

F2 HERIC Inverter Module with PCM and NTC

SNXH75M65L3F2STG

The SNXH75M65L3F2STG is the HERIC topology which is providing a high efficiency solution for the solar inverter application. The integrated high speed field stop IGBTs are providing lower conduction and switching losses. And the pre-applied PCM requires no additional process of the thermal interface material printing. Furthermore, the screw clamp provides a fast and reliable mounting method.

Electrical Features

- High Efficiency
- Low Conduction and Switching Losses
- High Speed Field Stop IGBT
- Built-in NTC for Temperature Monitoring
- This is a Pb-Free Device

Mechanical Features

- Full Plastic F2 Package
- Soldering Pin
- Al_2O_3 DBC with Low Thermal Resistance
- Pre-applied PCM (Phase Change Material)

Applications

- Solar Inverter

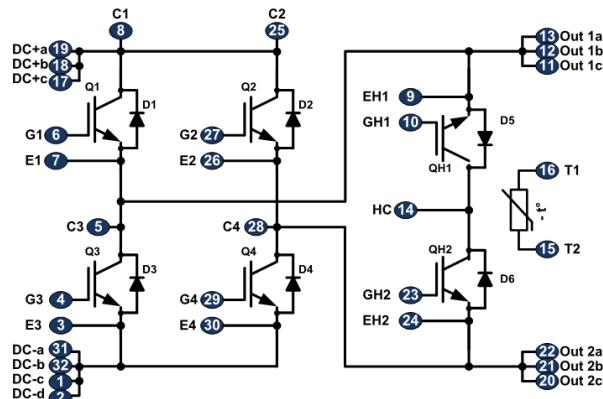
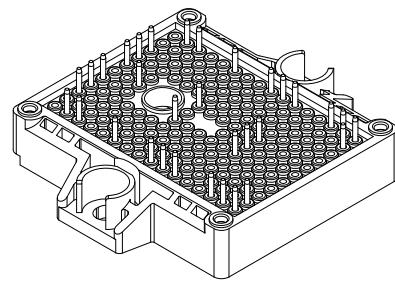
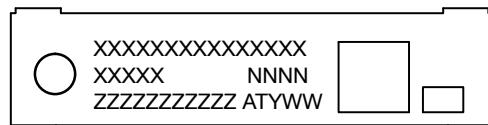



Figure 1. Internal Circuit Diagram


ON Semiconductor®

www.onsemi.com

CODE: F2
CASE MODGV

MARKING DIAGRAM

XXXX = Specific Device Code
ZZZ = Lot ID
AT = Assembly & Test Location
Y = Year
W = Work Week
NNN = Serial Number

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

SNXH75M65L3F2STG

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	PCM	Packing Type	Quantity / Tray
SNXH75M65L3F2STG	SNXH75M65L3F2STG	F2	Yes	Tray	20

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Symbol	Description	Condition	Rating	Units
IGBT				
V_{CES}	Collector-Emitter Voltage		650	V
V_{GES}	Gate-Emitter Voltage		± 25	V
I_C	Continuous Collector Current	$T_C = 80^\circ\text{C}, T_{Jmax} = 175^\circ\text{C}$	75	A
I_{CM}	Pulsed Collector Current	limited by T_{Jmax}	150	A
P_D	Maximum Power Dissipation		236	W
T_J	Operating Junction Temperature		-40 to +150	$^\circ\text{C}$

FULL-BRIDGE DIODE (D1, D2, D3, D4)

V_{RRM}	Peak Repetitive Reverse Voltage		650	V
I_F	Continuous Forward Current	$T_C = 80^\circ\text{C}, T_{Jmax} = 175^\circ\text{C}$	50	A
I_{FM}	Maximum Forward Current		100	A
P_D	Maximum Power Dissipation		208	W
T_J	Operating Junction Temperature		-40 to +150	$^\circ\text{C}$

HERIC DIODE (D5, D6)

