

AM25LS22

8-Bit Serial/Parallel Register with Sign Extend

The AM25LS22 is an eight-bit serial/parallel register built using advanced Low-Power Schottky processing. The device features an eight-bit parallel multiplexed input/output port to provide improved bit density in a 20-pin package. Data may also be loaded into the device in a serial manner from either input D_A or D_B . A serial output, Q_0 , is also provided.

The AM25LS22 is specifically designed for operation with the AM25LS14 serial/parallel two's complement multiplier and provides the sign extended function required for this device.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am25LS22

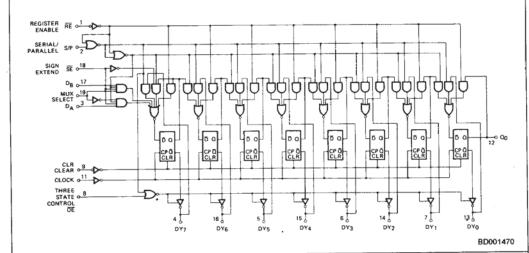
8-Bit Serial/Parallel Register with Sign Extend

DISTINCTIVE CHARACTERISTICS

- Three-state outputs with multiplexed input
- Multiplexed serial data input

- Sign extend function
- Second sourced by T.I. as Am54LS/74LS322

GENERAL DESCRIPTION

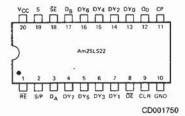

The Am25LS22 is an eight-bit serial/parallel register built using advanced Low-Power Schottky processing. The device features an eight-bit parallel multiplexed input/output port to provide improved bit density in a 20-pin package. Data may also be loaded into the device in a serial manner from either input D_{A} or $D_{\text{B}}.$ A serial output, Q_0 is also provided.

The Am25LS22 is specifically designed for operation with the Am25LS14 serial/parallel two's complement multiplier and provides the sign extended function required for this device.

When the Register Enable (\overline{RE}) input is HIGH, the register will retain its current contents. Synchronous parallel loading

is accomplished by applying a LOW to RE and applying a LOW to the Serial/Parallel (S/P) input. This places the three-state outputs in the high-impedance state independent of OE and allows data that is applied on the input/output lines (DY_I) to be clocked into the register. When the S/P input is HIGH, the device will shift right. The Sign Extend (SE) input is used to repeat the sign in the Q₇ flip-flop. This occurs whenever SE is LOW when the SHIFT mode is selected. When SE is high, the serial two-input multiplexer is enabled. Thus, either D_A or D_B can be selected to load data serially. The register changes state on the LOW-to-HIGH transition of the clock. A clear input (CLR) is used to asynchronously reset all flip-flops when a LOW is applied.

BLOCK DIAGRAM



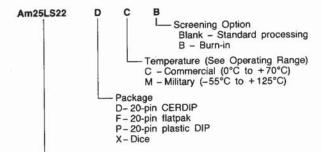
RELATED PRODUCTS

Part No.	Description	
Am25LS23	8-Bit Shift/Storage Register	

03622B

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation


METALLIZATION AND PAD LAYOUT

DIE SIZE 0.096" x 0.112"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Device type 8-Bit Serial/Parallel Register with Sign Extend

Valid Co	ombinations	
Am25LS22	PC DC, DM FM XC, XM	

Valid Combinations

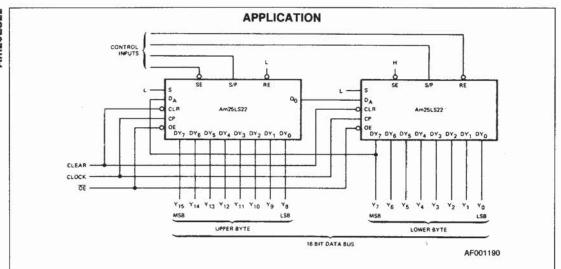
Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

