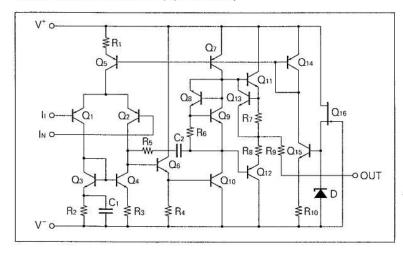
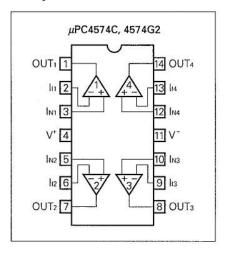


# BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu$ PC4574

## QUAD ULTRA LOW-NOISE, WIDEBAND, OPERATIONAL AMPLIFIER


#### DESCRIPTION

The  $\mu$ PC4574 is an ultra low noise, high slew rate quad operational amplifier specifically designed for audio, instrumentation, and communication circuits. The low noise and high frequency capabilities make it ideal for preamps and active filters for instrumentation and professional audio.


#### **FEATURES**

- Ultra low noise
- High slew rate
- Wide bandwidth
- Internal frequency compensation

### **EQUIVALENT CIRCUIT (1/4 Circuit)**



## CONNECTION DIAGRAM (Top View)



## **ORDERING INFORMATION**

| PART NUMBER | PACKAGE                      | QUALITY GRADE |
|-------------|------------------------------|---------------|
| μPC4574C    | 14 PIN PLASTIC DIP (300 mil) | Standard      |
| μPC4574G2   | 14 PIN PLASTIC SOP (225 mil) | Standard      |

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

## ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

| The state of the s |                     | 85      |                                            |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|--------------------------------------------|------|
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | SYMBOL  | μPC4574                                    | UNIT |
| Voltage between V <sup>+</sup> and V <sup>-</sup> (Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | V+ - V- | -0.3 to +36                                | V    |
| Differential Input V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oltage              | .VID.   | ±30                                        | V    |
| Input Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Note 2)            | Vı      | V0.3 to V+ +0.3                            | V    |
| Output Voltage (Note 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Vo      | V <sup>-</sup> -0.3 to V <sup>+</sup> +0.3 | V    |
| Power Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C Package (Note 4)  |         | 570                                        | , mW |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2 Package (Note 5) | Рт      | 550                                        | mW   |
| Output Short Circuit Duration (Note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |         | 10                                         | sec  |
| Operating Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Topt    | -20 to +80                                 | °C   |
| Storage Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Tstg    | -55 to +125                                | °C   |

- Note 1. Reverse connection of supply voltage can cause destruction.
- Note 2. The input voltage should be allowed to input without damage or destruction. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The normal operation will establish when the both inputs are within the Common Mode Input Voltage Range of electrical characteristics.
- Note 3. This specification is the voltage which should be allowed to supply to the output terminal from external without damage or destructive. Even during the transition period of supply voltage, power on/off etc., this specification should be kept. The output voltage of normal operation will be the Output Voltage Swing of electrical characteristics.
- Note 4. Thermal derating factor is -7.6 mV / °C when ambient temperature is higher than 50 °C.
- Note 5. Thermal derating factor is -5.5 mV / °C when ambient temperature is higher than 25 °C.
- Note 6. Pay careful attention to the total power dissipation not to exceed the absolute maximum ratings, Note 4 and Note 5.

