#### General Description The MAX4174/MAX4175/MAX4274/MAX4275 Gain-Amp™ family combines a low-cost Rail-to-Rail® op amp with precision internal gain-setting resistors and V<sub>CC</sub> / 2 biasing. Factory-trimmed on-chip resistors decrease design size, cost, and layout, and provide 0.1% gain accuracy. Fixed inverting gains from -0.25V/V to -100V/V or noninverting gains from +1.25V/V to +101V/V are available. These devices operate from a single +2.5V to +5.5V supply and consume only 300μA. Gain-Amp amplifiers are optimally compensated for each gain version, achieving exceptional GBW products up to 23MHz (Av = +25V/V to +101V/V). High-voltage fault protection withstands ±17V at either input without excessive current draw. Three versions are available in this amplifier family: single/ dual/quad open-loop, unity-gain stable (MAX4281/ MAX4282/MAX4284); single/dual fixed gain (MAX4174/ MAX4274); and single/dual fixed gain plus internal VCC / 2 bias at the noninverting input (MAX4175/ MAX4275), which simplifies input biasing in single-supply designs. The input common-mode voltage range of the open-loop amplifiers extends from 150mV below the negative supply to within 1.2V of the positive supply. The outputs can swing rail-to-rail and drive a 1kΩ load while maintaining excellent DC accuracy. The amplifier is stable for capacitive loads up to 470pF. #### **Applications** Portable Instruments Instruments, Terminals, and Bar-Code Readers Keyless Entry Photodiode Preamps Smart-Card Readers Infrared Receivers for Remote Controls Low-Side Current-Sense #### **Features** - Gain-Amp Family Provides Internal Precision Gain-Setting Resistors in SOT23 (MAX4174/5) - ◆ 0.1% Gain Accuracy (RF/RG) (MAX4174/5, MAX4274/5) - ♦ 54 Standard Gains Available (MAX4174/5, MAX4274/5) - Open-Loop Unity-Gain-Stable Op Amps (MAX4281/2/4) - Rail-to-Rail Outputs Drive 1kΩ Load - Internal V<sub>CC</sub> / 2 Biasing (MAX4175/MAX4275) - +2.5V to +5.5V Single Supply - 300µA Supply Current - Up to 23MHz GBW Product - Fault-Protected Inputs Withstand ±17V - Stable with Capacitive Loads Up to 470pF with No Isolation Resistor #### Ordering Information Typical Operating Circuit | PART* | TEMP. RANGE | PIN-<br>PACKAGE | SOT<br>TOP MARK | |---------------|----------------|-----------------|-----------------| | MAX4174_EUK-T | -40°C to +85°C | 5 SOT23-5 | †† | | MAX4175_EUK-T | -40℃ to +85℃ | 5 SOT23-5 | †† | #### Ordering Information continued at end of data sheet. - Insert the desired gain code (from the Gain Selection Guide) in the blank to complete the part number. - †† Refer to the Gain Selection Guide for a list of preferred gains and SOT Top Marks. Selector Guide appears at end of data sheet. #### Pin Configurations **Amplifiers** Gain-Amp is a trademark of Maxim Integrated Products. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. ### +5V MIXIM MAX4175 all INPUT 0.1µF VŒ #### MIXIM Maxim Integrated Products 1 #### **ABSOLUTE MAXIMUM RATINGS** | Supply Voltage (VCC to VEE) | 0.3V to +6V | |--------------------------------------------------------|---------------| | Voltage Inputs (IN_) | | | MAX4281/4282/4284(VEE - 0.3V) to | (VCC + 0.3V) | | MAX4174/4175/4274/4275 (with respect to GND | ))±17V | | Output Short-Circuit Duration | | | (OUT_)Continuous to Eith | er VEE or VCC | | Continuous Power Dissipation (T <sub>A</sub> = +70 °C) | | | 5-Pin SOT23 (derate 7.1mW/°C