

SD8825 内置晶振、全温度补偿的实时时钟芯片

1、概述

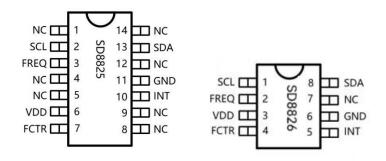
SD8825 是一种具有标准 IIC 接口的实时时钟芯片, CPU 可使用该接口通过八位地址寻址来读写片内寄存器的数据。

SD8825 内置晶振及数字温度补偿,用户可以不用顾虑因外接晶振、谐振电容等所带来的元件匹配误差问题、晶振温度特性问题及可靠性问题,实现在常温及宽温范围内不需用户干预、全自动、高可靠计时功能。

SD8825 内置定时/报警中断输出脚。

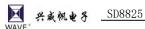
SD8825 内置 8 字节的 ID,每一颗芯片具备唯一的身份识别码。

SD8825 管脚兼容 SD3025T、8025T, 软件兼容 8025T; SD8826 与 SD8825 除了封装形式不同外其它均一致,且 SD8826 可以 PCB 排版兼容 SD8825。


2、特性

- 低功耗: 0.6 μ A 典型值 (Ta=25℃)
- 工作电压: 2.5V~5.5V, 工作温度: -40℃~105℃。
- 标准IIC总线接口方式,最高速度400kHz(4.5V~5.5V)。
- 年、月、日、星期、时、分、秒的 BCD码输入/输出,并可通过独立的地址访问各时间寄存器。
- 闰年自动调整功能(2000年~2099年)。
- 内置星期/日期、时、分共3字节的报警数据寄存器。
- 周期性频率中断输出: 32768Hz、1024Hz和1Hz共三种方波脉冲。
- 自动重置的12位的倒计时定时器,可选的 4 种时钟源(4096Hz、1024Hz、1 秒、1 分钟),最小定时为 244us,最长定时为68个小时,通过计算可获得较精确的毫秒级定时信。
- 时间更新中断具有分钟中断与秒中断两种功能。
- 时间报警中断、倒计时中断、时间更新中断可通过寄存器配置选择是否从INT脚输出报 警信号,三种中断各具有一个中断标志位。
- FCTR端口输入决定频率中断端口FREQ是否输出,FREQ端口可通过寄存器配置选择不同 频率的方波脉冲。
- 内置数字校准功能,进一步够提高计时精度。
- 内置通信校验功能,进一步提高通信的可靠性。
- 内置额外的1/1024秒寄存器,读取时间能够精确到1024分之一秒。
- 内置IIC总线0.5秒自动复位功能(从start命令开始计时),该功能可以避免IIC总线

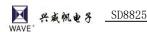
挂死问题。


- 内置写保护功能,避免对数据的误写操作,可更好地保护数据。
- 内置上电指示和停振检测位RTCF,当包括电池在内的所有电源第一次上电以及内部振荡器停止振荡时时该位置1。
- 内置晶振和谐振电容,芯片内部通过高精度补偿方法,实现在宽温范围内高精度的计时功能: -40℃~+85℃精度<±5PPM,+85℃~+105℃精度<±10PPM(出厂精度)。
- 内置70字节通用SRAM 寄存器可用于存储用户的一般数据。
- 内置8字节的ID码,芯片出厂之前设定的、全球唯一的身份识别码。
- 芯片在兴威帆的评估板上可通过4KV的群脉冲(EFT)干扰。
- CMOS 工艺
- 封装形式: SD8825 SOP14(198mi1) /SD8826 SOP8(208mi1)

3、管脚定义

SD8825/8826 管脚功能表

名称	功能	特征
SCL	串行时钟输入脚,由于在 SCL 上升/下降沿处理信号,要特别注意 SCL 信号的上升/下降升降时间,应严格遵守说明书。为了减少 SCL 上升沿时间,MCU 与 SCL 连接的端口可设为 CMOS 输出,不要 设置为开漏输出。	输入
FREQ	由 FCTR 控制的频率输出端口,详见 4.3.4 引脚说明。	CMOS 输出
VDD	正电源脚	
FCTR	FREQ 端口输出使能控制,FCTR=0:FREQ 输出禁止; FCTR=1:FREQ 输出允许。	输入
INT	报警中断输出脚,通过控制寄存器来设置其工作的模式。	开漏输出
GND	负电源(GND)	
SDA	串行数据输入/输出脚,此管脚通常用一电阻上拉至 V _{DD} , 并与其它漏极开路或集电器开路输出的器件通过线与方式连接.	开漏输出
NC	没有与芯片内部连接	