V_{RRM}	Peak Repetitive Reverse Voltage		650	V
I_F	Continuous Forward Current	$T_C = 80^\circ\text{C}, T_{Jmax} = 175^\circ\text{C}$	75	A
I_{FM}	Maximum Forward Current		150	A
P_D	Maximum Power Dissipation		272	W
T_J	Operating Junction Temperature		-40 to +150	$^\circ\text{C}$

MODULE

T_{STG}	Storage Temperature (Note 1)		-40 to +125	$^\circ\text{C}$
V_{ISO}	Isolation Voltage	AC 1 min.	2500	V
Iso._Material	Internal Isolation Material		Al ₂ O ₃	-
T_{MOUNT}	Mounting Torque (Note 2)	M4	2.4	Nm
Creepage	Terminal to Heat Sink		11.5	mm
	Terminal to Terminal		6.3	mm
Clearance	Terminal to Heat Sink		10.0	mm
	Terminal to Terminal		5.0	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. In the case of PCM pre-applied module, please refer to the application note (AN-4186)
2. Recommendable value : 2.0 ~ 2.4 Nm (M4)

SNXH75M65L3F2STG

ELECTRICAL CHARACTERISTICS $T_C = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
IGBT						
OFF CHARACTERISTICS						
BV_{CES}	Collector-Emitter Breakdown Voltage	$\text{V}_{\text{GE}} = 0 \text{ V}$, $\text{I}_C = 1 \text{ mA}$	650	–	–	V
I_{CES}	Collector Cut-off Current	$\text{V}_{\text{CE}} = \text{V}_{\text{CES}}$, $\text{V}_{\text{GE}} = 0 \text{ V}$	–	–	250	μA
I_{GES}	Gate-Emitter Leakage Current	$\text{V}_{\text{GE}} = \text{V}_{\text{GES}}$, $\text{V}_{\text{CE}} = 0 \text{ V}$	–	–	± 2	μA
ON CHARACTERISTICS						
$\text{V}_{\text{GE}(\text{th})}$	Gate-Emitter Threshold Voltage	$\text{V}_{\text{GE}} = \text{V}_{\text{CE}}$, $\text{I}_C = 75 \text{ mA}$	4.2	5.4	6.8	V
$\text{V}_{\text{CE}(\text{sat})}$	Collector-Emitter Saturation Voltage	$\text{I}_C = 75 \text{ A}$, $\text{V}_{\text{GE}} = 15 \text{ V}$	–	1.58	2.2	V
		$\text{I}_C = 75 \text{ A}$, $\text{V}_{\text{GE}} = 15 \text{ V}$, $T_C = 125^\circ\text{C}$	–	1.85	–	V
R_{LEAD}	Lead Resistance of Pin to Chip	per Chip	–	3.3	–	$\text{m}\Omega$
SWITCHING CHARACTERISTICS (Q2, Q3-D5 / Q1, Q4-D6)						
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	$\text{V}_{\text{CC}} = 300 \text{ V}$ $\text{I}_C = 75 \text{ A}$ $\text{V}_{\text{GE}} = 15 \text{ V}$ $\text{R}_G = 30 \Omega$ Inductive Load $T_C = 25^\circ\text{C}$	–	75	–	ns
t_r	Rise Time		–	54	–	ns
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time		–	380	–	ns
t_f	Fall Time		–	52	–	ns
