

PART NUMBER 54H30WC-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54H30

8-Input Positive-NAND Gates

These devices contain a single 8-input NAND gate.

They are characterized for operation over the full military range of -55°C to 125°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

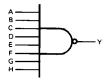
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

REVISED DECEMBER 1983

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


These devices contain a single 8-input NAND gate.

The SN5430, SN54H30, SN54L30, SN54LS30, and SN54S30 are characterized for operation over the full military range of -55°C to 125°C. The SN7430. SN74H30, SN74LS30, and SN74S30 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE

INPUTS A THRU H	OUTPUT Y
All inputs H	L
One or more inputs L	н

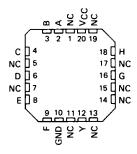
logic diagram

positive logic

$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H} \quad \text{or}$$

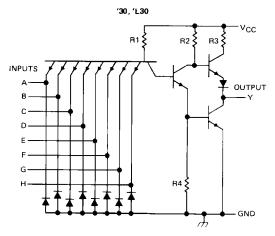
$$Y = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$$

SN5430, SN54H30, SN54L30 . . . J PACKAGE SN54LS30, SN54S30 ... J OR W PACKAGE SN7430, SN74H30 . . . J OR N PACKAGE SN74LS30, SN74S30 . . . D, J OR N PACKAGE

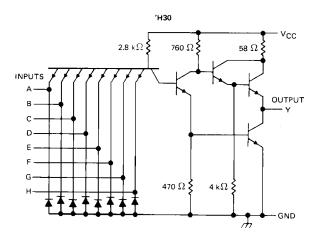

(TOP VIEW)

АЦ	I U 14	□ v _C c
в□	2 13] NC
с 📮	3 12	Эн
ㅁㅁ	4 11] G
€ 🗖	5 10] NC
FΩ	6 9] NC
אם רן	7 8	PΥ

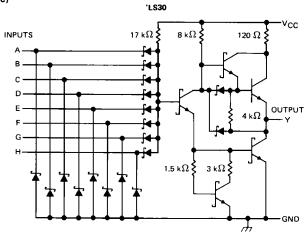
SN5430, SN54H30 . . . W PACKAGE (TOP VIEW)

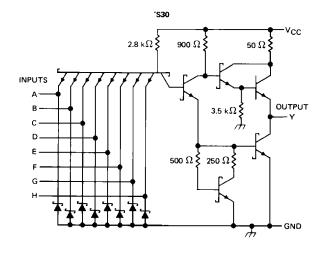

1	U 14	þ	NC
2	13	Ь	NC
3	12	Þ	Υ
4	11	þ	GND
5	10	þ	Н
6	9	ם	G
7	8	þ	F
	3 4 5	2 13 3 12 4 11 5 10	3 12 4 11 5 10

SN54LS30, SN54S30 . . . FK PACKAGE SN74LS30, SN74S30 . . . FN PACKAGE (TOP VIEW)


NC - No internal connection

schematics (each gate)


CIRCUIT	R1	R2	R3	R4
′30	4 kΩ	1.6 kΩ	130 Ω	1 kΩ
'L 30	40 kΩ	20 kΩ	500 Ω	12 kΩ


Input clamp diodes not on SN54L30 circuit,

Resistor values shown are nominal.

2

TTL DEVICES

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1): '30, 'H30, 'LS30, 'S30	. 7 V
'L30	. 8 V
Input voltage: '30, 'H30, 'L30, 'S30	5.5 V
'LS30	. 7 V
Operating free-air temperature: SN54'	25°C
SN74' 0°C to	70°C
Storage temperature range—65°C to 1	
NOTE 1: Voltage values are with respect to network ground terminal.	

		SN5430			SN7430			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	٧	
VIH High-level input voltage	2			2			٧	
V _{IL} Low-level input voltage			0.8			0.8	V	
IOH High-level output current			- 0.4			- 0.4	mA	
IOL Low-level output current			16			16	mA	
TA Operating free-air temperature			125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				SN5430			SN7430			
	I E	ST CONDITIONS T	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	VCC = MIN, II	- 12 mA			- 1.5			- 1.5	V	
Voн	V _{CC} = MIN, V _I	_ = 0.8 V, I _{OH} = - 0.4 mA	2.4	3.4		2.4	3.4		٧	
VOL	VCC = MIN, VI	H = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V	
l _l	VCC = MAX, VI	= 5.5 V			1			1	mA	
ΉΗ	V _{CC} = MAX, V _I	= 2.4 V			40			40	μΑ	
l _{IL}	V _{CC} = MAX, VI	= 0.4 V			- 1.6			1.6	mA	
10s§	V _{CC} = MAX		- 20		- 55	- 18		- 55	mΑ	
ГССН	V _{CC} = MAX, V _I	= 0 V		1	2		1	2	mA	
¹ CCL	V _{CC} = MAX, V _I	= 4.5 V		3	6		3	6	mA	

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_{A} = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH					13	22	ns
tPHL	Any	Υ	R _L = 400 Ω, C _L = 15 pF		8	15	ns

NOTE 2: See General Information Section for load circuits and voltage waveforms.

		SN54H3	30	SN74H30			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH} High-level input voltage	2			2			V
V _{IL} Low-level input voltage			0.8			0.8	V
OH High-level output current			- 0.5			- 0.5	mΑ
IOL Low-level output current			20			20	mA
TA Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN, I _I = -8 mA			1.5	v
Voн	V _{CC} = MIN, V _{1L} = 0.8 V, I _{OH} = -0.5 mA	2.4	3.5		V
VOL	V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 20 mA		0.2	0.4	v
l _l	V _{CC} = MAX, V _I = 5.5 V			1	mA
Чн	V _{CC} = MAX, V ₁ = 2.4 V			50	μА
lic	V _{CC} = MAX, V ₁ = 0.4 V			- 2	mA
IOS §	V _{CC} = MAX	- 40		- 100	mΑ
Іссн	V _{CC} = MAX, V _I = 0 V		2.5	4.2	mA
CCL	V _{CC} = MAX, V ₁ = 4.5 V		6.5	10	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	МАХ	UNIT
[†] PLH	Any	·	$R_L = 280 \Omega$, $C_1 = 25 \mathrm{pF}$	6.8	10	ns
^t PHL				8.9	12	ns

NOTE 2: See General Information Section for load circuits and voltage waveforms.

	·	SN54L30			UNIT
		MIN	NOM	MAX	UNTI
vcc	Supply voltage	4.5	5	5.5	٧
VIH	High-level input voltage	2			>
VIL	Low-level input voltage			0.7	٧
юн	High-level output current			- 0.1	mA
lor	Low-level output current			2	mA
TA	Operating free-air temperature	- 55		125	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †		SN54L3	0	UNIT
PARAMETER	TEST CONDITIONS I	MIN TYP\$ MAX	MAX	וואט	
V _{OH}	V _{CC} = MIN, V _{IL} = 0.7 V, I _{OH} = ~ 0.1 mA	2.4	3.3		V
v _{OL}	VCC = MIN, VIH = 2 V, IOL = 2 mA		0.15	0.3	V
l ₁	V _{CC} = MAX, V _I = 5.5 V	Ţ		0.1	mA
fін	VCC = MAX, V1 = 2.4 V			10	μА
ljĻ	V _{CC} = MAX, V ₁ = 0.3 V			-0.18	mA
10s \$	V _{CC} = MAX	-3		-15	mA
Іссн	VCC = MAX, VI = 0 V		0.11	0.33	mA
CCL	V _{CC} = MAX, V _I = 4.5 V		0.29	0.51	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_{A} = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

FROM PARAMETER **TEST CONDITIONS** MIN TYP MAX UNIT (INPUT) (OUTPUT) tPLH 60 35 ns RL≈4kΩ, Any CL = 50 pF 100 ^tPHL 70 ns

NOTE 2: See General Information Section for load circuits and voltage waveforms.

		!	SN54LS	30	SN74LS30			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
vcc	Supply voltage	4.5	5	5.5	4.75	´ 5	5.25	V
v_{IH}	High-level input voltage	2			2	-		V
VIL	Low-level input voltage			0.7			8.0	V
Юн	High-level output current			- 0.4			0.4	mA .
loL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55	•	125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT	ione t		SN54LS	30	·	SN74LS	30	UNIT
PARAMETER		TEST CONDITIONS I		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIK	V _{CC} = MIN,	I = - 18 mA				- 1.5			- 1.5	٧
Voн	V _{CC} = MIN,	VIL = MAX,	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		٧
V	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4			0.4	,
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 8 mA					0.25	0.5	1 *
H	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ЦН	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
HL	VCC = MAX,	V ₁ = 0.4 V				- 0.4			0.4	mA
IOS §	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V ₁ = 0 V			0.35	0.5		0.35	0.5	mA
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			0.6	1.1		0.6	1,1	mA

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT	
^t PLH	Any	V	p 210 C.	- 15 oF		8	15	ns
tPHL_	C11)	,	$R_L = 2 k\Omega$, $C_L = 15 pF$		13	20	ns	

NOTE 2: See General Information Section for load circuits and voltage waveforms

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ }^{\circ}\text{C}$ § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

			- ;	SN54S3	0	SN74S30			UNIT
		МІ	iN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4	1.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				8.0			0.8	٧
ЮН	High-level output current				- 1			- 1	mA
lor	Low-level output current				20			20	mA
TA	Operating free-air temperature	5	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †	SN54S30	SN74S30	UNIT
PARAMETER	TEST CONDITIONS I	MIN TYP# MAX	MIN TYP\$ MAX	ONT
VIK	V _{CC} = MIN, I _I = -18 mA	-1.2	-1.2	٧
V _{OH}	V _{CC} = MIN, V _{IL} = 0.8 V, I _{QH} = -1 mA	2.5 3.4	2.7 3,4	V
v _{oL}	V _{CC} - MIN, V _{IH} = 2 V, I _{OL} = 20 mA	0.5	0.5	V
Ч	V _{CC} = MAX, V ₁ = 5.5 V	1	1	mA
^Т іН	$V_{CC} = MAX$, $V_1 = 2.7 V$	50	50	μА
HL	V _{CC} = MAX, V ₁ = 0.5 V	-2	-2	mA
I _{OS} §	V _{CC} = MAX	40100	-40100	mA
Іссн	V _{CC} = MAX, V ₁ = 0 V	3 5	3 5	mA
ICCL	V _{CC} = MAX, V ₁ = 4.5 V	5.5 10	5.5 10	mA

- 1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

 § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COND	MIN	TYP	мах	UNIT	
^t PLH			R _L = 280 Ω,	C ₁ = 15 pF		4	6	ns
^t PHL				CL - 15 pr		4.5	7	ns
[†] PLH	Any	, Y	D = 200 C	C. = 50 oF		5.5		ns
[†] PHL			R _L = 280 Ω,	C _L = 50 pF		6.5		ns

NOTE 2: See General Information Section for load circuits and voltage waveforms.