4、基本功能定义

4.1 寄存器列表

	4. I 分仔 6. S					В	IT				数值范	
地		寄存器名	D7	D6	D5	D4	D3	D2	D1	DO	围(十进	复位值
址		称									制)	(二进制)
00Н		秒	0	S40	S20	S10	S8	S4	S2	S1	0-59	XXXX-XXXX
01H		分钟	0	MN40	MN20	MN10	MN8	MN4	MN2	MN1	0-59	XXXX-XXXX
02Н	实时时钟寄存	小时	0	0	H20	H10	Н8	H4	H2	H1	0-23	XXXX-XXXX
03H	器器	星期	0	W6	W5	W4	W3	W2	W1	WO	0-40	XXXX-XXXX
04H			0	0	D20	D10	D8	D4	D2	D1	1-31	XXXX-XXXX
05H		月	0	0	0	MO10	M08	MO4	MO2	MO1	1-12	XXXX-XXXX
06H		年	Y80	Y40	Y20	Y10	Υ8	Y4	Y2	Y1	0-99	XXXX-XXXX
07H	用户 RAM	(1Byte)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0-255	XXXX-XXXX
08H	定时寄存器	分钟报警	EAMN	AMN40	AMN20	AMN10	AMN8	AMN4	AMN2	AMN1	0-217	0000-0000
09Н		小时报警	EAH	0	AH20	AH10	AH8	AH4	AH2	AH1	0-163	0000-0000
OAH		星期报警	EAW	AW6	AW5	AW4	AW3	AW2	AW1	AWO	0-208	0000-0000
		日报警	EAD	0	AD20	AD10	AD8	AD4	AD2	AD1	0-177	0000-0000
OBH		倒计时计	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0	0-255	0000-0000
ОСН		数器	_	-	-	-	TD11	TD10	TD9	TD8	0-255	0000-0000
ODH	控制寄存器 1	CTR1	0	EDEW	US	DE	FS1	FS0	TDS1	TDS0	0-127	XXXX-XXXX
0EH	状态寄存器 1	FLAG1	0	0	INTUF	INTDF	INTAF	0	RTCF	VDET	0-255	0000-0010
0FH	控制寄存器 2	CTR2	-	-	INTUE	INTDE	INTAE	0	0	0	0-255	0000-0000
52H	数字补偿寄存		1PPM/3P									
	器	TTF	PM	F6	F5	F4	F3	F2	F1	F0	0-255	0000_0000
56H	温度寄存器	TEMP	TM8	TM7	TM6	TM5	TM4	TM3	TM2	TM1	0-255	0000_0000
57H	控制寄存器 3	CTR3	-	TMO	BSY	CONT	-	-	-	-	0-255	0000_0000
5AH					OSC_RD							
	状态寄存器 2	FLAG2	0	SYS	Y	0	0	0	0	0	0-255	0000_0000
6DH												
~	用户 RAM	(69Bytes)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0-255	XXXX-XXXX
B1H												
В2Н	ID(只读)											
~	10(六医)	(8Bytes)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	N/A	XXXX-XXXX
В9Н												
FBH	通讯校验寄存 器	BCC	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	N/A	XXXX-XXXX
FCH	数据保护寄存器	WP	WPF	BIT6	BIT5	BIT4	BIT3	BIT2	_	_	N/A	0000-00XX
FEH	1/1024 秒寄存		128	64	32	16	8	4	2	1	0-255	0000_0000
FFH	器	1/1024S	0	0	0	0	0	0	512	256	0-3	0000_0000

网址: https://www.whwave.com.cn 邮箱: support@whwave.com.cn

4.2 实时时钟寄存器(00H~06H)

实时时钟数据寄存器是7字节的存储器,它以BCD码的方式存储,包括年、月、日、 星期、时、分、秒的数据。

4.2.1 秒寄存器[00H地址]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
00Н	秒	0	S40	S20	S10	S8	S4	S2	S1

BCD 码格式,如 08-09-10-11,数据范围从 00-59。

4.2.2 分钟寄存器[01H地址]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
01H	分钟	0	MN40	MN20	MN10	MN8	MN4	MN2	MN1

BCD 码格式,如 08-09-10-11,数据范围从 00-59。

4.2.3 小时寄存器[02H 地址]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO	
02Н	小时	0	0	H20	H10	Н8	H4	Н2	Н1	

BCD 码格式,如 08-09-10-11,数据范围从 00-23。

4.2.4 星期寄存器[03H 地址]

星期寄存器的 D0 位至 D6 位分别用来表示星期日,星期一,星期二······一直到星期六。 具体如下表所示。

星期	D7	D6	D5	D4	D3	D2	D1	DO DO	数值
星期日	0	0	0	0	0	0	0	1	01h
星期一	0	0	0	0	0	0	1	0	02h
星期二	0	0	0	0	0	1	0	0	04h
星期三	0	0	0	0	1	0	0	0	08h
星期四	0	0	0	1	0	0	0	0	10h
星期五	0	0	1	0	0	0	0	0	20h
星期六	0	1	0	0	0	0	0	0	40h

注意:不要同时设定多位为"1"的情况。

4.2.5 日期寄存器[04H地址]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
04H	日期	0	0	D20	D10	D8	D4	D2	D1

BCD 码格式,如 08-09-10-11。

每月包含的天数通过自动日历功能来更改,范围如下:

1, 3, 5, 7, 8, 10, 12: 1~31

4, 6, 9, 11: 1~30

2 (闰年):1~29

网址: https://www.whwave.com.cn 邮箱: support@whwave.com.cn 2 (平年): 1~28

4.2.6 月寄存器[05H地址]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	D0
05Н	月	0	0	0	MO10	M08	MO4	MO2	MO1

BCD 格式,如 08-09-10-11,数据范围从 01~12。

4.2.7 年寄存器[06H地址]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
06Н	年	Y80	Y40	Y20	Y10	Ү8	Y4	Y2	Y1

BCD 格式,如 08-09-10-11,数据范围从 0~99。

举例: 设置时间位 2006 年 12 月 20 日星期三 18 点 19 分 20 秒,则寄存器 00H~06H 的赋值应分别为: 20H、19H、18H、08H、20H、12H、06H。

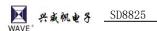
注:

- (1) 上电复位时, 芯片内部不对实时时钟数据寄存器作清零或置位处理。
- (2) 当写实时数据时(00H~06H),不可以单独对七个时间数据中的某一位进行写操作,否则可能引起时间数据的错误进位,所以要修改其中某一个数据,应一次性写入全部七个实时时钟数据。
- (3) 当芯片收到读实时时钟数据命令,则所有实时时钟数据被锁存(时钟走时并不受 影响),此功能可以避免时间数据的错读现象。

4.3 寄存器功能

4. 3. 1 用户 RAM [07H、6DH~B1H 地址]

地址为 07H 和 6DH~B1H, 共计 71 字节的用户数据 RAM。


4.3.2 时间报警中断

地址 08H, 09H, 0AH 除了最高位的时间报警允许使能位之外,还存放报警时间的分钟、小时、星期/日期的数据,具体见下面表格:

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
08Н	分钟报警	EAMN	AMN40	AMN20	AMN10	AMN8	AMN4	AMN2	AMN1
09Н	小时报警	EAH	_	AH20	AH10	АН8	AH4	AH2	AH1
OAH	星期报警	EAW	AW6	AW5	AW4	AW3	AW2	AW1	AWO
OAH	日报警	EAD	_	AD20	AD10	AD8	AD4	AD2	AD1
ODH	CTR1	0	EDEW	US	DE	FS1	FS0	TDS1	TDS0
ОЕН	FLAG1	0	0	INTUF	INTDF	INTAF	0	RTCF	VDET
OFH	CTR2	_	_	INTUE	INTDE	INTEA	0	0	0