E_{ON}	Turn-On Switching Loss per Pulse		–	0.93	–	mJ
E_{OFF}	Turn-Off Switching Loss per Pulse		–	1.26	–	mJ
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	$\text{V}_{\text{CC}} = 300 \text{ V}$ $\text{I}_C = 75 \text{ A}$ $\text{V}_{\text{GE}} = 15 \text{ V}$ $\text{R}_G = 30 \Omega$ Inductive Load $T_C = 125^\circ\text{C}$	–	65	–	ns
t_r	Rise Time		–	59	–	ns
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time		–	410	–	ns
t_f	Fall Time		–	52	–	ns
E_{ON}	Turn-On Switching Loss per Pulse		–	1.66	–	mJ
E_{OFF}	Turn-Off Switching Loss per Pulse		–	1.53	–	mJ
Q_g	Total Gate Charge	$\text{V}_{\text{CC}} = 300 \text{ V}$, $\text{I}_C = 75 \text{ A}$, $\text{V}_{\text{GE}} = 0 \sim 15 \text{ V}$	–	123	–	nC
$R_{\theta\text{JC}}$	Thermal Resistance of Junction to Case	per Chip	–	–	0.63	$^\circ\text{C}/\text{W}$
$R_{\theta\text{CH}}$	Thermal Resistance of Case to Heat sink	per Chip, $\lambda_{\text{PCM}} = 3.4 \text{ W/mK}$	–	0.49	–	$^\circ\text{C}/\text{W}$
SWITCHING CHARACTERISTICS (QH1-D6 / QH2-D5)						
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	$\text{V}_{\text{CC}} = 300 \text{ V}$ $\text{I}_C = 75 \text{ A}$ $\text{V}_{\text{GE}} = 15 \text{ V}$ $\text{R}_G = 30 \Omega$ Inductive Load $T_C = 25^\circ\text{C}$	–	78	–	ns
t_r	Rise Time		–	52	–	ns
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time		–	389	–	ns
t_f	Fall Time		–	29	–	ns
E_{ON}	Turn-On Switching Loss		–	0.92	–	mJ
E_{OFF}	Turn-Off Switching Loss		–	1.043	–	mJ
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	$\text{V}_{\text{CC}} = 300 \text{ V}$ $\text{I}_C = 75 \text{ A}$ $\text{V}_{\text{GE}} = 15 \text{ V}$ $\text{R}_G = 30 \Omega$ Inductive Load $T_C = 125^\circ\text{C}$	–	68	–	ns
t_r	Rise Time		–	58	–	ns
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time		–	429	–	ns
t_f	Fall Time		–	26	–	ns
E_{ON}	Turn-On Switching Loss		–	1.528	–	mJ
E_{OFF}	Turn-Off Switching Loss		–	1.247	–	mJ
Q_g	Total Gate Charge	$\text{V}_{\text{CC}} = 300 \text{ V}$, $\text{I}_C = 75 \text{ A}$, $\text{V}_{\text{GE}} = 0 \sim 15 \text{ V}$	–	123	–	nC
$R_{\theta\text{JC}}$	Thermal Resistance of Junction to Case	per Chip	–	–	0.63	$^\circ\text{C}/\text{W}$
$R_{\theta\text{CH}}$	Thermal Resistance of Case to Heat sink	per Chip, $\lambda_{\text{PCM}} = 3.4 \text{ W/mK}$	–	0.49	–	$^\circ\text{C}/\text{W}$