above +70°C) | 571mW | | 8-Pin SO (derate 5.88mW/ °C above +70 °C) | 471mW | | 8-Pin μMAX (derate 4.1mW/ °C above +70 °C) | 330mW | |--------------------------------------------|-------| | 14-Pin SO (derate 8.3mW/°C above +70 °C) | 667mW | | 16-Pin QSOP (derate 8.3mW/°C above +70°C) | 667mW | | Operating Temperature Range40° | | | Maximum Junction Temperature | +150℃ | | Storage Temperature Range65 ℃ | | | Lead Temperature (soldering, 10sec) | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### ELECTRICAL CHARACTERISTICS—MAX4174/MAX4175/MAX4274/MAX4275 FIXED-GAIN AMPLIFIERS $(V_{CC} = +2.5V \text{ to } +5.5V, V_{EE} = 0, V_{IN+} = V_{IN-} = V_{CC} \ / \ 2, \ R_L \text{ to } V_{CC} \ / \ 2, \ R_L = \text{open, } T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5V \text{ and } T_A = +25\,^{\circ}\text{C.}) \text{ (Note 1)}$ | PARAMETER | SYMBOL | CONDITIONS | | | MIN | TYP | MAX | UNITS | | |---------------------------------|---------|-------------------------------------------------------|------------------------------------|-------------------------------|-----|-------------------------------|-----------|-------|--| | Supply Voltage Range | Vcc | Guaranteed by PSF | RR tests | | 2.5 | | 5.5 | ٧ | | | | | | | Vcc = 3V | | 300 | 460 | | | | Supply Current | 1 | MAX4174/MAX4274 | • | V <sub>C</sub> C = 5V | | 330 | 510 | | | | (per Amplifier) | lcc | MAX4175/MAX4275 | 5, | Vcc = 3V | | 320 | 480 | μΑ | | | | | includes V <sub>CC</sub> / 2 bia | as resistors | V <sub>CC</sub> = 5V | | 355 | 530 | | | | Input Offset Voltage | Vos | $R_L = 100k\Omega$ | | | | ±0.5 | ±2.0 | mV | | | Input Offset Voltage Drift | | | | | | ±5 | j | μV/℃ | | | Input Bias Current | IBIAS | IN_+, MAX4174/MA | X4274 (Note 2) | | | ±0.05 | ±10 | nA | | | Investing Innut Desigtance | | Ay < 25V/V | | | | 150 | | kΩ | | | Inverting Input Resistance | | Av > 25V/V | | | | 40 | | KSZ | | | Noninverting Input | | MAX4174/MAX4274 | ļ | | | 1000 | | МΩ | | | Resistance | | MAX4175/MAX4275 | 5 | | | 75 | | kΩ | | | IN_+ Bias Voltage | | MAX4175/MAX4275, V <sub>IN+</sub> = V <sub>IN</sub> - | | V <sub>CC</sub> / 2<br>- 0.25 | | V <sub>CC</sub> / 2<br>+ 0.25 | ٧ | | | | IN_+ Input Voltage Range | | Guaranteed by fund | tional test (Note | 3) | VEE | \ | /cc - 1.2 | V | | | IN Input Voltage Range | | Guaranteed by fund | tional test | | VEE | | Vcc | V | | | Power-Supply Rejection<br>Ratio | PSRR | V <sub>CC</sub> = 2.5V to 5.5V | | | 70 | 90 | | dB | | | Closed-Loop Output<br>Impedance | Rout | | | | | 0.02 | | Ω | | | Chart Circuit Current | 10 | Shorted to VEE | | | | 10 | | A | | | Short-Circuit Current | | Shorted to VCC | 29. | | | 65 | | mA | | | | | R <sub>L</sub> = 100kΩ | Vcc - Voi | Н | | 2 | 8 | | | | Output Voltage Swing | V0/ | 11L = 100K2Z | V <sub>OL</sub> - V <sub>EE</sub> | | | 2 | 8 | mV | | | (Note 4) | VOH/VOL | D 410 | Vcc - Voi | Н | | 150 | 250 | | | | | | UF = 1875 | $R_L = 1k\Omega$ $V_{OL} - V_{EE}$ | | | 60 | 150 | 1 | | #### ELECTRICAL CHARACTERISTICS—MAX4174/MAX4175/MAX4274/MAX4275 (continued) $(V_{CC} = +2.5V \text{ to } +5.5V, V_{EE} = 0, V_{IN+} = V_{IN-} = V_{CC} / 2, R_L \text{ to } V_{CC} / 2, R_L = \text{open}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5V \text{ and } T_A = +25 ^{\circ}C.) \text{ (Note 1)}$ | PARAMETER | SYMBOL | CONDITIONS | MIN TYP | MAX | UNITS | |-------------------------------|--------|-----------------------------------------------------------------------------------|---------|-----|-----------------| | Power-Up Time | | Output settling to 1% | 1 | | ms | | Slew Rate | SR | V <sub>CC</sub> = 5V, V <sub>OUT</sub> = 4V step | 0.7 | | V/µs | | Settling Time to Within 0.01% | 2 | V <sub>CC</sub> = 5V, V <sub>OUT</sub> = 4V step | 7 | | μѕ | | Input Noise Voltage Density | en | f = 10kHz (Note 5) | 90 | | nV/√Hz | | Input Noise Current Density | İn | f = 10kHz | 4 | | f <b>A</b> /√Hz | | Capacitive Load Stability | CLOAD | No sustained oscillations | 470 | | pF | | DC Gain Accuracy | | $(V_{EE} + 25mV) < V_{OUT} < (V_{CC} - 25mV),$<br>R <sub>L</sub> = 100kΩ (Note 6) | 0.1 | 0.5 | % | | | | Gain = +1.25V/V | 1700 | | | | | | Gain = +3V/V | 970 | | 1 | | -3dB Bandwidth | DW | Gain = +5V/V | 970 | | kHz | | -Sub bandwidth | BW-3dB | Gain = +10V/V | 640 | | KHZ | | | | Gain = +25V/V 590 | | | 1 | | | | Gain = +51 V/V | 330 | | 1 | #### ELECTRICAL CHARACTERISTICS—MAX4281/MAX4282/MAX4284 OPEN-LOOP OP AMPS $(V_{CC} = +2.5V \text{ to } +5.5V, V_{EE} = 0, V_{IN+} = V_{IN-} = V_{CC} \ / \ 2, \ R_L \text{ to } V_{CC} \ / \ 2, \ R_L = \text{open}, \ T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5V \text{ and } T_A = +25\,^{\circ}\text{C.}) \text{ (Note 1)}$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------------------------|--------|--------------------------------------------------------------------|------------------------|-------|-----------------------|-------| | Supply Voltage Range | Vcc | Guaranteed by PSRR tests | 2.5 | | 5.5 | V | | Supply Current | loo | V <sub>C</sub> C = 3V | | 290 | 450 | μΑ | | (per Amplifier) | Icc | Vcc = 5V | | 320 | 500 | μΑ | | Input Offset Voltage | Vos | $R_L = 100k\Omega$ | | ±0.5 | ±2 | mV | | Input Offset Voltage Drift | | | | ±5 | | μV/℃ | | Input Bias Current | IBIAS | | 1 | ±0.05 | ±10 | nA | | Input Offset Current | los | | | ±10 | ±1000 | pΑ | | Input Resistance | RIN | Differential or common mode | | 1000 | | MΩ | | Input Capacitance | CIN | | | 2.5 | | pF | | Common-Mode Input<br>Voltage Range | CMVR | Guaranteed by CMRR test | V <sub>EE</sub> - 0.15 | 5 | V <sub>CC</sub> - 1.2 | ٧ | | Common-Mode Rejection<br>Ratio | CMRR | V <sub>EE</sub> - 0.15V ≤ V <sub>CM</sub> ≤ V <sub>CC</sub> - 1.2V | 60 | 90 | | dB | | Power-Supply Rejection<br>Ratio | PSRR | V <sub>CC</sub> = 2.5V to 5.5V | 70 | 90 | | dB | | Closed-Loop Output<br>Impedance | Rout | A <sub>V</sub> = 1 | | 0.02 | | Ω | ### ELECTRICAL CHARACTERISTICS—MAX4281/MAX4282/MAX4284 OPEN-LOOP OP AMPS (continued) $(V_{CC} = +2.5V \text{ to } +5.5V, V_{EE} = 0, V_{IN+} = V_{IN-} = V_{CC} / 2, R_L \text{ to } V_{CC} / 2, R_L = \text{open}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V_{CC} = +5V \text{ and } T_A = +25 ^{\circ}C.) \text{ (Note 1)}$ | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | |-------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------------------|--------| | Chart Circuit Comment | | Shorted to VEE | | 1.0.000.00 | 10 | ALTON C 110 TO AT | mA | | Short-Circuit Current | | Shorted to VCC | | | 65 | | mA | | 1 Ci I V-lt C-i- | A | VEE + 0.05V < VOL | $JT < V_{CC} - 0.1V$ , $R_L = 100k\Omega$ | 90 | 120 | | dB | | Large-Signal Voltage Gain | AVOL | V <sub>EE</sub> + 0.25V < V <sub>OL</sub> | $JT < V_{CC} - 0.3V, R_L = 1k\Omega$ | 80 | 100 | | dB | | | | R <sub>I</sub> = 100kΩ | Vcc - Voh | | 2 | 8 | | | Outrut Valtage Cuina | V <sub>OH</sub> /V <sub>OL</sub> | HL = 100K22 | Vol - VEE | | 2 | 8 | mV | | Output Voltage Swing | | R <sub>L</sub> = 1kΩ | Vcc - Voh | | 160 | 250 | | | | | | Vol - VEE | | 60 | 100 | | | Gain Bandwidth Product | GBW | | A second | - | 2 | | MHz | | Slew Rate | SR | Vcc = 5V, Vout = | 4V step | | 0.7 | | V/µs | | Settling Time to within 0.01% | | Vcc = 5V, Vout = | 4V step | | 7 | | μs | | Input Noise Voltage Density | en | f = 10kHz | f = 10kHz | | 60 | | nV/√Hz | | Input Noise Current Density | in | f = 10kHz | | | 1.8 | | fA/√Hz | | Capacitive Load Stability | CLOAD | No sustained oscillations, Ay = 1 | | | 470 | | pF | | Power-Up Time | 1 | Output settling to 1 | % | | 1 | | ms | Note 1: MAX4174/MAX4175/MAX4281 and MAX4274/MAX4275/MAX4282 and MAX4284 are 100% production tested at T<sub>A</sub> = +25 °C. All temperature limits are guaranteed by design. Note 2: Guaranteed by design. Note 3: The input common-mode range for IN\_+ is guaranteed by a functional test. A similar test is done on the IN\_- input. See the Applications Information section for more information on the input voltage range of the Gain-Amp. Note 4: For Ay = -0.5V/V and Ay = -0.25V/V, the output voltage swing is limited by the input voltage range. Note 5: Includes noise from on-chip resistors. Note 6: The gain accuracy test is performed with the Gain-Amp in noninverting configuration. The output voltage swing is limited by the input voltage range for certain gains and supply voltage conditions. For situations where the output voltage swing is limited by the valid input range, the output limits are adjusted accordingly. #### Typical Operating Characteristics $(V_{CC} = +5V, R_L = 100 k\Omega \text{ to } V_{CC} / 2, \text{ small-signal } V_{OUT} = 100 mVp-p, \text{ large-signal } V_{OUT} = 1Vp-p, T_A = +25 ^{\circ}C, \text{ unless otherwise noted.})$ 5 ## SOT23, Rail-to-Rail, Fixed-Gain Gain-Amps/Open-Loop Op Amps #### Typical Operating Characteristics (continued) $(V_{CC} = +5V, R_L = 100k\Omega \text{ to } V_{CC} / 2, \text{ small-signal } V_{OUT} = 100mVp-p, \text{ large-signal } V_{OUT} = 1Vp-p, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ MIXLM #### Typical Operating Characteristics (continued) $(V_{CC} = +5V, R_L = 100k\Omega \text{ to } V_{CC} / 2, \text{ small-signal } V_{OUT} = 100mVp-p, \text{ large-signal } V_{OUT} = 1Vp-p, T_A = +25\%, \text{ unless otherwise noted.})$ #### MAX4174/MAX4175 6 #### Typical Operating Characteristics (continued) (V<sub>CC</sub> = +5V, R<sub>L</sub> = 100kΩ to V<sub>CC</sub> / 2, small-signal V<sub>OUT</sub> = 100mVp-p, large-signal V<sub>OUT</sub> = 1Vp-p, T<sub>A</sub> = +25 °C, unless otherwise noted.) #### MAX4174/MAX4175 #### Typical Operating Characteristics (continued) (Vcc = +5V, R<sub>L</sub> = 100kΩ to Vcc / 2, small-signal VouT = 100mVp-p, large-signal VouT = 1Vp-p, T<sub>A</sub> = +25°C, unless otherwise noted.) #### Typical Operating Characteristics $(V_{CC} = +5V, R_L = 100k\Omega \text{ to } V_{CC} / 2, \text{ small-signal } V_{OUT} = 100mVp-p, \text{ large-signal } V_{OUT} = 1Vp-p, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ #### MAX4281/MAX4282/MAX4284 100k FFEQUENCY (Hz) FFECUENCY (Hz) -120 100k FFEQUENCY (Hz) #### Pin Description | | | | PIN | | | | | | |---------|------------|---------------------|---------------|---------------------|-----------------|-----------------|-----------------------------------|--------------------------------------------------------------------------------------------------------| | MAX4 | 281 | MAX4174/<br>MAX4175 | MAX4282 | MAX4274/<br>MAX4275 | MAX4284 | | NAME | FUNCTION | | 5 SOT23 | 8 SO | 5 SOT23 | 8 SO/µMAX | 8 SO/μMAX | 14 SO | 16 QSOP | | | | 1 | 6 | 1 | 1, 7 | 1, 7 | 1, 7,<br>8, 14 | 1, 7,<br>10, 16 | OUT, OUTA,<br>OUTB, OUTC,<br>OUTD | Amplifier Output | | 2 | 4 | 2 | 4 | 4 | 11 | 13 | VEE | Negative Supply or<br>Ground | | 3 | 3 | 3 | 3, 5 | 3, 5 | 3, 5,<br>10, 12 | 3, 5,<br>12, 14 | IN+, INA+,<br>INB+, INC+,<br>IND+ | Noninverting<br>Amplifier Input.<br>Internally biased to<br>V <sub>CC</sub> / 2 for<br>MAX4175/MAX4275 | | 4 | 2 | 4 | 2, 6 | 2, 6 | 2, 6,<br>9, 13 | 2, 6,<br>11, 15 | IN-, INA-, INB-,<br>INC-, IND- | Inverting Amplifier Input. Connects to R <sub>G</sub> for MAX4174/4175/4274/4275. | | 5 | 7 | 5 | 8 | 8 | 4 | 4 | Vcc | Positive Supply | | _ | 1, 5,<br>8 | _ | 1 <del></del> | _ | - | 8, 9 | N.C. | No Connection. Not internally connected | #### Functional Diagrams #### **Detailed Description** Maxim's Gain-Amp fixed-gain amplifiers combine a low-cost rail-to-rail op amp with internal gain-setting resistors. Factory-trimmed on-chip resistors provide 0.1% gain accuracy while decreasing design size, cost, and layout. Three versions are available in this amplifier family: single/dual/quad open-loop, unity-gain-stable devices (MAX4281/MAX4282/MAX4284); single/dual fixed-gain devices (MAX4174/MAX4274); and single/dual devices with fixed gain plus internal VCC / 2 bias at the noninverting input (MAX4175/MAX4275). All amplifiers feature rail-to-rail outputs and drive a $1 \mathrm{k}\Omega$ load while maintaining excellent DC accuracy. #### Open-Loop Op Amps The single/dual/quad MAX4281/MAX4282/MAX4284 are high-performance, open-loop op amps with rail-to-rail outputs. These devices are compensated for unity-gain stability, and feature a gain bandwidth (GBW) of 2MHz. The op amps in these ICs feature an input common-mode range that extends from 150mV below the negative rail to within 1.2V of the positive rail. These high performance op amps serve as the core for this family of Gain-Amp fixed-gain amplifiers. Although the -3dB bandwidth will not correspond to that of a fixed-gain amplifier in higher gain configurations, these open-loop op-amps can be used to prototype designs. #### Internal Gain-Setting Resistors Maxim's proprietary laser trimming techniques produce the necessary RF/RG values (Figure 1), so many gain offerings are easily available. These Gain-Amp fixed-gain amplifiers feature a negative-feedback resistor network that is laser trimmed to provide a gain-setting feedback ratio (RF/RG) with 0.1% typical accuracy. The standard op amp pinouts allow the Gain-Amp fixed-gain amplifiers to drop in directly to existing board designs, easily replacing op-amp-plus-resistor gain blocks. #### Gain-Amp Bandwidth Gain-Amp fixed-gain amplifiers feature factory-trimmed precision resistors to provide fixed inverting gains from -0.25 V/V to -100 V/V or noninverting gains from +1.25 V/V to +101 V/V. The op-amp core is decompensated strategically over the gain-set options to maximize bandwidth. Open-loop decompensation increases GBW product, ensuring that usable bandwidth is maintained with increasing closed-loop