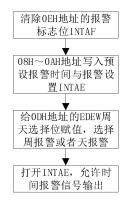
报警中断的报警时间由时间报警寄存器(08H~0AH)来确定。

EDEW: 星期报警或者日期报警的功能选择位。EDEW=1,指定日期作为报警中断功能的比较对象;EDEW=0,指定星期作为报警中断功能的比较对象。

INTEA: 时间报警的 INT 端口输出允许位。当 INTEA=1 时,允许时间报警中断通过 INT 端口输出报警信号;当 INTEA=0 时,禁止时间报警中断输出报警信号。

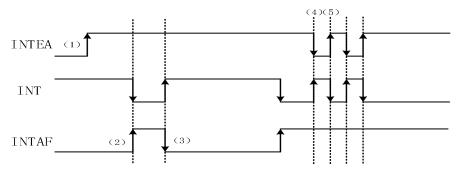
EAX 在地址 08H, 09H, 0AH 的最高位。EA 为时间报警允许寄存器的使能位,用于确定哪些时间报警寄存器(分钟、小时、星期/日期)需要与实时时钟寄存器之间作比较。当 EAX=0 时,则该寄存器的报警时间需要与对应的实时时钟寄存器的时间对比;当 EAX=1 时,则直接忽略该寄存器的报警时间,不进行对比。

INTAF: 时间报警事件发生标志位。INTAF=1,表示时间报警已发生;INTAF=0,表示时间报警未发生。


注: 往 INTAF 写入 0 清除时间报警标志位,写入 1 无效。

当实时时钟运行时,一旦被允许的报警寄存器的内部报警时间与对应的实时时钟寄存器的当前时间相匹配,就会触发一次报警中断,同时报警中断标志位 INTAF 置 1。此时当 INTEA=1 允许时间报警中断输出时,则时间报警信号从 INT 端口输出。

报	敬	沿	罟	Л П	下	
7 IX	\equiv	νx	=	4411	1.	•


地址	寄存器	D7	D6	D5	D4	D3	D2	D1	DO		
		EAMN 分钟报警使能	AMN40	AMN20	AMN10	AMN8	AMN4	AMN2	AMN1		
08Н	分钟报警	EAMN=0; 开启分钟报警	BCD 和	马格式,	一个小时	只能报	警某一	分钟。氵	范围		
		EAMN=1; 关闭分钟报警			0	0~59					
		EAH 小时报警使能	BIT6	AH20	AH10	AH8	AH4	AH2	AH1		
09Н	小时报警	EAH=0; 开启小时报警	BCD 码格式, 一天内只能报警某一小时。范围 00~								
		EAH=1;关闭小时报警	EAH=1; 关闭小时报警 23								
		EAW 周报警使能	AW6	AW5	AW4	AW3	AW2	AW1	AWO		
	EDEW=O,	周报警映射	周六	周五	周四	周三	周二	周一	周日		
	星期报警	EAW=0; 开启周报警	A W	一1 同月七尺 有	擎,AW=O	加柔地	敬 司	夕工把萄	佼		
OAH		EAW=1;关闭周报警	AW	一工火力工	mana Aw−U	火小小水	言。 刊 3	夕八1以言	Ĭ		
	EDEW=1,	EAD 日期报警使能	BIT6	AD20	AD10	AD8	AD4	AD2	AD1		
	日期报警	EAD=0; 开启日期报警	D.C.	D和核式		2敬甘工	. お田	田 4 9	5		
	口切队官	EAD=1;关闭日期报警	DC	リ19俗式	,只比加	以言未入	某天。范围见 4. 2. 5				

注: EAMN, EAH, EAW/EAD 都被写入 1 时,则 EDEW 被忽略,每分钟发生一次报警中断。 启用时间报警功能的流程图如下:

时间报警举例:

- (1) 0EH 地址的 INTAF 位写入 0;清除时间报警中断标志位。
- (2) 设置报警时间: 2023 年 1 月每周周三和周六的 8 点 10 分报警。则 08H, 09H, 0AH 的依次写入 10H, 08H, 48H。
 - (3) ODH 地址的 EDEW 位写入 0,设置为星期报警
- (4) 0FH 地址的 INTEA 位写入 1,允许 INT 端口输出时间报警中断信号。时间报警功能时序图如下所示:

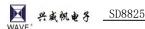
- (1) INTEA 置 1; 允许 INT 端口输出时间报警中断的报警信号。
- (2)被允许的报警寄存器的内部报警时间与对应的实时时钟寄存器的当前时间相匹配, 发生报警事件,触发报警中断,报警中断标志位 INTAF 置 1, INT 端口输出低电平的报警信 号。

注:如果设置当前具体日期/时间进行报警,将会是下次满足条件时发生报警,而不是立即报警。

- (3) 软件清除报警标志位 INTAF, INT 立即变成高阻态。
- (4) INTEA=0, INT 立即变成高阻态。
- (5) INTEA=1, INT 立即变成低电平。

4.3.3 倒计时中断

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	D0
ОВН	倒计时计数器	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0
ОСН		1	_	_	_	TD11	TD10	TD9	TD8
ODH	CTR1	0	EDEW	US	DE	FS1	FS0	TDS1	TDS0
ОЕН	FLAG1	0	0	INTUF	INTDF	INTAF	0	RTCF	VDET
OFH	CTR2	_	_	INTUE	INTDE	INTEA	0	0	0


与倒计时中断相关的寄存器是 OBH, OCH, ODH, OEH, OFH。

倒计时计数器: 预设的倒计时计数数值。

INTDE:倒计时中断端口输出允许位。INTDE=1,允许INT端口输出倒计时中断的报警信号;INTDE=0,禁止INT端口输出倒计时中断的报警信号。

DE: 倒计时中断的启停位。DE=1, 启动倒计时中断功能, 倒计时中断的内部计数器启动; DE=0, 停止倒计时中断的功能, 倒计时中断的内部计数器停止。

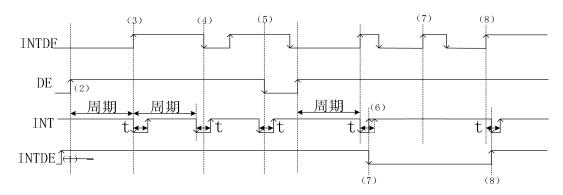
注:每次 DE=1 启动时,倒计时中断都会重新载入倒计时中断计数数值,并进行计数。