SNXH75M65L3F2STG

ELECTRICAL CHARACTERISTICS $T_C = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
FULL-BRIDGE DIODE (D1, D2, D3, D4)						
V_F	Diode Forward Voltage	$I_F = 50 \text{ A}$	–	2.03	2.8	V
		$I_F = 50 \text{ A}, T_C = 125^\circ\text{C}$	–	1.7	–	V
R_{LEAD}	Lead Resistance of Pin to Chip	per Chip	–	3.4	–	$\text{m}\Omega$
I_R	Reverse Leakage Current	$V_R = 650 \text{ V}$	–	–	250	μA
I_{rr}	Reverse Recovery Current	$V_R = 300 \text{ V}, I_F = 50 \text{ A}$ $\text{di/dt} = 1300 \text{ A}/\mu\text{s}$ $T_C = 25^\circ\text{C}$	–	28	–	A
Q_{rr}	Reverse Recovery Charge		–	0.5	–	μC
E_{rec}	Reverse Recovery Energy		–	51	–	μJ
I_{rr}	Reverse Recovery Current	$V_R = 300 \text{ V}, I_F = 50 \text{ A}$ $\text{di/dt} = 1300 \text{ A}/\mu\text{s}$ $T_C = 125^\circ\text{C}$	–	40	–	A
Q_{rr}	Reverse Recovery Charge		–	1.2	–	μC
E_{rec}	Reverse Recovery Energy		–	145	–	μJ
$R_{\theta\text{JC}}$	Thermal Resistance of Junction to Case	per Chip	–	–	0.72	$^\circ\text{C}/\text{W}$
$R_{\theta\text{CH}}$	Thermal Resistance of Case to Heat sink	per Chip, $\lambda_{\text{PCM}} = 3.4 \text{ W/mK}$	–	0.38	–	$^\circ\text{C}/\text{W}$
HERIC DIODE (D5, D6)						
V_F	Diode Forward Voltage	$I_F = 75 \text{ A}$	–	2.28	2.9	V
		$I_F = 75 \text{ A}, T_C = 125^\circ\text{C}$	–	1.74	–	V
R_{LEAD}	Lead Resistance of Pin to Chip	per Chip	–	1.1	–	$\text{m}\Omega$
I_R	Reverse Leakage Current	$V_R = 650 \text{ V}$	–	–	250	μA
I_{rr}	Reverse Recovery Current	$V_R = 300 \text{ V}, I_F = 75 \text{ A}$ $\text{di/dt} = 1220 \text{ A}/\mu\text{s}$ $T_C = 25^\circ\text{C}$	–	32	–	A
Q_{rr}	Reverse Recovery Charge		–	0.79	–	μC
E_{rec}	Reverse Recovery Energy		–	113	–	μJ
I_{rr}	Reverse Recovery Current	$V_R = 300 \text{ V}, I_F = 75 \text{ A}$ $\text{di/dt} = 1220 \text{ A}/\mu\text{s}$ $T_C = 125^\circ\text{C}$	–	52	–	A
Q_{rr}	Reverse Recovery Charge		–	1.9	–	μC
E_{rec}	Reverse Recovery Energy		–	288	–	μJ
$R_{\theta\text{JC}}$	Thermal Resistance of Junction to Case	per Chip	–	–	0.55	$^\circ\text{C}/\text{W}$
$R_{\theta\text{CH}}$	Thermal Resistance of Case to Heat sink	per Chip, $\lambda_{\text{PCM}} = 3.4 \text{ W/mK}$	–	0.39	–	$^\circ\text{C}/\text{W}$
NTC (Thermistor)						
R_{NTC}	Rated Resistance	$T_C = 25^\circ\text{C}$	–	10	–	$\text{k}\Omega$
		$T_C = 100^\circ\text{C}$	–	936	–	Ω
P_D	Tolerance	$T_C = 25^\circ\text{C}$	–3	–	+3	%
		$T_C = 25^\circ\text{C}$	–	–	20	mW
B_{Value}	B-Constant	$B_{25/50}$	–	3450	–	K
		$B_{25/100}$	–	3513	–	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS – IGBT

