Fluids including water, saltwater spray, oil, fumes, highly humid or condensed climates, etc.
- (b) Ambient conditions containing hazardous gases/fumes like hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- (c) Exposed to ozone, ultraviolet rays and radiation.
- (d) Severe vibrations or physical shocks that exceeds the specifications mentioned in this catalogue.

(9) Circuit Design Consideration

- (a) Please ensure whether application, operating and mounting conditions satisfy the conditions specified in the catalog before installation of a capacitor. Please consult Lelon, if any of the conditions are beyond the conditions specified in the catalog.
- (b) Heat-generating components or heat sinks should not be placed closer to Aluminum electrolytic capacitors on the PCB to avoid their premature failure. A cooling system is recommended to improve their reliable working.
- (c) Electrical characteristics and performance of aluminum electrolytic capacitors are affected by variation of applied voltage, ripple current, ripple frequency and operating temperature. Therefore, these parameters shall not exceed specified values in the catalog.
- (d) Aluminum capacitors may be connected in the parallel fashion for increasing total capacitance and/or for achieving higher ripple current capability. But, such design may cause unequal current flow through each of the capacitors due to differences in their impedances.
- (e) When two or more capacitors are connected in series, voltage across each capacitor may differ and fall below the applied voltage. A resistor should be placed across each capacitor so as to match applied voltage with voltage across a capacitor.
- (f) Please consult Lelon while selecting a capacitor for highfrequency switching circuit or a circuit that undergoes rapid charging/ discharging
- (g) Standard outer sleeve of the capacitor is not a perfect electrical insulator therefore is unsuitable for the applications that requires perfect electrical insulation. Please consult Lelon, if your application requires perfect electrical insulation.
- (h) Tilting or twisting capacitor body is not recommended once it is soldered to the PCB.

2. Caution for Assembling Capacitors

(1) Mounting

(a) Aluminum electrolytic capacitors are not recommended to reuse in other circuits once they are mounted and powered in a circuit.

- (b) Aluminum electrolytic capacitors may hold static charge between its anode and cathode, which is recommended to be discharged through a 1kΩ resistor before re-use.
- (c) A long storage of capacitors may result into its insulation deterioration. This can lead to a high leakage current when voltage is applied that may damage the capacitor. Capacitors following a long storage period must undergo voltage treatment/re-forming. Capacitors are charged by applying rated DC voltage through

Capacitors are charged by applying rated DC voltage through a resistor of $1k\Omega$ in series at least for an hour. It is recommended to increase applied voltage gradually using a voltage regulator unit once capacitors are assembled on the board. The charging should be followed by discharging through a $1K\Omega$ resistor.

- (d) Please check capacitor rated voltage before mounting.
- (e) Please check capacitor polarity before mounting.
- (f) Please don't drop capacitor on the floor / hard object.
- (g) Please don't deform the capacitor during installation.
- (h) Please confirm whether the lead spacing of the capacitors match with its pad spacing / footprint on PCB prior to installation.
- (i) Please avoid excessive mechanical shocks to capacitor during the auto-insertion process, inspection or centering operations.
- (j) Please don't place any wiring or circuit over the capacitor's pressure relief vent. The pressure relief vent may fail to open if adequate clearance space is not provided. Following table shows minimum clearance space required for different case diameters.

Case Diameter	ϕ 6.3 ~ ϕ 16	φ18 ~ φ35	ϕ 40 or above
Clearance (min)	2 mm	3 mm	5 mm

(2) Soldering

- (a) Please confirm that soldering conditions, especially temperature and contact time are within our specifications. Dip or flow prehaet temperature is 150°C with 120 seconds (max.), the soldering temperature should be limited at 260 ± 5°C for 10 ± 1 sec while manual soldering using soldering iron should be limited at 350 ± 5°C for 3 +1/-0 seconds. Please do not dip capacitor body into molten solder. A capacitor's life will be negatively affected if these conditions are violated.
- (b) Storage of capacitors in high humidity conditions is likely to affect the solder-ability of lead wires and terminals.