INTDF: 倒计时中断事件发生的标志位。INTDF=1,表示倒计时中断事件已发生; INTDF=0,表示倒计时中断事件未发生。

TDS: 倒计时中断的频率源选择位; 位于 ODH 控制寄存器 CTR1, 具体映射关系如下表:

TDS1	TDS0	倒计时中断时钟源频率	低脉宽 t
0	0	4096Hz	122us
0	1	64Hz	7.8ms
1	0	1 秒钟	7.8ms
1	1	1 分钟	7.8ms

启用倒计时中断功能的流程图如下:


注: 当重新配置倒计时中断时,需要复位倒计时计数器,即置 DE=0,然后再置 DE=1,才可以启用新的倒计时中断。

倒计时中断举例:

- (1) 0DH 地址的 DE 位写入 0; 停止倒计时中断; TDS 写入 01, 频率源选择 64Hz。
- (2) 0EH 地址,清除倒计时中断标志位 INTDF。
- (3) OBH 地址写入 24H, OCH 地址写入 01H。
- (4) OF 地址的 INTDE 写入 1; 允许 INT 端口输出倒计时中断的报警信号。
- (5) ODH 地址的 DE 位写入 1; 启动倒计时中断。

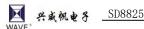
其他: 频率源为 64Hz, 计数数值 124H, 为 292; 则报警时间为 292/64=4.5625s。即每 4.5625s 倒计时中断报警一次。

倒计时中断功能时序图如下图所示:

- (1) INTDE=1; 倒计时报警功能开启, INT 端口允许输出倒计时报警信号。
- (2) DE=1, 倒计时计数器加载计数数值的预设值并开始计时。
- (3) 倒计时计数器基于选择的时钟源开始向下计数, 当计数数值从 001h 变为 000h 时, 倒计时标志位 INTDF 置 1。
- 注 1: 当计数值从 001H 变为 000H 时发生中断事件, 计数器会自动重新加载预设值, 并再次开始计数。
 - 注 2: INTDF 置 1 后,只能通过软件进行写 0 清除。
 - (4) 在倒计时报警中断输出的低电平期间 INTDF 被软件清零, 低脉宽 t 保持不变。
- (5) 在倒计时报警中断输出的低电平期间 DE 被软件清零,倒计时功能停止,低脉宽 t 保持不变。
 - (6) 在倒计时报警中断输出的低电平时间里 INTDE 被关闭,则 INT 立刻输出高电平。
 - (7) 当 INTDE=0 时倒计时事件发生, INT 无倒计时报警中断信号输出。
- (8) INTDE=0 时发生倒计时报警事件, INTDF=1。在不到 t 的时间里 INTDE=1,则 INT端口立刻输出低电平报警信号。

低脉宽 t 从 INTDF=1 开始计时。

4.3.4 频率输出


地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
ODH	CTR1	_	EDEW	US	DE	FS1	FS0	TDS1	TDS0

频率中断输出端口为 FREQ。

FCTR: FREQ 频率输出的开关端口, FCTR=1, FREQ 输出信号; FCTR=0, FREQ 停止输出信号。

FS: FREQ 端口的输出信号的频率选择,由 ODH 地址的 FS 寄存器控制,频率输出选择如下表:

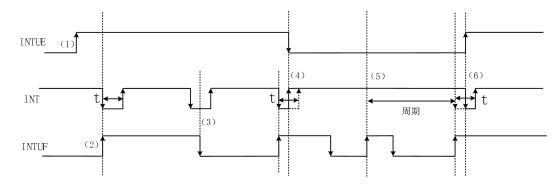
FS1	FS0	FREQ 输出频率
0	0	32768Hz
0	1	1024Hz
1	0	1Hz
1	1	32768Hz

频率输出举例:

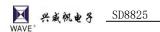
- (1) 0DH 地址的 FS1、FS0 位写入 2'b01,输出频率选择为 1024Hz。
- (2) FCTR=1, 频率输出使能。

4. 3. 5 时间更新中断

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
ODH	CTR1	_	EDEW	US	DE	FS1	FS0	TDS1	TDS0
ОЕН	FLAG1	0	0	INTUF	INTDF	INTAF	0	RTCF	VDET
0FH	CTR2	-	-	INTUE	INTDE	INTEA	0	0	0


INTUE:时间更新中断报警信号的输出允许位。当 INTUE=1 时,允许端口输出倒计时中断报警信号; INTUE=0,禁止端口输出时间更新中断的报警信号。

INTUF:时间中断事件发生的标志位,INTUF=1,表示时间更新中断已发生;INTUF=0,表示时间更新中断未发生。


US: 时间更新中断类型选择如下表:

US	时间更新中断类型选择	低脉宽 t
0	秒中断	500ms
1	分钟中断	15.6ms

时间更新中断功能时序图如下图所示:

- (1) 当 INTUE 被写入 1 时;时间更新中断报警功能开启,INT 端口允许输出时间更新中断报警信号。
- (2) 当分钟/秒发生更新时(由 US 位决定),就会发生时间更新中断事件,INTUF 被置为 1。如果 INTUE=1; INT 端口输出时间更新中断报警信号。
- (3) 时间更新中断报警信号的低电平期间 UF 被软件清零,其低电平时长为 t 保持不变。
 - (4) 时间更新中断报警信号的低电平期间 INTUE=0, INT 立刻输出高电平。
- (5) INTUE=0 时,发生时间更新中断事件,INTUF 置 1。INT 端口无时间更新中断报警信号输出。
- (6) INTUE=0 时发生倒计时报警事件, INTUF=1。在不到 t 的时间里 INTUE=1,则 INT 端口立刻输出低电平报警信号。

低脉宽 t 从 INTUF=1 开始计时。

4.3.6 状态寄存器

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
ОЕН	FLAG1	0	0	INTUF	INTDF	INTAF	0	RTCF	VDET
5AH	FLAG2	0	SYS	OSC_RDY	0	0	0	0	0