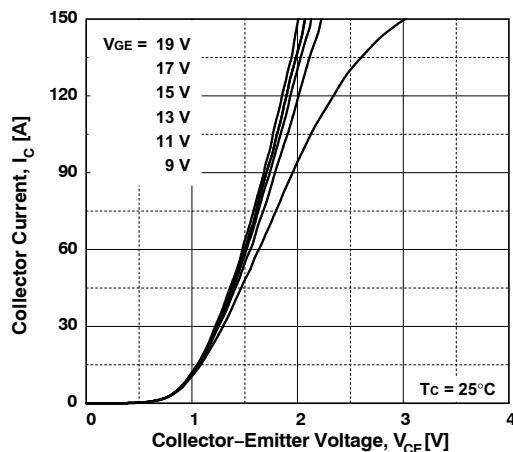


Figure 2. Output Characteristics

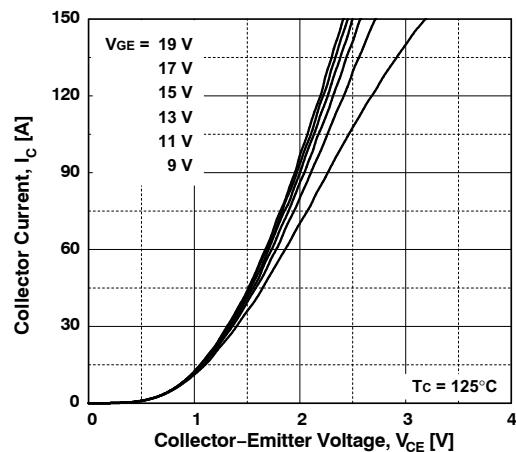


Figure 3. Output Characteristics

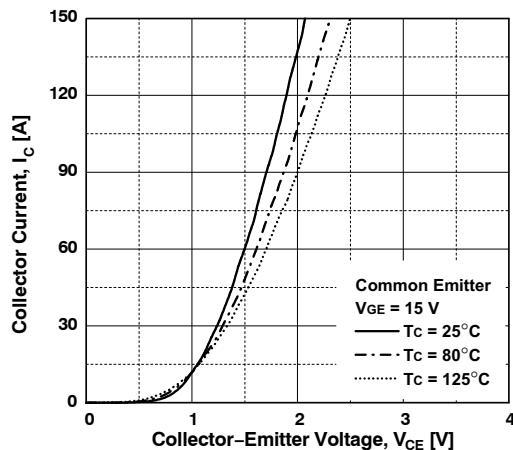


Figure 4. Saturation Voltage Characteristics

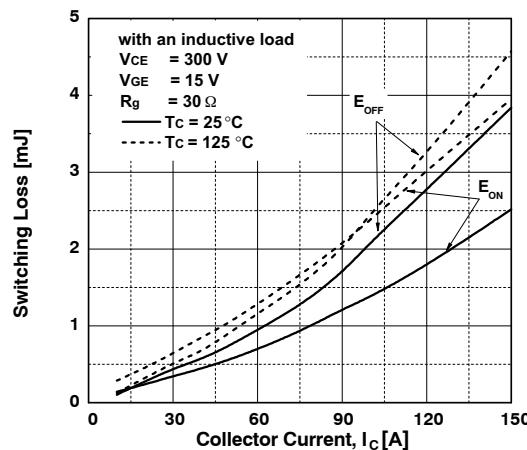


Figure 5. Switching Loss vs. Collector Current