			PIN DESCRIPTION
Pin No.	Name	1/0	Description
***	DYi	1/0	The multiplexed parallel input/output port to the device. Data may be parallel loaded into the register or data can be read in parallel from the register on these pins. These outputs can be forced to the high-impedance state, i = 0 through 7.
12	Q ₀	0	The continuous output from the Q ₀ flip-flop of the register. This output is used for serial shifting.
1	RE	. 1	Register Enable. When RE is LOW, the register functions are enabled. When RE is HIGH, the register functions (parallel load, shift right and sign extend) are inhibited.
2	S/P	1	Serial/Parallel. When S/P is LOW, the register can be synchronously parallel loaded. This input forces the register output buffers to the high-impedance state independent of the OE input. When S/P is HIGH, the register contents are shifted right on the clock LOW-to-HIGH transition.
18	SE		Sign Extend. When the \overline{SE} input is LOW, the contents of the Q_7 flip-flop will be repeated in the Q_7 flip-flop as the register is shifted right. When \overline{SE} is HIGH, the two-input multiplexer (D_A and D_B) is enabled to enter data during the serial shift right. The Q_7 flip-flop (DY_7) is normally considered the MSB of the register for arithmetic definitions.
3, 17	D _A , D _B	1	The serial inputs to the device.
19	S	1	Multiplexer Select. When S is LOW, the DA serial input is selected. When S is HIGH, the DB serial input is selected.
9	CLR	1	Clear. The asynchronous clear to the register. When the clear is LOW, the outputs of the flip-flops are set LOW independent of all other inputs. When the clear is HIGH, the register will perform the selected function.
11	CP	1	Clock. The clock pulse for the register. Register operations occur on the LOW-to-HIGH transition of the clock pulse.
8	ŌĒ	ı	Output Control. When the \overline{OE} input is HIGH, the eight DY; outputs are in the high-impedance state. When \overline{OE} is LOW, data in the eight flip-flops will be present at the register parallel outputs unless S/P is LOW.

FUNCTION TABLE

Mode	Inputs								Outputs							
Mode	Clear	Register Enable	Serial/ Parallel	Sign Extend	Mux Select	ŌĒ*	Clock	DY7	DY ₆	DY ₅	DY4	DY ₃	DY2	DY ₁	DY ₀	Q ₀
Clear	L L L	H L L X	X H L X	X X X	X X X	LLLH	X X X	L Z Z	L Z Z	LZZ	L Z Z	L Z Z	L Z Z	L Z Z	L Z Z	L
Parallel Load	Н	L	L	X	X	Х	Ť	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	D ₀
Shift Right	H	L	H	H	L H	L	†	D _A D _B	Y _{7n} Y _{7n}	Y _{6n} Y _{6n}	Y _{5n} Y _{5n}	Y _{4n} Y _{4n}	Y _{3n} Y _{3n}	Y _{2n} Y _{2n}	Y _{1n} Y _{1n}	Y _{1n} Y _{1n}
Sign Extend	Н	L	Н	L	Х	L	Ť	Y _{7n}	Y _{7n}	Y _{6n}	Y _{5n}	Y _{4n}	Y _{3n}	Y _{2n}	Y _{1n}	Y _{1n}
Hold	Н	Н	Х	X	X	L	t	NC	NC	NC	NC	NC	NC	NC	NC	NC

L = LOW
1 = Clock LOW-to-HIGH Transition


X = Don't Care H = HIGH

NC = No Change Z = High-Impedance Output State

*When the OE input is HIGH, all input/output terminals are at the high-impedance state; sequential operation or clearing of the register is not affected. D₇, D₆...D₀ = the level of the steady-state input at the respective DY_n terminal is loaded into the flip-flop while the flip-flop outputs (except Q₀) are isolated from the DY_n terminal.

 D_{A} , D_{B} = the level of the steady-state inputs to the serial multiplexer input.

 Y_{7n} , Y_{6n} , Y_{0n} = the level of the respective Q_n flip-flop prior to the last Clock LOW-to-HIGH transition.