## RECOMMENDED OPERATING CONDITIONS

| CHARACTERISTIC                        | SYMBOL         | MIN. | TYP. | MAX. | UNIT |
|---------------------------------------|----------------|------|------|------|------|
| Supply Voltage                        | V <sup>±</sup> | ± 4  |      | ± 16 | V    |
| Output Current                        | lo             |      |      | ± 10 | mA   |
| Source Resistance                     | Rs             |      |      | 50   | kΩ   |
| Capacitive Load (A <sub>v</sub> = +1) | CL             |      |      | 100  | pF   |

## ELECTRICAL CHARACTERISTICS (Ta = 25 °C, $V^{\pm}$ = $\pm 15$ V)

| CHARACTERISTIC                         | SYMBOL | MIN. | TYP.  | MAX.                   | UNIT     | CONDITIONS                                 |
|----------------------------------------|--------|------|-------|------------------------|----------|--------------------------------------------|
| Input Offset Voltage                   | Vio    | ,    | ±0.3  | ±5                     | mV       | Rs ≦ 50 Ω                                  |
| Input Offset Current (Note 7)          | lio    |      | ±10   | ±200                   | nA       |                                            |
| Input Bias Current (Note 7)            | lB     | 11.0 | 500   | 1000                   | nA       |                                            |
| Large Signal Voltage Gain              | Αυ     | 30   | 300   |                        | V/mV     | $RL \ge 2 k\Omega$ , $Vo = \pm 10 V$       |
| Supply Current                         | Icc    |      | 8.5   | 12                     | mA       | lo = 0 A, All Amplifiers                   |
| Common Mode Rejection Ratio            | CMR    | 80   | 100   |                        | dB       |                                            |
| Supply Voltage Rejection Ratio         | SVR    | 80   | 100   |                        | dB       |                                            |
| 0                                      | .,     | ±12  | ±13.4 |                        | V        | RL ≧ 10 kΩ                                 |
| Output Voltage Swing                   | Vom    | ±10  | ±12.8 |                        | \ \ \    | $RL \ge 2 k\Omega$                         |
| Common Mode Input Voltage Range        | Vicм   | ±12  | ±14   | in the second state of | V        |                                            |
| Slew Rate                              | SR     | 4    | 6     |                        | V/μs     | R <sub>L</sub> ≥ 2 kΩ                      |
| Gain Band Width Product                | GBW    | 10   | 14    |                        | MHz      | fo = 100 kHz                               |
| Unity Gain Frequency                   | funity |      | 7     |                        | MHz      | open loop                                  |
| Phase Margin                           | фunity |      | 50    |                        | degree   | open loop                                  |
| Total Harmonic Distortion              | THD    |      | 0.002 | AVAC - 9 1,001,000     | %        | Vo = 3 Vr.m.s., f = 20 Hz to 20 kHz (Fig.1 |
| I                                      | Vn     |      | 1.2   |                        | μVr.m.s. | RIAA (Fig.2)                               |
| Input Equivalent Noise Voltage         |        |      | 0.53  | 0.65                   |          | FLAT + JIS A, Rs = 100 $\Omega$ (Fig.3)    |
| 7                                      |        |      | 5.5   |                        |          | fo = 10 Hz, Rs = 100 Ω                     |
| Input Equivalent Noise Voltage Density | - En   | 4.2  | 5.0   | 1                      | nV/√Hz   | fo = 1 kHz, Rs = 100 Ω                     |
| Input Equivalent Noise Current Density | in     |      | 0.7   |                        | pA/√Hz   | fo = 1 kHz                                 |
| Channel Separation                     |        | Š    | 120   |                        | dB       | f = 20 Hz to 20 kHz                        |

Note 7. Input bias currents flow out from IC. Because each currents are base current of PNP-transistor on input stage.