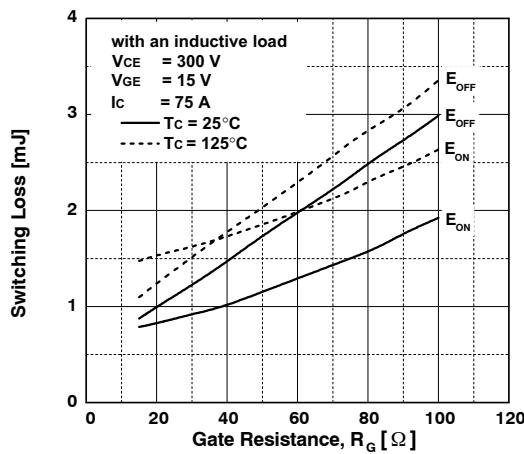


Figure 6. Switching Loss vs. Gate Resistance

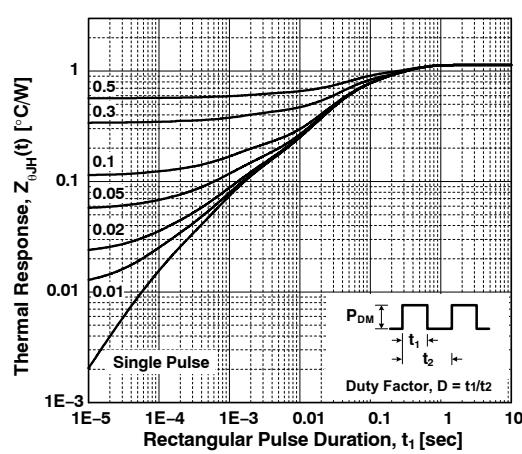


Figure 7. Transient Thermal Impedance

TYPICAL CHARACTERISTICS – FULL-BRIDGE DIODE

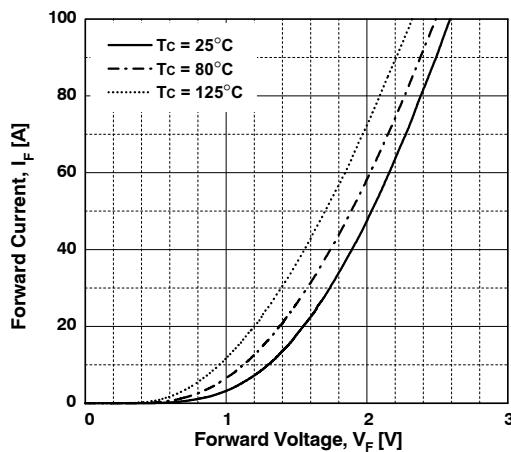


Figure 8. Forward Voltage Drop

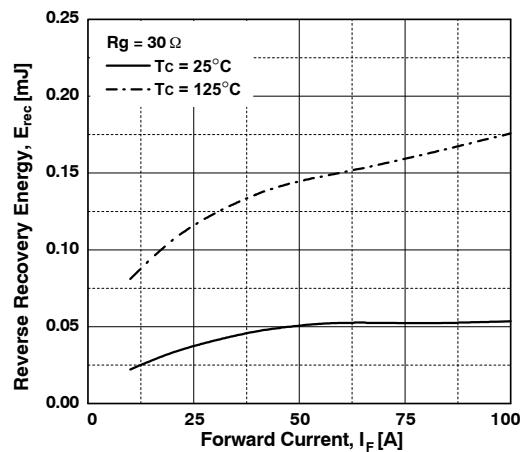


