

PART NUMBER

CLC505AJB-ROCV

Rochester Electronics

Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor is now part of
Texas Instruments.

Search <http://www.ti.com/> for the latest technical
information and details on our current products and services.

MICROCIRCUIT DATA SHEET

MNCLC505A-X REV 0A0

Original Creation Date: 08/06/98
Last Update Date: 08/18/99
Last Major Revision Date: 08/06/98

HIGH-SPEED, PROGRAMMABLE-SUPPLY CURRENT, MONOLITHIC OP AMP

General Description

The CLC505 is a monolithic, high-speed op amp with a unique combination of high performance, low power consumption, and flexibility of operation. With a 10 to 1 range of supply current programmability (not preset currents, but rather a continuous range "programmed" with a single external resistor, (Rp), this amplifier can be used in a wide variety of high-performance applications. Performance (typical) at any supply current is exceptional.

Even at 10mW power consumption, the CLC505 provides performance far beyond other monolithic op amps, many of which consume nearly 100 times as much power.

The CLC505's combination of high performance, low power consumption, and large signal performance makes the CLC505 ideal for many demanding applications in which power consumption must be minimized. Examples include a variety of remote site equipment such as battery-powered test instrumentation and communications gear. Power is also critical in applications requiring many channels, such as video switching matrices, ATE, and phased-array radar systems.

Industry Part Number

CLC505A

NS Part Numbers

CLC505AJ-QML

Prime Die

VB1929B

Controlling Document

5962-9099301MPA

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp Description

		Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

Features

- 10mW power consumption with 50MHz BW
- Single-resistor programming of supply current
- 3.4 mA I_{cc} provides 100Mhz bandwidth and 14ns settling (0.05%)
- Fast disable capability
- 0.04% differential gain at I_{cc} = 3.4mA
- 0.06% differential phase at I_{cc} = 3.4mA

Applications

- Low-power/battery applications
- Remote site instrumentation
- Mobile communications gear
- Video switching matrix
- Phased-array radar

(Absolute Maximum Ratings)
(Note 1)

Supply Voltage (Vs)	± 7 V dc
Output Current (Iout)	70mA
Common Mode Input Voltage (Vcm)	± 7 V dc
Differential Input Voltage (Vid)	10V dc
Power Dissipation (Pd) (Note 2)	1.2W
Junction Temperature	+175 °C
Storage Temperature Range	-65 °C to +150 °C
Lead Temperature (soldering, 10 seconds)	+300 °C
Thermal Resistance Junction-to-ambient (ThetaJA) Ceramic DIP (Still Air) (500 LFPM)	TBD
Junction-to-case (ThetaJC) Ceramic DIP	TBD
Package Weight (Typical) CERAMIC DIP	TBD
ESD Tolerance (Note 3)	2000V

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{jmax} (maximum junction temperature), Θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{dmax} = (T_{jmax} - T_A) / \Theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: Human body model, 100pF discharged through 1.5k Ohms.

Recommended Operating Conditions

Supply Voltage (Vs)	$\pm 5V$ dc
Gain Range (Av)	+2 to +21 and -1 to -20
Ambient Operating Temperature Range (Ta)	-55 °C to +125 °C

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
+I _{in}	Input Bias Current (noninverting)	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		-18	+18	uA	1, 2
			1		-36	+36	uA	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms			-6	+6	uA	1, 2
					-12	+12	uA	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		-2.5	+2.5	uA	1
			1		-3.0	+3.0	uA	2
			1		-5	+5	uA	3
-I _{in}	Input Bias Current (inverting)	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		-38	+38	uA	1
			1		-40	+40	uA	2
			1		-60	+60	uA	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms			-14	+14	uA	1
					-15	+15	uA	2
					-22	+22	uA	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		-7	+7	uA	1
			1		-11	+11	uA	2
			1		-10	+10	uA	3
V _{io}	Input Offset Voltage	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms, R _s = 500Ohms	1		-8.0	+8.0	mV	1
			1		-14.0	+14.0	mV	2
			1		-12.8	+12.8	mV	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms, R _s = 500Ohms			-7.0	+7.0	mV	1
					-13.0	+13.0	mV	2
					-11.8	+11.8	mV	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms, R _s = 500Ohms	1		-7.0	+7.0	mV	1
			1		-14.5	+14.5	mV	2
			1		-13.0	+13.0	mV	3