3

## **MEASUREMENT CIRCUIT**

Fig. 1 Total Harmonic Distortion Measurement Circuit

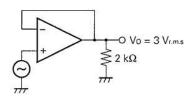
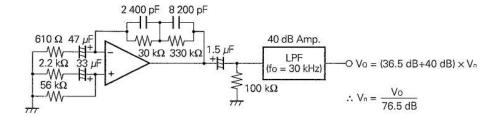
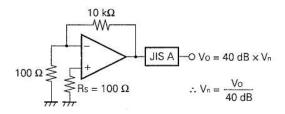
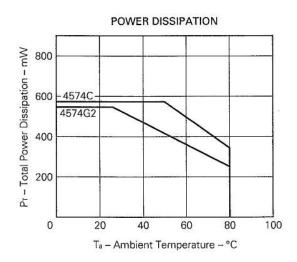
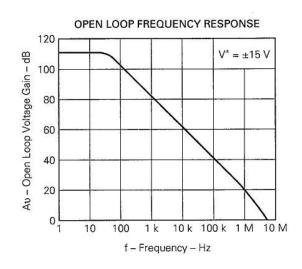
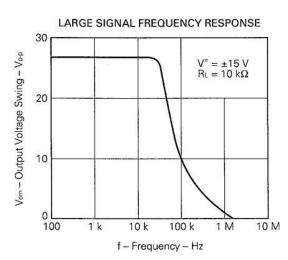
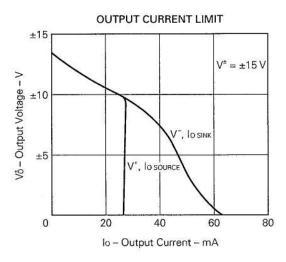
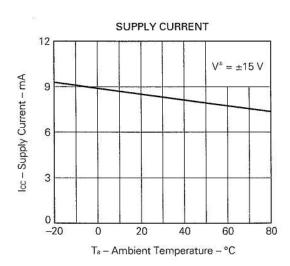


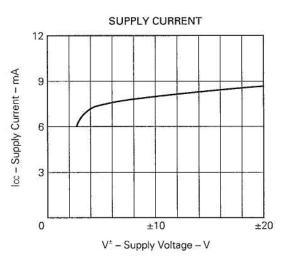

Fig. 2 Noise Measurement Circuit (RIAA)

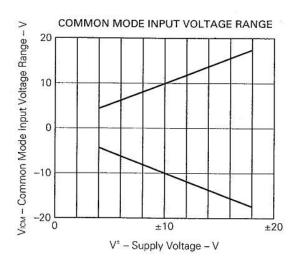





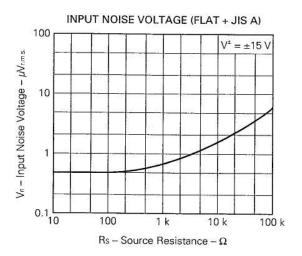


Fig. 3 Flat Noise Measurement Circuit (FLAT + JIS A)