Figure 9. Reverse Recovery Energy vs. Forward Current

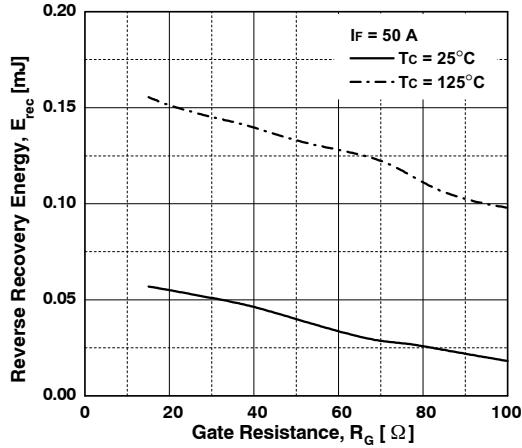


Figure 10. Reverse Recovery Energy vs. Gate Resistance

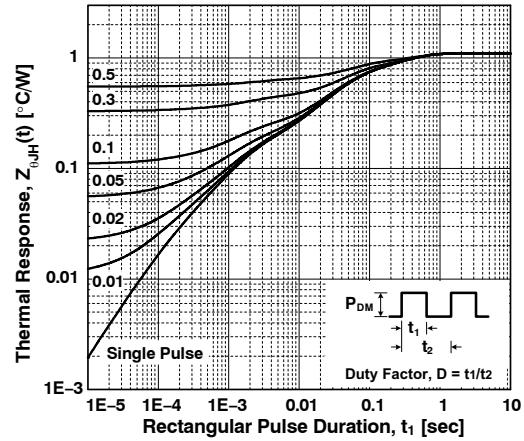
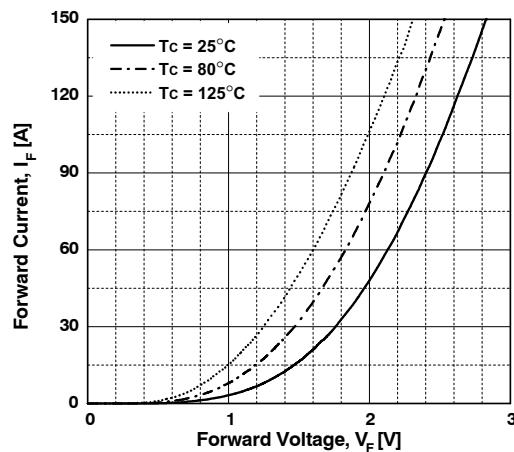
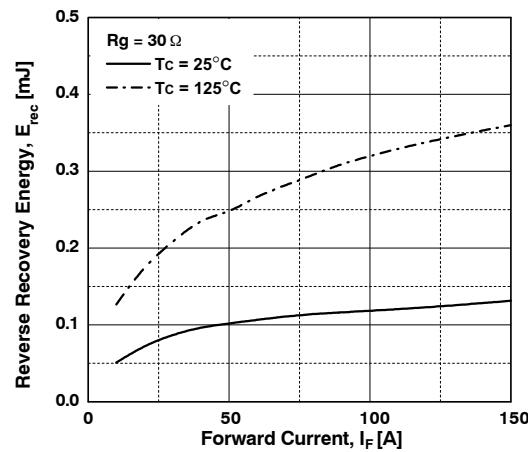
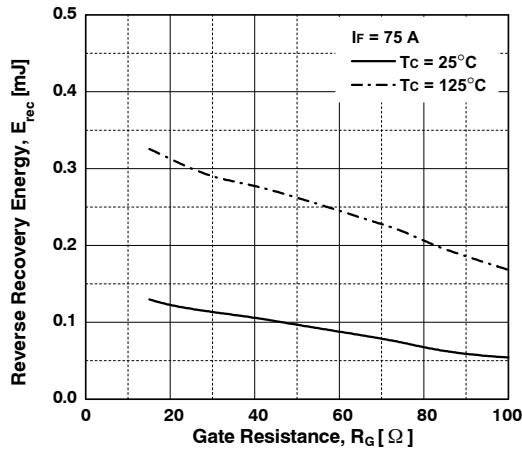