- (c) Reflow soldering should ONLY be used for SMD type capacitors. The temperature and duration shall not exceed the specified temperature and duration in the specification. If the temperature or duration is higher than the value specified, please consult Lelon before usage.
- (d) Standard aluminum electrolytic capacitors are not designed to withstand multiple reflow processes. Please consult Lelon if repeated reflowing is unavoidable.
- (e) Incorrect mounting on PCB with improper external strength applied on its lead wires or capacitor body after soldering may damage a capacitor's internal structure, cause short circuit, or lead to high leakage current issues. Do not bend or twist the capacitor body after soldering. Referring to the drawings below only case (i) is recommended.
 - (i) Correct soldering
 - (ii) Hole-to-hole spacing on PCB differs from the lead space of lead wires.
 - (iii) Lead wires are bent after soldering.
 - (iv) Capacitor body doesn't stand vertical on PCB after soldering.

(3) Cleaning Circuit Boards after Soldering

- (a) Following chemicals are not recommended for cleaning: Solvent containing halogen ions, Alkaline solvent, Xylene, Acetone, Terpene, petro-based solvent.
- (b) Recommended cleaning conditions: Fatty-alcohol - Pine Alpha ST-100S, Clean Through-750H and IPA (isopropyl alcohol) are examples of the most acceptable cleaning agents. Temperature of the cleaning agent must not exceed 60°C. Flux content in the cleaning agents should be limited to 2 Wt. %. Overall length of cleaning process (e.g., immersion, ultrasonic or other) shall be within 5 minutes (5 -7mm height within 3 minutes). CFC substitute cleaning agents such as AK225AES can also be used for cleaning. In this case, its temperature shall not exceed 40 C and cleaning process (e.g., immersion, ultrasonic or other) shall be completed within 2 ~ 3 minutes. After cleaning capacitors should be dried with hot air for at least 10 minutes along with the PCB. Temperature of hot air shall not exceed maximum category temperature of the capacitor. Insufficient drying may cause appearance defects, sleeve shrinkage, and bottom-plate bulging. However, usage of this CFC substitute must completely regulated for protection of environment.

3. Maintenance Inspection

Periodical inspection of aluminum capacitors is absolutely necessary, especially when they are used with industrial equipment. The following items should be checked:

- (1) Appearance: Bloated, vent operated, leaked, etc.
- (2) Electrical characteristic: Capacitance, Tanδ, leakage current, and other specified items listed in specification.

Lelon recommend replacing the capacitors if any of the

abovementioned items fail to meet specifications.

4. Storage

Г

 \times

(c)

Įς

(1) The most suitable conditions for aluminum capacitor storage are 5 °C ~ 35°C and indoor relative humidity less than 75%. High temperature and/or humidity storage is detrimental to the capacitors.

(d)

- (2) Capacitors shall not be stored in wet or damp atmospheres containing water, brine, fumes or oil.
- (3) Capacitors storage area shall neither be exposed to hazardous gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc. nor to acidic or alkaline solutions.
- (4) Capacitors shall not be exposed to ozone, ultraviolet rays or radiation.

5. Estimation of life time

$$L_r = L_0 \times 2^{\frac{T_{0\max} - T_{r\max}}{10}}$$

Lr: Estimated lifetime (hours)

- $L_0{:}$ Base lifetime specified at maximum operating temperature with applied the DC voltage and the ripple current (hours)
- $T_{0 max}$: The core temperature that rated ripple current applied at maximum operating temperature.
- $T_{r\,max}$: The core temperature that applied actual ripple current at ambient temperature.

6. Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors

7. Environmental Consideration

Lelon already have received ISO 14000 certificate. Cadmium (Cd), Lead (Pb), Mercury (Hg), Hexavalent Chromium (Cr⁺⁶), PBB, PBDE, DEHP, BBP, DBP and DIBP have never been using in capacitor. If you need "Halogen-free" products, please consult with us.

8. AEC-Q200 Compliance

Automotive Electronics Counsel (AEC) has established various electronic component qualification/reliability standards in order to serve automotive electronics industry. AEC-Q200 standard is dedicated for passive components like capacitors, inductors, etc. and is widely adopted domestically as well as internationally. Lelon offers compliant product designs and support services to satisfy customers' product requirements, including the AEC-Q200 required criteria of the reliability tests. Lelon's capacitors are professionally designed to outperform all requirements of AEC-Q200.

For further details, please refer to IEC 60384-4- Fixed capacitors for use in electronic equipment – Part 4: Sectional specification – Aluminium electrolytic capacitors with solid (MnO₂) and non-solid electrolyte (Established in January 1995, Revised in March 2007), and

EIAJ RCR-2367B- Guideline of notabilia for fixed aluminium electrolytic capacitors for use in electronic equipment [Technical Standardization Committee on Passive Components (Established in March 1995, Revised in March 2002)].