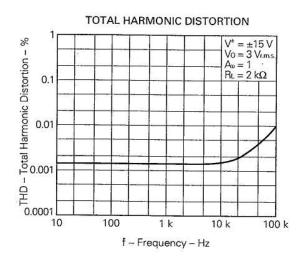


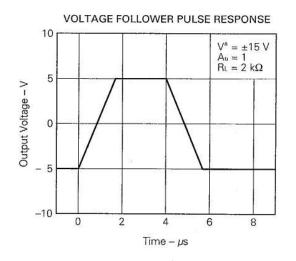


## TYPICAL PERFORMANCE CHARACTERISTICS (Ta = 25 °C, TYP.)

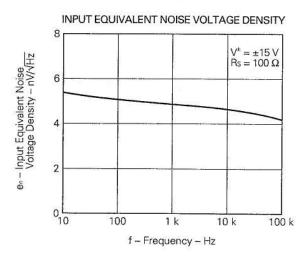


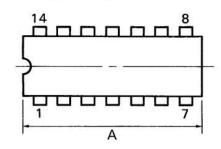



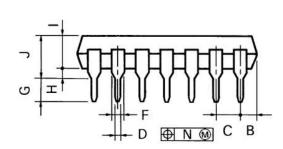



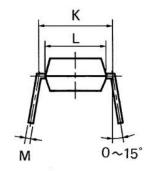





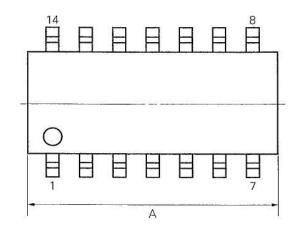



## 14PIN PLASTIC DIP (300 mil)

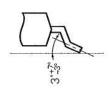


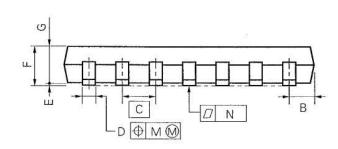


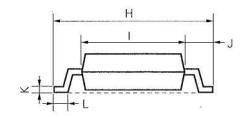



P14C-100-300B1

## NOTES


- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


| ITEM | MILLIMETERS         | INCHES                  |
|------|---------------------|-------------------------|
| Α    | 20.32 MAX.          | 0.800 MAX.              |
| В    | 2.54 MAX.           | 0.100 MAX.              |
| С    | 2.54 (T.P.)         | 0.100 (T.P.)            |
| D    | 0.50 ±0.10          | 0.020 +0.004            |
| F    | 1.2 MIN.            | 0.047 MIN.              |
| G    | 3.6 <sup>±0.3</sup> | 0.142 <sup>±0.012</sup> |
| н    | 0.51 MIN.           | 0.020 MIN.              |
| 1    | 4.31 MAX.           | 0.170 MAX.              |
| J    | 5.08 MAX.           | 0.200 MAX.              |
| К    | 7.62 (T.P.)         | 0.300 (T.P.)            |
| L    | 6.4                 | 0.252                   |
| М    | 0.25 - 0.05         | 0.010 - 0.004           |
| N    | 0.25 0.01           |                         |


## 14 PIN PLASTIC SOP (225 mil)



detail of lead end







NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

S14GM-50-225B, C-2

| ITEM | MILLIMETERS | INCHES       |
|------|-------------|--------------|
| А    | 10.46 MAX.  | 0.412 MAX.   |
| В    | 1.42 MAX.   | 0.056 MAX.   |
| С    | 1.27 (T.P.) | 0.050 (T.P.) |
| D    | 0.40+0.10   | 0.016+0.004  |
| E    | 0.1±0.1     | 0.004±0.004  |
| F    | 1.8 MAX.    | 0.071MAX.    |
| G    | 1.49        | 0.059        |
| Н    | 6.5±0.3     | 0.256±0.012  |
| 1    | 4.4         | 0.173        |
| J    | 1.1         | 0.043        |
| Κ.   | 0.15+0.10   | 0.006+0.004  |
| L    | 0.6±0.2     | 0.024+0.008  |
| М    | 0.12        | 0.005        |
| N    | 0.15 0.006  |              |

#### RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

#### TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

[ μPC4574G2 ]

| Soldering<br>method    | Soldering conditions                                                                                                                                               | Recommended condition symbol |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Infrared ray reflow    | Peak package's surface temperature: 230 °C or below,<br>Reflow time: 30 seconds or below (210 °C or higher),<br>Number of reflow process: 1, Exposure limit*: None | IR30-00-1                    |
| VPS                    | Peak package's surface temperature: 215 °C or below,<br>Reflow time: 40 seconds or below (200 °C or higher),<br>Number of reflow process: 1, Exposure limit*: None | VP15-00-1                    |
| Wave soldering         | Solder temperature: 260 °C or below,<br>Flow time: 10 seconds or below<br>Number of flow process: 1, Exposure limit*: None                                         | WS15-00-1                    |
| Partial heating method | Terminal temperature: 300 °C or below,<br>Flow time: 10 seconds or below,<br>Exposure limit*: None                                                                 |                              |

<sup>\*:</sup> Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Note: Do not apply more than a single process at once, except for "Partial heating method."

## TYPES OF THROUGH HOLE DEVICE

[ µPC4574C ]

| Soldering<br>method | Soldering conditions                                                   | Recommended condition symbol |
|---------------------|------------------------------------------------------------------------|------------------------------|
| Wave soldering      | Solder temperature: 260 °C or below,<br>Flow time: 10 seconds or below | -                            |

[MEMO]

No part of this document may be copied or reproduced in any from or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6