gains. A Gain-Amp with a fixed gain of Av = 100 V/V has a -3dB bandwidth of 230 kHz. By comparison, a unity-gain-stable op amp configured for Av = 100 V/V would yield a -3dB bandwidth of only 20 kHz (Figure 2). Decompensation is performed at five intermediate gain sets, as shown in the Gain Selection Guide. Low gain decompensation great- ly increases usable bandwidth, while decompensation above gains of +25V/V offers diminished returns. #### VCC / 2 Internal Bias The MAX4175/MAX4275 Gain-Amp fixed-gain amplifiers with the VCC / 2 bias option are identical to standard Gain-Amp fixed-gain amplifiers, with the added feature of VCC / 2 internal bias at the noninverting inputs. Two 150k $\Omega$ resistors form a voltage-divider for self-biasing the noninverting input, eliminating external bias resistors for AC-coupled applications, and allowing maximum signal swing at the op amp's rail-to-rail output for single-supply systems (see *Typical Operating Circuit*). For DC-coupled applications, use the MAX4174/MAX4274. High-Voltage (±17V) Input Fault Protection The MAX4174/MAX4175/MAX4274/MAX4275 include ±17V input fault protection. For normal operation, see the input voltage range specification in the Electrical Characteristics. Overdriven inputs up to ±17V will not Figure 1. Internal Gain-Setting Resistors Figure 2. Gain-Bandwidth Comparison cause output phase reversal. A back-to-back SCR structure at the input pins allows either input to safely swing $\pm 17 V$ relative to VEE (Figure 3). Additionally, the internal op-amp inputs are diode clamped to either supply rail for the protection of sensitive input stage circuitry. Current through the clamp diodes is limited by a $5 k\Omega$ resistor at the noninverting input, and by RG at the inverting input. An IN+ or IN- fault voltage as high as $\pm 17 V$ will cause less than 3.5mA of current to flow through the input pin, protecting both the Gain-Amp and the signal source from damage. #### \_Applications Information Gain-Amp fixed-gain amplifiers offer a precision, fixed gain amplifier in a small package that can be used in a variety of circuit board designs. Gain-Amp fixed-gain amplifiers can be used in many op amp circuits that use resistive negative feedback to set gain, and that do not require other connections to the op-amp inverting input. Both inverting and noninverting op-amp configurations can be implemented easily using a Gain-Amp. #### Gain-Amp Input Voltage Range The MAX4174/MAX4175/MAX4274/MAX4275 combine both an op amp and gain-setting feedback resistors on the same chip. Because the inverting input pin is actually tied to the RG input series resistor, the inverting input voltage range is different from the noninverting input voltage range. Just as with a discrete design, care must be taken not to saturate the inputs/output of the core op amp, to avoid signal distortions or clipping. The inverting inputs (IN\_-) of the MAX4174/MAX4175/ MAX4274/MAX4275 must be within the supply rails or signal distortion may result. The Gain-Amp's inverting input structure includes diodes to both supplies, such that driving the inverting input beyond the rails may cause signal distortions (Figure 1). For applications that require sensing voltages beyond the rails, use the MAX4281/MAX4282/MAX4284 open-loop op amps (Figure 4). Figure 3. Input Protection Negative Input Voltage Figure 5. Dual-Supply, DC-Coupled