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
T _c (+I _{in})	Average +Input Bias Current Drift	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		-100	+100	nA/C	2
			1		-225	+225	nA/C	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms	1		-50	+50	nA/C	2
			1		-75	+75	nA/C	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		-30	+30	nA/C	2
			1		-32	+32	nA/C	3
T _c (-I _{in})	Average -Input Bias Current Drift	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		-125	+125	nA/C	2
			1		-275	+275	nA/C	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms	1		-60	+60	nA/C	2
			1		-100	+100	nA/C	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		-35	+35	nA/C	2
			1		-38	+38	nA/C	3
T _c (V _{io})	Average Offset Voltage Drift	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		-50	+50	uV/C	2, 3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms	1		-60	+60	uV/C	2, 3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		-75	+75	uV/C	2, 3
I _{cc}	Supply Current	R _p = 33kOhms, no load	1			11	mA	1, 3
			1			12	mA	2
		R _p = 100kOhms, no load				3.8	mA	1, 3
						4.2	mA	2
		R _p = 300kOhms, no load	1			1.3	mA	1
			1			1.4	mA	2, 3
PSRR	Power Supply Rejection Ratio	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms, -V=-4.5V to -5.0V, +V=+4.5V to +5.0V	1		48		dB	1
			1		45		dB	2, 3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms, -V=-4.5V to -5.0V, +V=+4.5V to +5.0V	2		48		dB	1
			2		45		dB	2, 3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms, -V=-4.5V to -5.0V, +V=+4.5V to +5.0V	1		48		dB	1
			1		45		dB	2, 3

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
CMRR	Common Mode Rejection Ratio	I _{cc} = 9mA, V _{cm} = ± 1 V, R _p = 33kOhms, R _l = 2500Ohms	1		48		dB	4
			1		45		dB	5, 6
		I _{cc} = 3.4mA, V _{cm} = ± 1 V, R _p = 100kOhms, R _l = 500Ohms	1		48		dB	4
			1		45		dB	5, 6
		I _{cc} = 1mA, V _{cm} = ± 1 V, R _p = 300kOhms, R _l = 1kOhms	1		48		dB	4
			1		45		dB	5, 6
+R _{in}	Input Resistance	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		800		kOhms	1
			1		1600		kOhms	2
			1		400		kOhms	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms	1		2		MOhms	1
			1		4		MOhms	2
			1		1		MOhms	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		5		MOhms	1
			1		10		MOhms	2
			1		2.5		MOhms	3
R _{out}	Output Impedance at dc	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1			0.3	Ohms	1
			1			0.2	Ohms	2
			1			1.2	Ohms	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms	1			0.5	Ohms	1
			1			0.2	Ohms	2
			1			1.6	Ohms	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1			1.0	Ohms	1
			1			0.5	Ohms	2
			1			3.0	Ohms	3
C _{in}	Input Capacitance	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms, T _a = +25°C	1			2	pF	4
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms, T _a = +25°C	1			2	pF	4
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms, T _a = +25°C	1			2	pF	4

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
V _{out}	Output Voltage Swing	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		2.7		V	4, 5
			1		2.5		V	6
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms	2		2.7		V	4, 5
			2		2.5		V	6
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		2.5		V	4, 5
			1		1.2		V	6
I _{out}	Output Current	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		36		mA	1
			1		36		mA	2
			1		18		mA	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms	1		18		mA	1
			1		18		mA	2
			1		9		mA	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		5		mA	1
			1		5		mA	2
			1		2.5		mA	3
CMIR	Common Mode Input Voltage Range	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1		-1.8	+1.8	V	1
			1		-2.0	+2.0	V	2
			1		-1.5	+1.5	V	3
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 5000Ohms	1		-1.8	+1.8	V	1
			1		-2.0	+2.0	V	2
			1		-1.5	+1.5	V	3
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		-1.8	+1.8	V	1
			1		-2.0	+2.0	V	2
			1		-1.5	+1.5	V	3