RTCF: 上电标志位。电源失效后再上电则该位置 1,为只读位。上电后的第一次有效写就可以将 RTCF 位清 0。

VDET: 温度补偿欠压标志位,当电源电压低于 2.4V 时,VDET 置 1。标志位可以通过写 0 进行清除

SYS: 系统配置完成标志位。系统上电 50ms 后, SYS 置 1, 在 SYS 置 1 之前, 芯片输出禁止, I2C 不可操作。

OSC RDY: OSC 振荡器起振标志位,该位在 OSC 起振一秒后置 1。

4.3.7 数字补偿寄存器[52H]

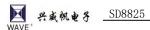
地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
52Н	TTF	1PPM/ 3PPM	F6	F5	F4	F3	F2	F1	FO

利用数字化时间精度调整电路可以每 20 秒改变 1 秒所包含的 32768Hz 脉冲的个数,从而调整时钟走时,使 SD8825 保持高走时精度。

1PPM/3PPM; 时间调整的精度选择位。该位为 0 时,每分钟仅有 1 个秒点进行调整; 该位为 1 时,每分钟有 3 个秒点进行调整。

F5~F0: 时间调整的数值位。

F6: 时间精度校准正负模式选择位。当 F6=0 时,校准的那一秒的寄存器计数脉冲将增加,成为 $32768+((F5,F4,F3,F2,F1,F0)-1)\times 2$; 当 F6=1 时,校准的那一秒的寄存器计数脉冲将减少,成为 $32768-((/F5,/F4,/F3,/F2,/F1,/F0)+1)\times 2$ 。


注: /F5 表示 F5 的反码, 其它类同

精度计算:

当 1PPM/3PPM=0 时:每 60 秒增加或减少计数脉冲的最小个数为 2,所以时钟调整寄存器的最小调整精度是: $2/(32768\times60)=1.017PPM$ 。

当 1PPM/3PPM=1 时:每 20 秒增加或减少计数脉冲的最小个数为 2,所以时钟调整寄存器的最小调整精度是: $2/(32768\times20)=3.052PPM$ 。

注:时钟调整电路仅是调整的时钟走时,并不对晶振本身频率调整,所以 32.768KHZ 脉冲输出没有变化。

其他:虽然 SD8825 的上电复位功能会复位数字校准寄存器为 0,但在电源环境比较恶劣的条件下并不能绝对保证芯片每一次上电的可靠复位。针对绝大多数不使用数字调整功能的用户,为了保证走时精度的可靠性,强烈建议能在上电时清数字补偿寄存器 TTF 为 0。

4. 3. 8 温度及相关控制寄存器 [56H~57H]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	D0
56Н	TEMP	TM8	TM7	TM6	TM5	TM4	TM3	TM2	TM1
57H	CTR3	-	TMO	BSY	CONT	-	-	-	-

TM8-TM7...TM1-TM0:保存测量的9位温度值。直接从对应地址读取当前温度。

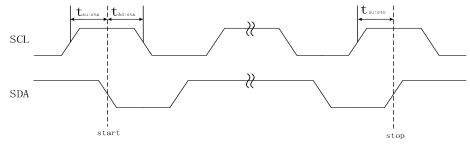
TM8-TM1:温度的整数位,其中 TM8 为符号位; TM0:温度的小数位,分辨率位 0.5℃

BSY: 状态标志位,BSY=1,表示芯片正在进行电池电压或者温度转换;BSY=0,表示处于空闲状态。

CONT: 强制温度测量位,当 CONT=1 且 BSY=0 时,进行强制温度测量。测量结果存放在寄存器 TM中。(强制转换完成后,BSY=0,CONT=0)

4.3.13 ID 码[B2H~B9H]

ID 码的地址与内容对应的关系如下表:

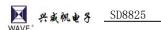

ID 码地 址	В2Н	ВЗН	В4Н	В5Н	В6Н	В7Н	В8Н	В9Н
2H nn	生产年	生产月	日期:	生产机	四位生	三产工单	工单口	为序号:
说明	份: 0~99	份: 1~12	1~31	台编号	号: 5	如 A394	000	00~9999

4.3.15 通讯校验寄存器[FBH]

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
FBH	BCC	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0

IIC 通讯校验寄存器用于校验 IIC 总线上面的通讯数据,提高传输的可靠性。

采用异或校验的方式,即:每次接收/发送的数据和上一次数据做异或运算,数据校验从 START(包括 RESTART)开始到 STOP 信号结束,包括总线上所有的传输数据。



通讯校验范围

每次 RTC 收到 STOP 命令之后,校验数据保存在校验寄存器 BCC 中,MCU 可以通过 IIC 进行读取。

例:

1、IIC 写校验: 往 00H、01H、02H、03H、04H、05H、06H 地址依次写入 28H, 41H,

14H, 04H, 15H, 11H, 22H; 则从 FBH 地址读出的通讯校验结果应为 64 ⊕ 00 ⊕ 28 ⊕ 41 ⊕ 14 ⊕ 04 ⊕ 15 ⊕ 11 ⊕ 22=3BH。

2、IIC 读校验:从 04H、05H、06H 地址读出结果依次为 0x08, 0x04, 0x10;则从 FBH 地址读出的通讯校验结果应为 65 ⊕ 08 ⊕ 04 ⊕ 10=79H。

注: 在每一次的 S 或者 Sr 信号之后,通讯校验功能就会重新开始。

具体 IIC 通讯方式见 5.2 数据传输格式。

4.3.16 写保护序列

地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
FCH	写保护序列	WPF	BIT6	BIT5	BIT4	BIT3	BIT2	-	_

为了提高数据的可靠性,在写保护使能时,除写保护控制的寄存器可写入外,其他寄存器都不能写入。

WPF: 写保护标志位,默认为 0。WPF=1,写保护为打开状态,此时不能对寄存器进行写入: WPF=0,写保护为关闭状态,可以对寄存器进行写入。

打开写保护的步骤:

- (1) 向寄存器的 Bit6~Bit2 写入 5' b00000, 复位检测序列, 进入第 2 步;
- (2) 向寄存器的 Bit6~Bit2 写入 5'b10101,进入第 3 步;向寄存器写入其他数值或向其他地址寄存写入任何值停留在第 2 步。
- (3) 向寄存器的 Bit6~Bit2 写入 5'b01010,进入第 4 步;向寄存器写入其他数值或向其他地址寄存写入任何值返回第 2 步;
- (4) 向寄存器的 Bit6~Bit2 写入 5'b10111, Protect=1, 返回第 2 步;向寄存器写入其他数值或向其他地址寄存写入任何值返回第 2 步;

关闭写保护的方法:

- (1) 向寄存器的 Bit6~Bit2 写入 5' b00000, 复位检测序列, 进入第 6 步。
- (2) 向寄存器的 Bit6~Bit2 写入 5'b11100,进入第 7 步;向寄存器写入其他数值或向其他地址寄存写入任何值停留第 6 步;
- (3) 向寄存器的 Bit6~Bit2 写入 5'b00011,进入第 8 步;向寄存器写入其他数值或向其他地址寄存写入任何值返回第 6 步;
- (4) 向寄存器的 Bit6~Bit2 写入 5'b01110, Protect=0, 返回第 6 步;向寄存器写入其他数值或向其他地址寄存写入任何值返回第 6 步;

4. 3. 17 1/1024 秒[FEH~FFH]

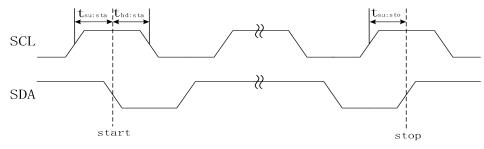
地址	寄存器名称	D7	D6	D5	D4	D3	D2	D1	DO
FEH~FFH	1/1024S	128	64	32	16	8	4	2	1
ren rrn	1/10243	0	0	0	0	0	0	512	256

1/1024S 为十位的只读寄存器: 计数范围为 0~1023,每个数值代表一秒的 1024 分之-

网址: https://www.whwave.com.cn 邮箱: support@whwave.com.cn

5、串行 IIC 接口

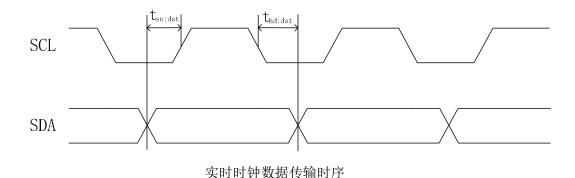
5.1、SD8825 通过两线式 IIC 串行接口方式接收各种命令并读写数据。


两线式串行 IIC 接口方式描述如下:

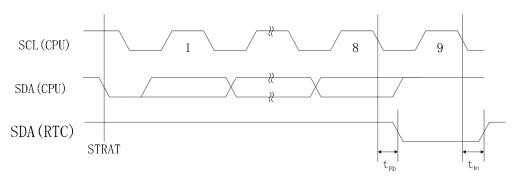
(1) 开始条件

当 SCL 处于高电平时,SDA 由高电平变成低电平构成一个开始条件,对 SD8825 的所有操作均必须由开始条件开始。

(2) 停止条件


当 SCL 处于高电平时, SDA 由低电平变成高电平构成一个停止条件,对 SD8825 的所有操作均停止,系统进入待机状态。

实时时钟串行接口


(3) 数据传输

当 SCL 为低电平,且 SDA 线电平变化时,则数据由 CPU 传输给 SD8825(高位在前、低位在后,下同);当 SCL 为高电平,且 SDA 电平保持不变时,则 CPU 读取 SD8825发送来的数据:当 SCL 为高电平,且 SDA 电平变化时,SD8825收到一个开始或停止条件。

(4) 确认

数据传输以 8 为序列进行。SD8825 在第九个时钟周期时将 SDA 置位为低电平,即送出一个确认信号(Acknowledge bit,一下简称"ACK"),表明数据已经被其收到。

实时时钟确认信号

5.2、数据、指令传输格式

当 CPU 发出开始条件与实时时钟建立连接后, CPU 首先通过 SDA 总线连续输出 7 位器件地址和以为读/写指令来唤醒 SD8825。

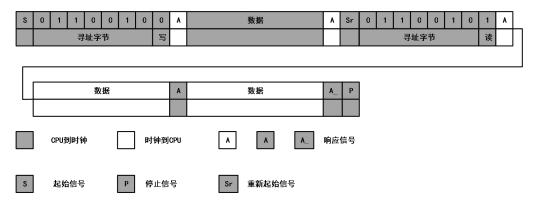
(1) 器件代码:

			从扩	L地址				读/写选择位
ADD	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
65H	0	1	1	0	0	1	0	1(读)
64H	0	1	1	0	0	1	0	0 (写)

其中高7位BIT7~BIT1为"器件代码",它代表实时时钟的器件地址,固定位"0110010";BIT0为读/写位。"1"为读操作,"0"为写操作。

(2) 数据传输格式:

在数据发送/接收停止信号到来时,将结束其数据传输,如果只有开始信号,而没有结束信号,接着重新产生起始信号,则还要重新设置器件代码(在传输方向需要改变时,就用这种传输方式,如下面的读数据方式1)。


主设备向从设备写入数据过程如下图


s	0	1	1	0	0	1	0	0	A	数据	A	数据	A	Р
			寻	址字	节			写						

主设备向从设备直接读取数据过程如下图

	s	0	1	1	0	0	1	0	1	A	数据	A	数据	A _	Р
ı				寻	址字	节			读						

数据传输时改变其传输方向过程图

(3) SD8825 数据传输的写模式

先送 7 位器件地址(0110010),第 8 位送入写命令("0"),第 9 位是 SD8825 的响应位(ACK),SD8825 进入写状态。

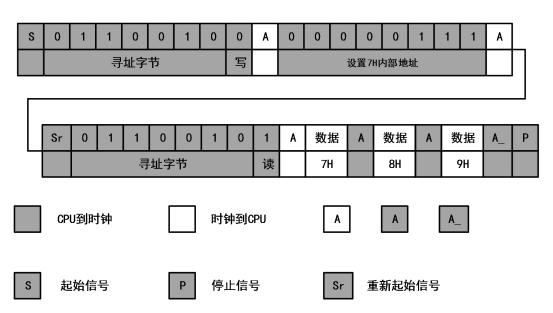
接下来的 8 位数据(一个字节)是确定 SD8825 的内部地址, 第 9 位才是 SD8825 的响应位。