System Operation		Am25LS22 Upper Byte				Am25	LS22 Byte		Function
, , , , , , , , , , , , , , , , , , , ,	SE	S/P	RE	ŌĒ	ŠĒ	S/P	RE	ÖĒ	Description
Load lower byte and extend lower	н	н	L	х	Х	L	L	x	Load from Bus
byte sign to upper byte	L	н	L	н	X	x	н	н	7 clock cycles to extend sign
	х	L	L	х	х	x	Х	х	Load from Bus
Load upper byte and extend upper byte sign while shifting value to lower byte position	н	н	L	н	н	н	L	н	8 clock cycles to extend upper byte sign and shift upper byte into lower byte position
Read 16-bit word to Bus	X	X	Х	L	Х	X	X	L	Unload

Two Am25LS22 8-bit registers can be used to perform the sign extend associated with two's complement 8-bit bytes for arithmetic operations in a 16-bit machine. If the upper byte value is to be used, it is shifted to the lower bit positions and its sign is extended. If the lower byte value is to be used, it is held in place while the sign is extended downward from the MSB position of the upper byte.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	65°C to +150°C
(Ambient) Temperature Under Bias	
Supply Voltage to Ground Potential	
Continuous	0.5V to +7.0V
DC Voltage Applied to Outputs For	
HIGH Output State	0.5V to +V _{CC} max
DC Input Voltage (OE, S/P, RE,	
CP, CLR)	0.5V to +7.0V
DC Input Voltage (Others)	0.5V to +5.5V
DC Output Current, Into Outputs	30mA
DC Input Current	30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage +4.7	75V to +5.25V
Military (M) Devices	
Temperature55	°C to +125°C
Supply Voltage +	4.5V to +5.5V
Operating ranges define those limits over which	ch the function-
ality of the device is guaranteed.	103

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description	Test	Test Conditions (Note 2)					Typ (Note 1)	Max	Unite
						MIL	2.5			
		V MIN	Qo, 10)H = -	440µA	COM'L	2.7			
VOH	Output HIGH Voltage	VCC = MIN		OH = -	= -1.0mA MIL		2.4		100	Volts
Parameters VOH VOL VIH VIL VII III		2.55		OH = -	-2.6mA	COM'L	2.4			
	1	L. Luni		177	IOL = 4				0.4	
VOL	Output LOW Voltage	VCC = MIN VIN = VIH or V	'IL		IOL = 8	.0mA			0.45	Volts
V _{IH}	Input HIGH Level	Guaranteed in	put logical h	HIGH			2.0			Volts
		Commented in	out logical I	OW	MIL				0.7	533
VIL	Input LOW Level	Guaranteed input logical LOW L.			COM'L				0.8	Volts
Vı	Input Clamp Voltage	Vcc = MIN, I _{IN} = -18mA						-1.5	Volt	
-		VCC = MAX, VIN = 0.4V			SE				-1.08	
lu .	Input LOW Current				S				- 0.72	mA
I _{IL}					Others				-0.36	
					SE				60	
i.	Input HIGH Current	VCC = MAX. V	IN = 2.7V		S				40	μA
'IH	input riidir cureiii	(Except DY _i)			Others				20	- 6
			VIN = 7.0V	OE,	S/P,RE,	CP,CLR			0.1	
		VCC = MAX,	-	SE	SE				0.3	
l _l	Input HIGH Current	(Except DY _i)	VIN = 5.5V	s			=25		0.2	mA
				Oth	ers				0.1	
-11/2 - 12/					Vo = 2	2.4			40	
loz	Off state (High-Impedance) Output Current (DY)	VCC = MAX			V _O = 0).4V	2.000		-100	mA
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX							-85	mA
loc	Power Supply Current	V _{CC} = MAX					LCH SE	40	65	mA