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
SSBW	Small Signal Bandwidth	-3dB bandwidth, V _{out} < 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1		115		MHz	4
			1		100		MHz	5
			1		115		MHz	6
		-3dB bandwidth, V _{out} < 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms			80		MHz	4
			2		65		MHz	5
			2		80		MHz	6
		-3dB bandwidth, V _{out} < 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		35		MHz	4
			1		30		MHz	5, 6
LSBW	Large Signal Bandwidth	-3dB bandwidth, V _{out} < 5Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1		95		MHz	4, 6
			1		80		MHz	5
		-3dB bandwidth, V _{out} < 5Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms	1		50		MHz	4, 6
			1		40		MHz	5
		-3dB bandwidth, V _{out} < 5Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		20		MHz	4
			1		18		MHz	5
GFPL	Gain Flatness Peaking Low	0.1Mhz to 25MHz, V _{out} < 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1			0.3	dB	4
			1			0.4	dB	5, 6
		0.1Mhz to 20MHz, V _{out} < 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms				0.2	dB	4
			2			0.3	dB	5, 6
		0.1Mhz to 10MHz, V _{out} < 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1			0.1	dB	4
			1			0.2	dB	5, 6
GFPN	Gain Flatness Peaking High	>25MHz, V _{out} < 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1			0.5	dB	4
			1			0.6	dB	5, 6
		>20MHz, V _{out} < 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms				0.4	dB	4
			2			0.5	dB	5, 6
		>10MHz, V _{out} < 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1			0.2	dB	4
			1			0.3	dB	5, 6

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
GFR	Gain Flatness Rolloff	0.1Mhz to 50MHz, Vout < 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1			1.0	dB	4, 6
			1			1.3	dB	5
		0.1Mhz to 40MHz, Vout < 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms				1.0	dB	4
			2			1.3	dB	5
			2			1.0	dB	6
		0.1Mhz to 20MHz, Vout < 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1			1.0	dB	4, 6
			1			1.3	dB	5
LPD	Linear Phase Deviation	< 50MHz, Vout = 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1		1.0		Deg	4, 6
			1		1.2		Deg	5
		< 40MHz, Vout = 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms	1		1.0		Deg	4, 6
			1		1.2		Deg	5
		< 20MHz, Vout = 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1		0.8		Deg	4, 6
			1		1.0		Deg	5
HD2	2nd Harmonic Distortion	2Vpp at 20MHz, Vout = 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1			-45	dBc	4, 5
			1			-40	dBc	6
		2Vpp at 10MHz, Vout = 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms				-45	dBc	4
			2			-45	dBc	5
			2			-40	dBc	6
		2Vpp at 5MHz, Vout = 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1			-45	dBc	4, 5
			1			-40	dBc	6
HD3	3rd Harmonic Distortion	2Vpp at 20MHz, Vout = 2Vpp, I _{cc} = 9mA, R _p = 33kOhms, R _l = 250Ohms	1			-55	dBc	4, 5, 6
		2Vpp at 10MHz, Vout = 2Vpp, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms				-55	dBc	4
			2			-55	dBc	5, 6
		2Vpp at 5MHz, Vout = 2Vpp, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1			-55	dBc	4, 5, 6