Inverting Amplifier #### Gain-Amp Signal Coupling and Configurations Common op-amp configurations include both noninverting and inverting amplifiers. Figures 5-8 show various single and dual-supply circuit configurations. Single-supply systems benefit from a midsupply bias on the noninverting input (provided internally on MAX4175/MAX4275), as this produces a quiescent DC level at the center of the rail-to-rail output stage signal swing. For dual-supply systems, ground-referenced signals may be DC-coupled into the inverting or noninverting inputs. Figure 6. Single-Supply, AC-Coupled Inverting Amplifier Figure 7. Dual-Supply, AC-Coupled Noninverting Amplifier #### IN + Filter on MAX4175/MAX4275 Internal resistor biasing of the VCC / 2 bias options couples power-supply noise directly to the op amp's noninverting input. To minimize high-frequency power-supply noise coupling, add a 1µF to 0.1µF capacitor from IN+ to ground to create a lowpass filter (Figure 6). The lowpass filter resulting from the internal bias resistors and added capacitor can help eliminate higher frequency power-supply noise coupling through the noninverting input. ### Supply Bypassing and Board Layout All devices in the Gain-Amp family operate from a +2.5V to +5.5V single supply or from ±1.25V to ±2.75V dual supplies. For single-supply operation, bypass the power supply with a 0.1µF capacitor to ground. For dual supplies, bypass each supply to ground. Bypass with capacitors as close to the device as possible, to minimize lead inductance and noise. A printed circuit board with a low-inductance ground plane is recommended. #### Capacitive-Load Stability Driving large capacitive loads can cause instability in most low-power, rail-to-rail output amplifiers. The fixed- gain amplifiers of this Gain-Amp family are stable with capacitive loads up to 470pF. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output, as shown in Figure 9. This resistor improves the circuit's phase margin by isolating the load capacitor from the amplifier's output. In Figure 10, a 1000pF capacitor is driven with a 100 $\Omega$ isolation resistor exhibiting some overshoot but no oscillation. Figures 11 and 12 show the typical small-signal pulse responses of Gain-Amp fixed-gain amplifiers with 250pF and 470pF capacitive loads and no isolation resistor. Figure 8. Dual-Supply, DC-Coupled Noninverting Amplifier Figure 10. Small-Signal/Large-Signal Transient Response with Excessive Capacitive Load with Isolation Resistor Figure 9. Dual-Supply, Capacitive-Load Driving Circuit Figure 11. MAX4174/MAX4175 Small-Signal Pulse Response ( $C_L = 250 \mathrm{pF}, R_L = 100 \mathrm{k}\Omega$ ) Figure 12. MAX4174/MAX4175 Small-Signal Pulse Response ( $C_L = 470 \mathrm{pF}, R_L = 100 \mathrm{k}\Omega$ ) #### Gain Selection Guide | GAIN | RF/RG | 1+ (RF/RG) | -3dB BW | SOT TO | P MARK | |------|-------------------|----------------------|---------|---------|---------| | CODE | INVERTING<br>GAIN | NONINVERTING<br>GAIN | (kHz)† | MAX4174 | MAX4175 | | AB* | 0.25 | 1.25 | 1700 | ACDS | ACET | | AC | 0.5 | 1.5 | 1280 | ACDT | ACEU | | AD* | 1 | 2 | 590 | ACDU | ACEV | | AE | 1.25 | 2.25 | 450 | ACDV | ACEW | | AF | 1.5 | 2.5 | 1180 | ACDW | ACEX | | AG* | 2 | 3 | 970 | ACDX | ACEY | | AH | 2.5 | 3.5 | 820 | ACDY | ACEZ | | AJ | 3 | 4 | 690 | ACDZ | ACFA | | AK* | 4 | 5 | 970 | ACEA | ACFB | | AL | 5 | 6 | 790 | ACEB | ACFC | | AM | 6 | 7 | 640 | ACEC | ACFD | | AN | 8 | 9 | 480 | ACED | ACFE | | AO* | 9 | 10 | 640 | ACEE | ACFF | | BA* | 10 | 11 | 560 | ACEF | ACFG | | BB | 12.5 | 13.5 | 460 | ACEG | ACFH | | ВС | 15 | 16 | 390 | ACEH | ACFI | | BD | 20 | 21 | 300 | ACEI | ACFJ | | BE* | 24 | 25 | 590 | ACEJ | ACFK | | BF | 25 | 26 | 580 | ACEK | ACFL | | BG | 30 | 31 | 510 | ACEL | ACFM | | ВН | 40 | 41 | 390 | ACEM | ACFN | | BJ* | 49 | 50 | 310 | ACEN | ACFO | | BK* | 50 | 51 | 330 | ACEO | ACFP | | BL | 60 | 61 | 310 | ACEP | ACFQ | | ВМ | 80 | 81 | 260 | ACEQ | ACFR | | BN* | 99 | 100 | 230 | ACER | ACFS | | CA* | 100 | 101 | 230 | ACES | ACFT | **Note:** Gains in the noninverting configuration are 1+ (R<sub>F</sub>/R<sub>G</sub>) and range from +1.25V/V to +101V/V. For a +1V/V gain, use the MAX4281/MAX4282/MAX4284. <sup>\*</sup> Preferred Gains. These gain versions are available as samples and in small quantities. <sup>†</sup> The -3dB bandwidth is the same for inverting and noninverting configurations. Pin Configurations (continued) #### \_Ordering Information (continued) | PART* | TEMP. RANGE | PIN-<br>PACKAGE | SOT<br>TOP MARK | |---------------|------------------|-----------------|-----------------| | MAX4274_EUA** | -40 °C to +85 °C | 8 μΜΑΧ | | | MAX4274_ESA** | -40℃ to +85℃ | 8 SO | | | MAX4275_EUA** | -40℃ to +85℃ | 8 µMAX | | | MAX4275_ESA** | -40℃ to +85℃ | 8 SO | | | MAX4281EUK-T | -40℃ to +85℃ | 5 SOT23-5 | ACDR | | MAX4281ESA | -40°C to +85°C | 8 SO | | | MAX4282EUA | -40℃ to +85℃ | 8 μΜΑΧ | | | MAX4282ESA | -40℃ to +85℃ | 8 SO | | | MAX4284ESD | -40℃ to +85℃ | 14 SO | | | MAX4284EEE | -40°C to +85°C | 16 QSOP | | Note: Refer to Gain Selection Guide for SOT top marks. #### \_\_Chip Information TRANSISTOR COUNTS: MAX4174: 178 MAX4175: 178 MAX4274: 332 MAX4275: 332 MAX4281: 178 MAX4282: 332 MAX4284: 328 SUBSTRATE CONNECTED TO VEE #### Selector Guide | PART* | INVERTING GAINS<br>AVAILABLE (V/V)<br>(INVERTING, R <sub>F</sub> /R <sub>G</sub> ) | NONINVERTING<br>GAIN<br>(V/V) | INTERNAL<br>RESISTORS | INTERNAL<br>V <sub>CC</sub> / 2<br>BIAS | NO. OF<br>AMPS PER<br>PACKAGE | PIN-PACKAGE | |------------|------------------------------------------------------------------------------------|-------------------------------|-----------------------|-----------------------------------------|-------------------------------|---------------------------| | MAX4174_ | -0.25 to -100 | +1.25 to +101 | Yes | No | 1 | 5-pin SOT23 | | MAX4175_ | -0.25 to -100 | +1.25 to +101 | Yes | Yes | 1 | 5-pin SOT23 | | MAX4274_** | -0.25 to -100 | +1.25 to +101 | Yes | No | 2 | 8-pin μMAX/SO | | MAX4275_** | -0.25 to -100 | +1.25 to +101 | Yes | Yes | 2 | 8-pin μMAX/SO | | MAX4281 | Open Loop,<br>Unity-Gain Stable | | No | No | 1 | 5-pin SOT23,<br>8-pin SO | | MAX4282 | Open Loop,<br>Unity-Gain Stable | | No | No | 2 | 8-pin μMAX/SO | | MAX4284 | Open Loop,<br>Unity-Gain Stable | | No | No | 4 | 14-pin SO,<br>16-pin QSOP | <sup>\*</sup> Insert the desired gain code (from the Gain Selection Guide) in the blank to complete the part number. <sup>\*</sup> Insert the desired gain code (from the Gain Selection Guide) in the blank to complete the part number. Refer to Gain Selection Guide for a list of preferred gains. <sup>\*\*</sup> Future product—contact factory for availability. <sup>\*\*</sup> Future product—contact factory for availability.