开始写数据,每写完1个字节的数据之后,都经过1位的响应信号才写下1字节的数据,如果要结束写数据的过程,则在ACK后送出停止命令即可。

SD8825 写数据示例(向 08H, 09H 地址写数据)

S 0	1 1	0	0	1	0	0	Α	0	0	0	0	1	0	0	0	Α	数据	Α	数据	Α	Р
	ą	址字	节			写				设:	置08円	内部地	址				08H		09H		
	CPU到时钟		[时	钟到	CPU		[A		Α		A	_	响应	信号				
S	起始信号		[Р	停	止信·	号		[Sr	重	新起	始信·	号							

特别注意:

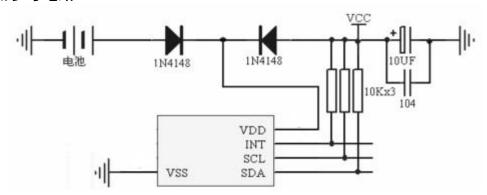

- 1、对寄存器的写操作必须确认芯片处于写允许状态,否则写无效。具体操作细则见 4.3的写保护功能。
- 2、写时间同步:每次对实时时间秒寄存器的写操作时,当秒数据的 8 个 bit 完全写入并收到 ACK 信号后,就会对秒以下的内部计数器清零,使时间同步。
 - 3、从当前地址开始,每次读写完一个字节地址自动加 1。
 - 4、为了提高数据的可靠性,当写完成后,应将芯片置于写禁止状态。
 - 5、有关写实时时间数据的位数的特别要求请参见(4.2注2)。

(4) 数据传输的读模式

- 1、与写模式的前两步一样;
- 2、重新发出开始命令以改变两线接口数据传输方向;
- 3、再送 7 位器件地址 (0110010), 第 8 位送入读命令 ("1"), 第 9 位是 SD8825 的响应位 (ACK), SD8825 进入读状态;
- 4、开始读数据,每读完1个字节的数据之后,CPU 都要送出1位的响应信号(ACK 低电平)才能读下1字节的数据;如果想要结束读数据过程,则CPU 要送出1位的响应信号(ACK 高电平),ACK 后送出停止命令即可.

SD8825 读数据方法一示例(从7H~9H地址读取数据):

(5) SD8825 在特殊条件下的数据传输


为了保证读写数据的有效性,SD8825的两线通信开始到结束仅在此 0.5 秒之内,如此 可避免总线挂死的现象。

因此在 SD8825 中, IIC 通信方式会在第一个开始信号 (START) 到来的 0.5 秒之后自 动终止本次通信。所以,要注意:从开始信号进行读/写数据,直到停止信号,读写/操作 过程必须在 0.5 秒之内完成。

6、上电复位

芯片内部具有上电复位电路: 当芯片第一次加上电源时, 芯片内部复位。复位操作对 内部部分寄存器进行置初值但不包括实时时钟数据寄存器、通用 RAM。

7、应用参考电路

特别的:对长线传输、强干扰的 IIC 总线环境,可以考虑在靠近 SD8825 端的 SDA、SCL 线加上 RC 低通滤波电路(串联 100 欧电阻+对地 100PF~200PF 的电容)。

8、PCB 排版

SD8825 在排 PCB 时要注意:在 SD8825 的背面不要排布大电流、强干扰线路; SCL、SDA 线分别与 MCU 用于 IIC 通讯的 I/O 口之间不要串联超过 100 欧的电阻。

由于 SD8825 内置晶振,在运输、生产环节请注意不要撞击 SD8825,也不要用超声波清洗 SD8825,以免造成 SD8825 永久损坏。

9、极限参数

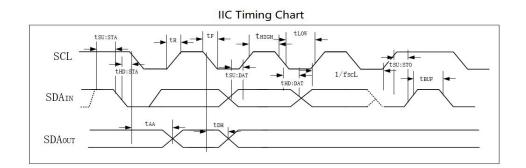
注: 强度超出所列的极限参数可能导致器件的永久性损坏。这些仅仅是极限参数,并不意味着在极限条件下或在任何其它超出推荐工作条件所示参数的情况下器件能有效地工作。延长在极限参数条件上的工作时间会影响器件的可靠性。因内置晶振的固有特性,用户使用过程中 RTC 存在晶振老化、频率偏移的现象,高温焊接会加速内置晶振的负向老化过程。

10、直流特性

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
V_{DD}	Main Power Supply		2.5		5.5	V	
1	Supply Current	V _{DD} =5V		1.0	3.0	μΑ	
I _{DD1}		V _{DD} =3V		0.6	1.2	μΑ	
I _{DD2}	Supply Current when IIC Active	V _{DD} =5V		40	120	μΑ	
I _{L1}	Input Leakage Current On SCL			100		nA	
I _{LO}	I/O Leakage Current On SDA			100		nA	
INT /SDA V _{OL}	Output Low Voltage	$V_{DD} = 5V$ $I_{OL} = 0.5 \text{mA}$	0.1	0.2	0.3	V	