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
NF	Noise Floor	> 1 MHz, I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1, 4			-154	dBm	4, 6
			1, 4			-153	dBm	1Hz
		> 1 MHz, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms	1, 4			-153	dBm	4, 6
			1, 4			-152	dBm	1Hz
		> 1 MHz, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1, 4			-150	dBm	4, 6
			1, 4			-149	dBm	1Hz
INV	Noise Floor	1MHz to 200MHz, I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms	1, 4			65	uV	4, 6
			1, 4			70	uV	5
		1MHz to 200MHz, I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms	1, 4			70	uV	4, 6
			1, 4			80	uV	5
		1MHz to 200MHz, I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms	1, 4			70	uV	4, 6
			1, 4			80	uV	5
SR	Slew Rate	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms, A _v = +2, V _{out} = 3V, measured at ± 1 V	1		1200		V/us	9, 10
			1		1000		V/us	11
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms, A _v = +2, V _{out} = 3V, measured at ± 1 V	1		800		V/us	9, 10
			1		700		V/us	11
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms, A _v = +2, V _{out} = 3V, measured at ± 1 V	1		600		V/us	9, 10
			1		500		V/us	11
Ts	Settling Time	I _{cc} = 9mA, R _p = 33kOhms, R _l = 2500Ohms, 2V step at $\pm 0.1\%$ of the fixed value	1			16	ns	9, 10, 11
		I _{cc} = 3.4mA, R _p = 100kOhms, R _l = 500Ohms, 2V step at $\pm 0.05\%$ of the fixed value	1			22	ns	9, 10, 11
		I _{cc} = 1mA, R _p = 300kOhms, R _l = 1kOhms, 2V step at $\pm 0.05\%$ of the fixed value	1			60	ns	9, 10
			1			70	ns	11

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
 DC: Vs = ± 5 V dc, R_l is load resistance, R_p is programming resistance, feedback resistance (R_f) = 1000 Ohms, peak capacitance (C_p) = 100 pF, and A_v = +6. -55°C \leq T_a \leq +125°C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN-NAME	MIN	MAX	UNIT	SUB-GROUPS
T _f	Rise and Fall Time	I _{cc} = 9mA, 2V step, R _p = 33kOhms, R _l = 2500Ohms	1			3.0	ns	9, 11
			1			3.5	ns	10
		I _{cc} = 3.4mA, 2V step, R _p = 100kOhms, R _l = 500Ohms	1			4.4	ns	9, 11
			1			5.4	ns	10
		I _{cc} = 1mA, 2V step, R _p = 300kOhms, R _l = 1kOhms	1			10	ns	9
			1			12	ns	10, 11
T _r	Rise and Fall Time	I _{cc} = 9mA, 5V step, R _p = 33kOhms, R _l = 2500Ohms	1			3.7	ns	9, 11
			1			4.4	ns	10
		I _{cc} = 3.4mA, 5V step, R _p = 100kOhms, R _l = 500Ohms	1			7.0	ns	9, 11
			1			8.8	ns	10
		I _{cc} = 1mA, 5V step, R _p = 300kOhms, R _l = 1kOhms	1			18	ns	9
			1			20	ns	10, 11
OS	Overshoot	I _{cc} = 9mA, 2V step, R _p = 33kOhms, R _l = 2500Ohms	1			12	%	9
			1			15	%	10, 11
		I _{cc} = 3.4mA, 2V step, R _p = 100kOhms, R _l = 500Ohms	1			10	%	9
			1			12	%	10, 11
		I _{cc} = 1mA, 2V step, R _p = 300kOhms, R _l = 1kOhms	1			5	%	9
			1			8	%	10, 11

Note 1: If not tested, shall be guaranteed to the limits specified in table I herein.

Note 2: Group A testing only.

Note 3: The algebraic convention, whereby the most negative value is a minimum and the most positive is a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal.

Note 4: Noise tests are performed from 1MHz to 200MHz for I_{cc} = 9mA, 1MHz to 200MHz for I_{cc} = 3.4mA, and 1MHz to 100MHz for I_{cc} = 1mA.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
07076HRA2	CERDIP (J), 8 LEAD (B/I CKT)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000408A	CERDIP (J), 8 LEAD (PINOUT)

See attached graphics following this page.

NOTES: UNLESS OTHERWISE SPECIFIED

1. LEAD FINISH TO BE 200 MICROINCHES / 5.08 MICROMETERS
MINIMUM SOLDER MEASURED AT THE CREST OF THE MAJOR FLATS.
 2. JEDEC REGISTRATION MO-036, VARIATION AA, DATED 04/1981.

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0AO	M0003517	08/18/99	Shaw Mead	Initial MDS Release