Figure 11. Transient Thermal Impedance


TYPICAL CHARACTERISTICS – HERIC DIODE

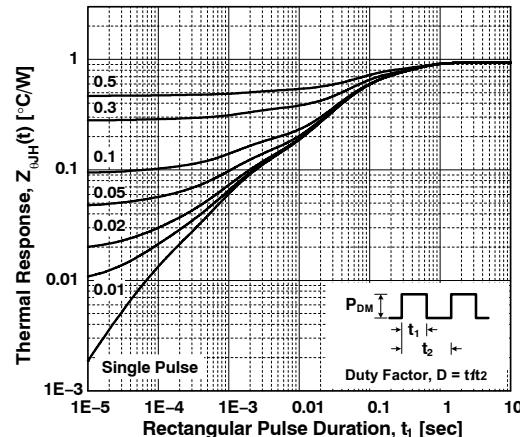

Figure 12. Forward Voltage Drop

Figure 13. Reverse Recovery Energy vs. Forward Current

Figure 14. Reverse Recovery Energy vs. Gate Resistance

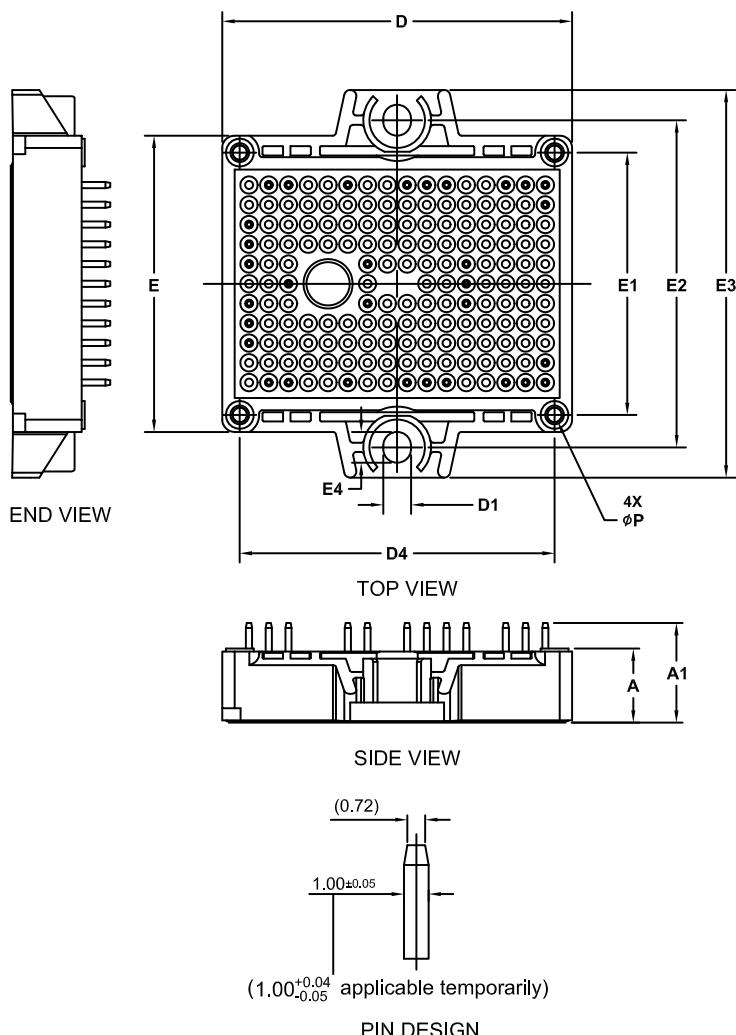
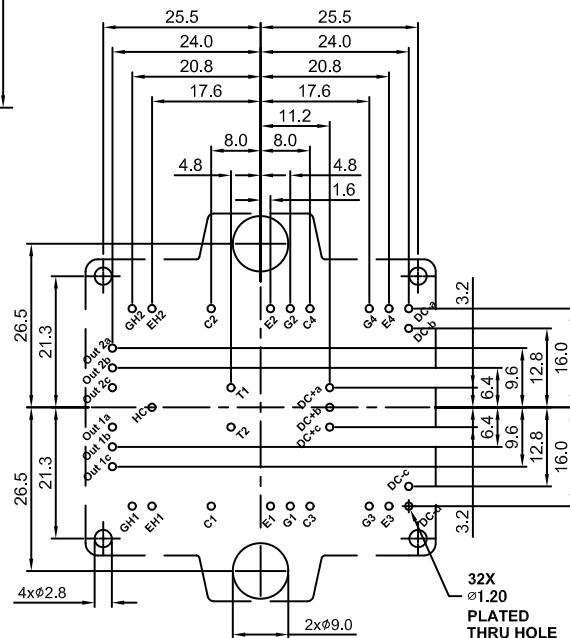


Figure 15. Transient Thermal Impedance

SNXH75M65L3F2STG

PACKAGE DIMENSIONS

PIM32 56.7x42.5 (SOLDERING PIN) CASE MODGV ISSUE A



PIN DESIGN

NOTES:

1. CONTROLLING DIMENSION: MILLIMETERS

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	11.65	12.00	12.35
A1	15.65	16.15	16.65
D	56.40	56.70	57.00
D1	4.40	4.50	4.60
D4	50.85	51.00	51.15
E	47.70	48.00	48.30
E1	42.35	42.50	42.65
E2	52.90	53.00	53.10
E3	62.30	62.80	63.30
E4	4.90	5.00	5.10
P	2.20	2.30	2.40

PCB HOLE PATTERN

(View from PCB Top Layer downward to backside of PCB Layer)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative