

目录

目	录	1
概	₫	2
应)	刊	2
特	<u> </u>	2
封	装	3
管	脚定义	3
典	型应用	4
绝	对最大值	4
电	气参数特性	5
功间	能描述	5
	初始化	5
	自动校正功能	5
	I ² C 接口	6
	睡眠模式	.11
外	围电路和注意事项	.11
	内部平衡电容和灵敏度调节电容	.11
	灵敏度电容和按键检测 PAD 大小以及介质材料与厚度选择	.11
	VDD 电源电压注意事项	12
44.5	は尺寸信自(SOP16L)	12

技术支持:0592-5216722

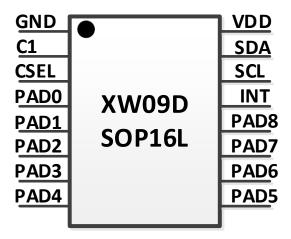
XW09D 规格书

9 通道自校正电容式触摸感应芯片

概述

XW09D 是 9 键的电容式触摸感应芯片, I²C 输出模式。芯片采用 SOP16 环保封装。

应用


◆ 用于电视机、音响、显示器、玩具等家电和娱乐设备与工业控制设备

特点

- 极高的灵敏度,可穿透 13mm 的玻璃,感应到手指的触摸
- 超强的抗干扰和 ESD 能力,不加任何器件即可通过人体 8000v 实验
- 内置按键消抖,无需软件再消抖
- 外围寄生电容自动校正
- 工作电压范围: 2.5~5.5 V
- SOP16 环保封装

封装

芯片引脚图

管脚定义

NO	PADNAME	Descrption	NO	PADNAME	Descrption
1	GND	电源地	16	VDD	正电源
2	C1	内部平衡电容接口	15	SDA	I ² C 通讯数据线
3	CSEL	灵敏度调节电容 接口	14	SCL	I ² C 通讯时钟线
4	PAD0		13	INT	按键有效输出 (开漏 OD 输出)
5	PAD1	触摸按键(不用时	12	PAD8	
6	PAD2	悬空)	11	PAD7	 触摸按键(不用时悬空)
7	PAD3		10	PAD6	
8	PAD4		9	PAD5	

典型应用

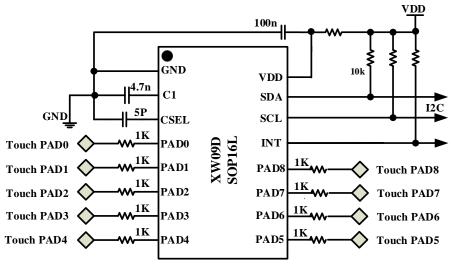


图 2 (典型应用)

- 1. C1 是内部平衡电容,取值范围是 1nf~10nf 。建议使用 4.7nf ,和灵敏度无关。
- 2. CSEL 是灵敏度设置电容,电容值越小灵敏度越高,电容值最大 100pF,最小为 5pf。CSEL 电容的选择,可根据应用的环境,接触感应盘的大小折中选择。
- 3. INT 脚内部结构为开漏输出,输出高阻或低电平。有按键时输出低电平,无按键时输出 高阻,需要接上拉电阻为高电平。

绝对最大值

参数	范围	单位
VDD 电压	-0.3~6.0	V
输入输出电压	-0.3~6.0	V
工作温度范围	-40~85	$^{\circ}$
存储温度范围	-55~150	$^{\circ}$
ESD, HUM	≥8000	V

XW09D 规格书

电气参数特性

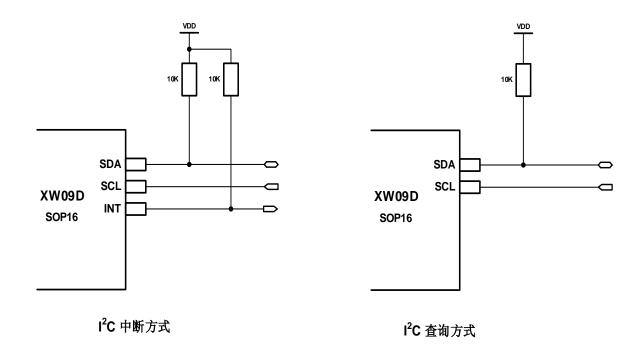
(无特殊说明, Ta=25℃, VDD=5V)

V = · · · · · · · · · · · · · · · · · ·							
符号	参数描述	条件	最小值	典型值	最大值	单位	
VDD	工作电压		2.5		5.5	٧	
I_sleep	睡眠模式工作电流	VDD=3.0V		16		uA	
		VDD=5.0V		30		uA	
Ludd	工作电流	VDD=3.0V		0.65		mA	
I_vdd	工作电机	VDD=5.0V		1.0		mA	
T_init	上电初始化时间			400		mS	
CSEL	灵敏度电容		5		100	pF	
F_br	I ² C 最大波特率			400		KBit/S	

功能描述

初始化

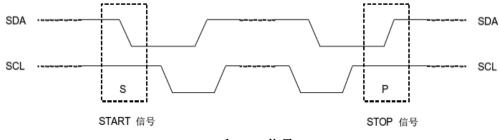
芯片上电复位后,只需约 400mS 就可以计算出环境参数和自动校正按键走线长度,按键检测功能开始工作。


自动校正功能

芯片内置自动校正功能,芯片能够根据外部环境的变化,自动调整电容的大小,检测到按键时停止自动校正,进入按键判决过程,从检测到按键开始,经过大约 30~60 秒,芯片重新进入自动校正状态,意味着检测按键有效的时间为 30~60 秒,按键时间超过这个时间,感应电容计入外部环境电容。

XW09D 规格书

I2C接口

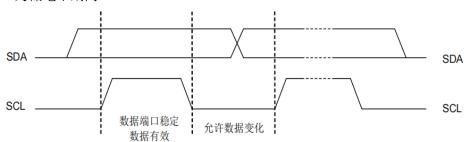

1 Start 和 Stop 信号

Start 信号(S)

当 SCL 是高电平时, SDA 由高到底变化,表示开始传输数据。

Stop 信号(P)

当 SCL 是高电平时, SDA 由低到高变化,表示结束数据传输。



Start和Stop信号

XW09D 规格书

2 数据有效

在 SCL 为高电平期间,SDA 必须保持稳定的电平。SDA 线上的高低电平变化只能在 SCL 为低电平期间。

有效数据

3 字节格式

字节由8位数据和一个应答信号组成

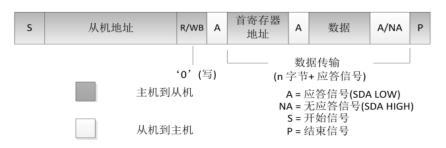
4 器件地址

XW09D 固定的器件地址是 0x40。

读写地址:

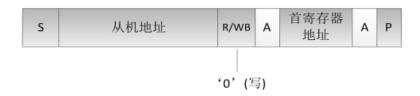
地址 (A[6:0])	40H
读命令 (A[6:0]+RWB)	81H
写命令	80H
(A[6:0]+RWB)	8011

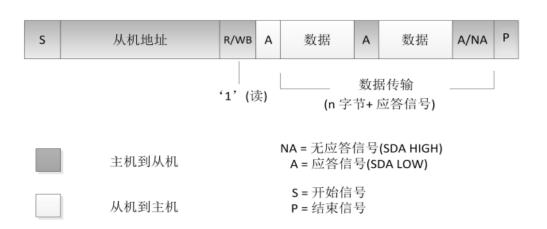
5 操作模式


XW09D 是从器件,支持读写两种操作模式:

(1) 写操作:

- ▶ 首字节由 7 位从机地址和一位读写位组成 (RWB=0)
- ▶ 第二字节是要访问的内部寄存器地址
- ▶ 下一个字节是要写入寄存器的内容
- ▶ 继续写入下一个寄存器, 直到 接收到主机下达 STOP 信号出现
- ▶ 收到数据后 XW09D 会发送应答信号

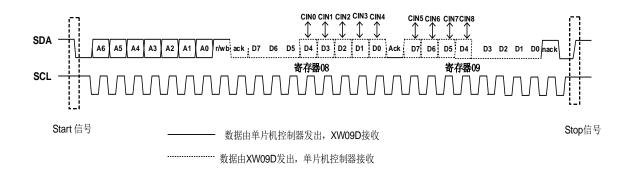

XW09D 规格书



写操作

(2) 读操作:

读操作的首寄存器地址由不含数据的写操作指定,由 STOP 信号结束。 然后主机送出开始信号,和器件地址和读取位(R/WB=1),接下来的数据地址, 是由首地址开始,然后地址依次加一。


读操作

(3) 简化的读操作

XW09D 的默认读寄存器地址为 08H。 所以如果没有写过其它寄存器, 就可以通过下面的时序直接读取按键信息。寄存器 08H 的 D7~D5 和寄存器 09H 的 D3~D0 是固定低电平,寄存器 08H 的 D4~D0 与寄存器 09H 的 D7~D4 分别对应 PAD0~PAD8 是否有按键触摸。 例如,按键 PAD0 被触摸,寄存器 08H 的 D4 位将是高电平,如果 PAD0没有被触摸,寄存器 08H 的 D4 位将是低电平。

XW09D 规格书

XW09D 简化的 I2C 协议

6 操作模式

表 3-2: 寄存器列表

	200 = 1 10 HH 2000										
寄存器	地址	读写	默认值	寄存器功能描述							
可什品	(HEX)		(BIN)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SenSet0	00H	W	01111001	SENCH0[7:0]							
SenSetCOM	01H	W	01111001	SENCOM[7:0]							
CTRL0	02H	W	10000011		SLPCYC[2:0] SLPNOW HOLD			KVF	RTM[1]	RTM[0]	
CTRL1	03H	W	00001000					CSEL3	CSEL2	CSES1	CSEL0
Output1	08H	R	00000000	0	0	0	CH0	CH1	CH2	CH3	CH4
Output2	09H	R	00000000	CH5	CH6	CH7	CH8	0	0	0	0
SAMPH	0AH	R	00000000	CS3 CS2 CS1 CS0 SAMP[11:8]							
SAMPL	ОВН	R	00000000		SAMP[7:0]						

(1) 灵敏度控制寄存器 SenSetO(地址 00H) SenSetCOM (地址 01H)

SENCH0[7:0] PADO 的灵敏度设置

SENCOM[7:0] 其余通道的灵敏度设置

共有 16 档灵敏度可以设置,由低到高为:【04H】【15H】【25H】【36H】【47H】【58H】【68H】【79H】【8AH】【9BH】【ACH】【BCH】【CDH】【DEH】【EFH】【FFH】 其中 79H 为初始值。该寄存器涉及到手指触摸阈值及手指离开阈值,如无特殊运用,建议客户按照如上参数设置。

PADO 单独设置灵敏度是可以把这个按键当做接近感应电极来用,或者隔空唤醒功能,如果用作普通按键,把SENCHO[7:0]设成和SENCOM[7:0]一样就可以了。

XW09D 规格书

(2) 控制寄存器 CTRLO(地址 02H)

SLPCYC[2:0] 睡眠时, 采样周期间隔,设置越大,唤醒速度越慢,功耗越低

SLPCYC[2:0	0	1	2	3	4 (默认值)	5	6	7
采样间隔	无穷大	0.5T	1.5T	2.5T	3.5T	4.5T	5.5T	6.5T

T≈120ms

SLPNOW

SLPNOW	1	0 (默认值)
	无按键马上进入睡眠	无按键 75S 进入睡眠

进入睡眠模式的条件: (75秒左右) 没有检测到按键并且SDA端口一直保持高电平。

HOLD

HOLD	1	0(默认值)
	停止基准值校正	正常校正

KVF

KVF	1	0 (默认值)
	按键后停止自校正	按键 50S 后开始自校正

RTM[1:0] 按键反应速度设置

RTM[1:0]	0	1	2	3(默认值)
按键有效判断	3 个采样周期	4 个采样周期	5 个采样周期	6 个采样周期
按键无效判断	1 个采样周期	2 个采样周期	3 个采样周期	4 个采样周期

(3) 控制寄存器 CTRL1(地址 03H)

CSEL3~CSEL0:内部基准通道电容的选择,默认值为 0b1000,对应的电容选择为8PF,该值一般用来修正外部通道的触摸感应量,该值可以设定范围 0b0100~b1111,对应值电容选择为4PF~15PF,如无特殊应用,建议设置默认值8PF。

(4) 按键信息寄存器 Output0 (地址 O8H) Output1 (地址 O9H)

CH[8:0] 分别对应 PAD[8:0]的按键情况。 无按键时为0, 有按键时为1。

(5) 采样值寄存器 SAMPH (地址 OAH) SAMPL (地址 OBH)

CS[3:0] 采样值对应的通道,采样时候对应是采样13个通道,而XW09D通道PAD0 到PAD8对应是内部通道4到12。即当读取到CS值为4的时候,对应的SAMP值即为对应PAD0的采样值。

XW09D 规格书

SAMP[11:0] 采样值

CS值	对应的通道	SAMP寄存器值		
0	内部基准通道	0x0XXX		
4	PAD0	0x4XXX		
5	PAD1	0x5XXX		
6	PAD2	0x6XXX		
7	PAD3	0x7XXX		
8	PAD4	0x8XXX		
9	PAD5	0x9XXX		
10	PAD6	OxAXXX		
11	PAD7	0xBXXX		
12	PAD8	0xCXXX		

睡眠模式

为了降低芯片的待机功耗,约 75 秒没有检测到按键,芯片进入睡眠省电模式。按键的采样间隔时间变长,VDD 电流减小,芯片功耗降低,睡眠模式下,一旦检测到按键,芯片立即退出睡眠模式,进入正常工作模式。

如果需要取消睡眠模式,让芯片长期处于工作状态,只需在 SDA 脚位,每 20s 的时间间隔以内,给芯片的 SDA 脚位灌入一个低电平信号,即可。

外围电路和注意事项

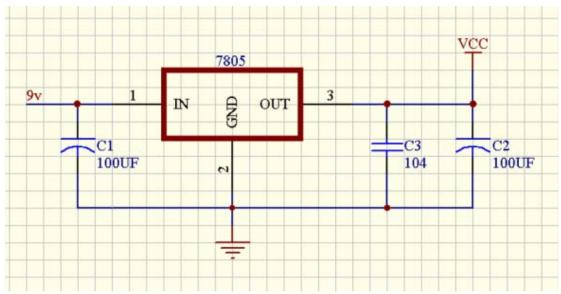
XW09D 的外围电路很简单,只需少量电容电阻元件, 图 2 是 XW09D 的典型应用电路。

内部平衡电容和灵敏度调节电容

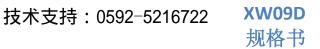
C1 电容和 CSEL 电容建议采用精度 10%的 NPO 材质电容,在 PCB 板 layout 时,请将 C1 电容和 CESL 电容尽量贴近 IC 放置。

灵敏度电容和按键检测 PAD 大小以及介质材料与厚度选择

常用的介质有 玻璃、亚克力、塑料、陶瓷等,用户可以根据自己的实际使用情况选择 合适的材料及厚度,按照材料的不同和 PCB 板的布局来决定按键 PAD 的大小和电容 CSEL 的 值。隔离介质越厚,要求使用的 CSEL 电容越小(增大检测的灵敏度),同时要求适当加大

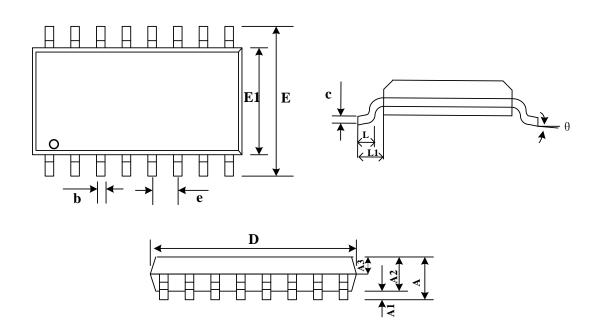

XW09D 规格书

按键检测 PAD 的面积。反之,隔离介质越薄,适当增大 CSEL 电容,增加系统的抗干扰能力,一般建议在 5pf 和 100pF 之间由小到大地选择合适的电容。


一般情况下,按键检测 PAD 面积可以在 3mm*3mm*30mm*20mm 之间,每个感应盘的面积保持接近,以确保灵敏度相同。感应盘可以是任何形状的导体,建议使用直径大于 10mm的圆形金属片或边长 10mm 的正方形金属片。常用的感应盘有 PCB 板上的铜箔、平顶圆柱弹簧、金属片和导电橡胶等。

VDD 电源电压注意事项

XW09D 测量的是电容的微小变化,要求电源的纹波和噪声要小,要注意避免由电源串入的外界强干扰。尤其是应用于高噪声环境时,必须能有效隔离外部干扰及电压突变,要求电源有较高稳定度,应尽量远离高压大电流的器件区域或者加屏蔽。如果电源文波幅度较大时,建议对电源做特别处理,比如增加滤波或采用 78L05 组成的稳压线路。在某些特定的应用场合,要尽可能的让触摸电路远离某些功能电路,比如收音机,RF等。



www.xmxwdz.com 12 / 13 XW09D 规格书

封装尺寸信息(SOP16L)

Symbol	Dimensions In Millimeters		
	MIN	ТҮР	MAX
Α			1.75
A1	0.05		0.225
A2	1.3	1.4	1.5
A3	0.60	0.65	0.70
b	0.39		0.48
b1	0.38	0.41	0.43
С	0.21		0.26
c1	0.19	0.20	0.21
D	9.70	9.90	10.10
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
е	1.27BSC		
L	0.50		0.80
L1	1.05BSC		
θ	0		8°

注: BSC: Basic SpaPADg between Centers(中心基本距离), IC 引脚之间的宽度。