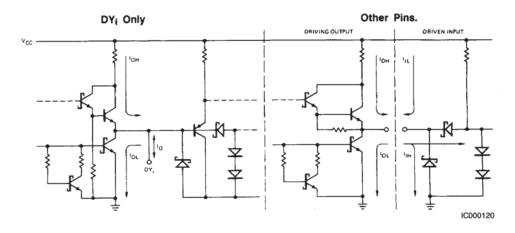
Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

2. For conditions shown as MIN, or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

SWITCHING CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{CC} = 5.0V$)

Parameters	Description		Test Conditions	Min	Тур	Max	Units
tpLH				-9.6	16.5	24	ns
tphL	Clock to DY;				18	26	115
t _{PHL}	Clear to DY				23	30	ns
tpLH			$R_L = 2.0k\Omega$,		16.5	24	ns
tPHL	Clock to Q ₀		C _L = 15pF		18	26	1115
t _{PHL}	Clear to Q ₀				23	30	ns
tzH	1				13	21	
1ZL	-				18	26	ns
thz	OE to DY;		$R_L = 2.0k\Omega$,		13	21	115
tLZ	1		C _L = 5pF	100000	18	26	
tzH	-		$R_L = 2.0k\Omega$,		18	26	
	Million Control Control Control		C _L = 15pF		23	32	ns
tzı. thz	SER/PAR to D)Yi	$R_L = 2.0k\Omega$,		18	26	T IIS
	-		C _L = 5pF	3055	23	32	1
tLZ	RE to Clock			20			
t _s	SE to Clock		-	10			
ts	S to Clock			15			1
t _s	DA and DB to	Clock	-	15			ns
t _s	DY _i (Load) to			15			
t _s	Clear Recover		$R_L = 2.0k\Omega$,	8.0			1
t _S	S/P to Clock	, 10 0.00	C _L = 15pF	15			
	Any Input Clear Hold			0			ns
th				0			ns
th	Cida Hold	HIGH		8.0			
tpw	Clock	LOW		8.0	1		ns
	Clear	1		20			ns
f _{max} (Note 1)	Maximum Cloc	k Frequency		35	50		MHz


Note 1. Per industry convention, I_{max} is the worst case value of the maximum device operating frequency with no constraints on t_i, t_i, pulse width or duty cycle.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified*

			COMM	ERCIAL	MILI		
			Am	25LS	Am	25LS	
Parameters	Description	Test Conditions	Min	Max	Min Max		Unite
tplH				35		41	
tphL	Clock to DY;			38		44	ns
tphL	Clear to DYi			43		50	ns
tplh		C _L = 50pF		35	L	41	
tphL	Clock to Q ₀	$R_L = 2.0k\Omega$		38	L	44	ns
tphL	Clear to Q ₀			43		50	ns
tzH				32		36	
tzL				38		44	
[‡] HZ	OE to DY;	$C_L = 5.0 pF$ $R_L = 2.0 k\Omega$		28		31	ns
t _{LZ}		$R_L = 2.0k\Omega$		34		39	
t _{ZH}		$C_L = 50 pF$ $R_L = 2.0 k\Omega$		38		44	1
tzL		$R_L = 2.0k\Omega$,	46		53	ns
tHZ	SER/PAR to DYi	$C_L = 5.0 pF$ $R_L = 2.0 k\Omega$		34	L	39	113
t _{LZ}		$R_L = 2.0k\Omega$		42		48	
ts	RE to Clock		30		35		
ts	SE to Clock		17		20		
ts	S to Clock		24		27		ns
ts	DA and DB to Clock		24		27	ļ	
ts	DY; (Load) to Clock		24		27		
ts	Clear Recovery to Clock	$C_L = 50pF$ $R_L = 2.0K\Omega$	15		17	ļ	
ts	S/P to Clock	R _L = 2.0KΩ	24		27		
th	Any Input		4		5		ns
th	Clear Hold		4		5		ns
	HIGH		15		17		
t _{pw}	Clock		15		17		ns
t _{pw}	Clear		30		35		ns
f _{max} (Note 1)	Maximum Clock Frequency		26	À	23		MHz

*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.