网址: https://www.whwave.com.cn

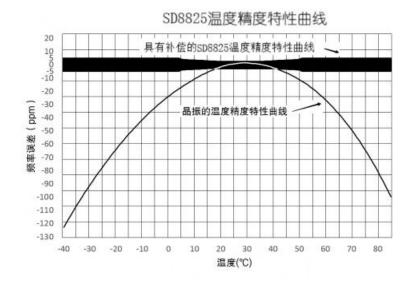
邮箱: support@whwave.com.cn



11、交流特性

		S	tandard M	lode		Fast Mod	le	
PARAMETER	CONDITIONS		(f _{SCL} =100k	Hz)		(f _{SCL} l=400k	Hz)	UNITS
		MIN	TYP	MAX	MIN	ТҮР	MAX	
f _{SCL} SCL frequency				100			400	kHz
V _{IL} SDA and SCL input buffer LOW voltage		-0.3		0.3×V _{DD}	-0.3		0.3×V _{DD}	V
V _{IH} SDA and SCL input buffer HIGH voltage		0.7×V _{DD}		V _{DD} +0.3	0.7×V _{DD}		V _{DD} +0.3	V
Hyteresis SDA and SCL input buffer hysteresis		0.05×V _D			0.05×V _D			V
V _{OL} SDA output buffer LOW voltage sinking 2mA			0.4			0.4		V
C _{pin} SDA and SCL pin capacitance	T_A =25 °C f=1MHZ V_{DD} =5V V_{IN} =0V V_{OUT} =0V			10			10	pF
t _{IN} Pulse width suppression time at SDA and SCL inputs				100			50	ns
t _{AA} SCL falling edge to SDA output data valid	SCL falling edge crossing 30% of V_{DD} until SDA exits the 30% to 70% of V_{DD} window			900			900	ns
t _{BUF} Time the bus must be free before the start of a new transmission	SDA crossing 70% of V _{DD} during a STOP condition, to SDA crossing 70% of V _{DD} during the following START condition	4700			1300			ns
t _{LOW} Clock LOW time	Measured at the 30% of V _{DD} crossing	4700			1300			ns
t _{HIGH} Clock HIGH time	Measured at the 70% of V_{DD} crossing	4000			600			ns
t _{SU:STA} START condition setup time	SCL rising edge to SDA falling edge Both crossing 70% of V _{DD}	4700			600			ns
t _{HD:STA} START condition hold time	From SDA falling edge crossing 30% of V _{DD} to SCL falling edge crossing 70% of V _{DD}	4000			600			ns
t _{SU:DAT} Input data setup time	From SDA exiting the 30% to 70% of V _{DD} window ,to SCL rising edge crossing 30% of V _{DD}	250			100			ns
t _{HD:DAT} Input data hold time	From SCL falling edge crossing 30% of V _{DD} to SDA entering the 30% to 70% of V _{DD} window	0			0			ns
t _{SU:STO} STOP condition setup time	From SCL rising edge crossing 70% of V _{DD} ,to SDA rising edge crossing 30% of V _{DD}	4000			600			ns
t _{HD:STO} Output condition hold time	From SDA rising edge to SCL falling edge .Both crossing 70% of VDD	600			600			ns
t _{DH} Output data hold time	From SCL falling edge crossing 30% of V _{DD} ,until SDA enters the 30% to 70% of V _{DD} window.	0			0			ns
t _R SDA and SCL rise time	From 30% to 70% of V _{DD}			1000			300	ns
t_{F} SDA and SCL fall time	From 70% to 30% of V _{DD}			300			300	ns

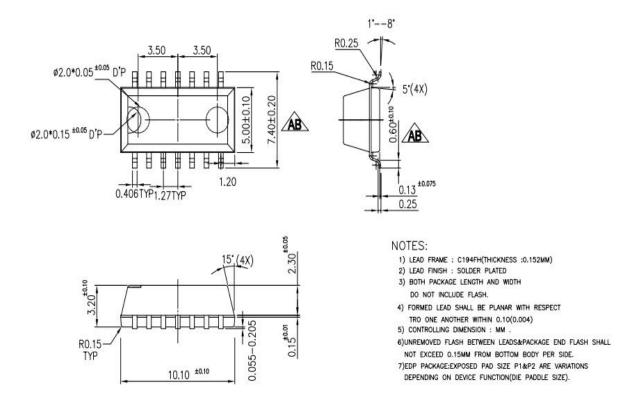
网址: https://www.whwave.com.cn 邮箱: support@whwave.com.cn - 19



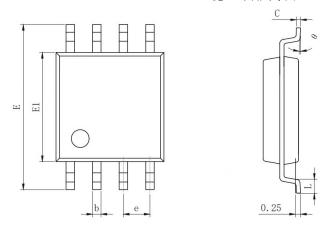
12、频率特性:

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	NOTES
$\triangle f/f$	Frequency Stability	Ta=-40°C~+85°C,V _{DD} =3.3V	-5		+5	PPM	Outgoing Quality
f/V	Frequency Voltage Characteristics	Ta=25°C,V _{DD} =2.7 to 5.5V	-2.0		2.0	PPM/V	
tSTA	Oscillation Start Time	Ta=25°C,V _{DD} =3.3V			1.0	S	
fa	Aging	Ta=25°C,V _{DD} =3.3V	-3.0		3.0	PPM/year	

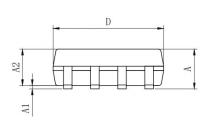
13、频率误差&温度关系曲线(与没有温补功能的时钟芯片进行对比):


14、芯片顶部字符说明

网址: https://www.whwave.com.cn - 20 邮箱: support@whwave.com.cn


15、封装尺寸(单位:毫米)

(1) SD8825 SOP14 封装尺寸图


备注: SD8825 为湿敏三级 (MSL3), 真空盘带包装 1000PCS/盘。

(2) SD8826 SOP8 (208mi1 宽) 封装尺寸图


网址: https://www.whwave.com.cn 邮箱: support@whwave.com.cn

SYMBOL	SIZE
A	1.925±0.225
A1	0.075 ± 0.075
A2	1.70 ±0.10
b	0.43 ±0.05
С	0.205 ± 0.015
D	5.23 ±0.10
E	7.90 ± 0.20
E1	5.28 ±0.10
е	1.27 ±0.05
L	0.65 ±0.15
θ	4°±4°

备注: SD8826 为湿敏三级 (MSL3), 真空盘带包装 2500PCS/盘。

■ 编后语

感谢您阅读本资料。由于经验和水平的欠缺,本文难免有错误和遗漏。如果您在使用过程中发现错误或不恰当的地方,请拨打电话: 0755-83246178 或请 E-mail: support@whwave.com.cn, 我们将尽快予以答复。

谢谢您的支持与合作!

注:

本资料中的内容如有变化, 恕不另行通知。

本资料提供的应用线路及程序仅供参考,本公司不承担由此而引起的任何损失。

由于本公司的产品不断更新和提高,希望您经常与本公司联系,以索取最新资料。

本公司不承担在任何使用过程中引起的侵犯第三方专利和其它权利的责任。

注:本文档受中国版权法保护,非授权禁止拷贝、复制、引用或传播

(SD及 WAVE 均为我公司注册商标)

深圳市兴威帆电子技术有限公司