

PART NUMBER 54L96DMB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54L96

5-Bit Shift Registers

These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

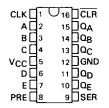
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MARCH 1974-REVISED DECEMEBER 1983

- N-Bit Serial-To-Parallel Converter
- N-Bit Parallel-To-Serial Converter
- N-Bit Storage Register


TYPICAL

TYPE PROPAGATION TYPICAL DELAY TIME POWER DISSIPATION **'96** 25 ns 240 mW 50 ns 120 mW 'L96 1.596 25 ns 60 mW

description

These shift registers consist of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs for all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

SN5496, SN54LS96 ... J OR W PACKAGE SN54L96 ... J PACKAGE SN7496 . . . J OR N PACKAGE SN74LS96 ... D, J OR N PACKAGE (TOP VIEW)

For chip carrier information on SN54LS96 and SN74LS96, contact the factory.

All flip-flops are simultaneously set to a low output level by applying a low-level voltage to the clear input

while the preset is inactive (low). Clearing is independent of the level of the clock input.

The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to the individual preset inputs (A, B, C, D, and E) and a high-level load pulse is applied to the preset enable input. Presetting like clearing is independent of the level of the clock input.

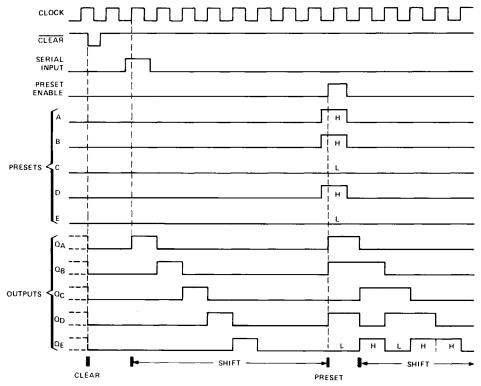
Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be set up at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be high and the preset or preset enable inputs must be low when clocking occurs.

FUNCTION TABLE

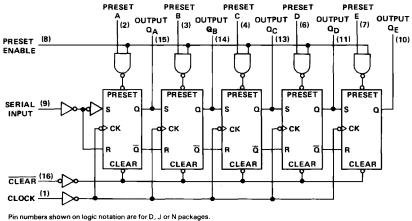
			łN	PUT	s					Ol	JTPUT	S	
0.545	PRESET	RESET PRE		RESE	T		CLOCK	SERIAL	QA	QΒ	Qς	αD	QF
CLEAR	ENABLE	Α	В	С	D	Е	CLUCK	SENIAL	U _A	αВ	<u>u</u>	<u>α</u> υ	
L	L	х	х	х	х	х	х	х	L	L	L	L	L
L	×	L	L	L	L	L	×	×	L	L	L	L	L
н	н	н	н	Н	н	н	х	×	н	н	н	Н	Н
н	н	L	L	L	L	L	L	×	Q _A 0	obo	σ_{C0}	a_{D0}	α_{E0}
н	н	н	L	Н	L	Н	L	×	н	Q_{BO}	Н	α_{D0}	н
н	L	х	Х	Х	Х	Х	L	×	QAO	α_{80}	σ_{C0}	Q_{D0}	σ_{E0}
н	L	x	Х	Х	Х	Х	1	н	н	\mathbf{Q}_{An}	α_{Bn}	\mathbf{Q}_{Cn}	σ_{Dn}
ы	١,	lχ	×	x	х	x	1 1	L	L			Qcn	

- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- ↑ = transition from low to high level
- Q_{A0} , Q_{B0} , etc = the level of Q_A , Q_B , etc, respectively before the indicated steady-state input conditions were established
- Q_{An} , Q_{Bn} , etc = the level of Q_A , Q_B , etc, respectively before the most-recent 1 transition of the clock.

PRODUCTION DATA This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

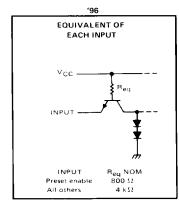


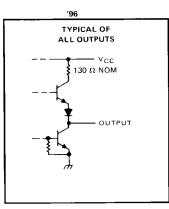
3-385

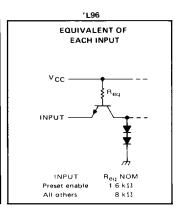

3

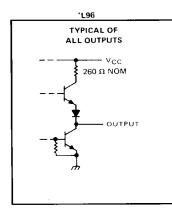
TTL DEVICES

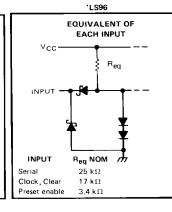
typical clear, shift, preset, and shift sequences

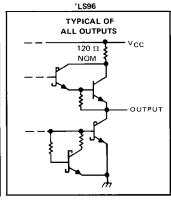



logic diagram






schematics of inputs and outputs



3

TTL DEVICES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage (see Note 2): '96, 'L96	5.5 V
'LS96	, 7 V
Operating free-air temperature: SN54'	– 55°C to 125°C
SN74′	0°C to 70°C
Storage temperature range	– 65°C to 150°C

- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. Input voltages must be zero or positive with respect to network ground terminal.

recommended operating conditions

		SN5496			SN7496		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level autput current, IOH			-400			-400	μΑ
Low-level output current, IOL			16			16	mA
Clock frequency, fclock	0		10	0		10	MHz
Width of clock input pulse, tw(clock)	35			35			ns
Width of preset and clear input pulse, tw	30			30			ns
Serial input setup time, t _{SU} (see Figure 1)	30			30			ns
Serial input hold time, th (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS†		SN5496	i		SN7496		UNIT
	PARAMETER		TEST CONDITIONS.		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.8		-	0.8	V
۷он	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{iH} = 2 V, I _{OH} = -400 μA	2.4	3.4		2.4	3.4		٧
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
Ч	Input current at maximum	input voltage	V _{CC} = MAX,	V _I = 5.5 V	ļ		1			1	mA
чн	High-level input current	any input except preset enable	V _{CC} = MAX,	V ₁ = 2.4 V			40			40	μΑ
		preset enable					200			200	1
IIL	Low-level input current	any input except preset enable	V _{CC} = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
		preset enable					-8	-		-8	l
los	Short-circuit output curren	nt§	V _{CC} = MAX		-20		-57	-18		-57	mA
1cc	Supply current		VCC = MAX,	See Note 3	T	48	68		48	79	mA

[†]For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{ C}$. § Not more than one output should be shorted at a time. NOTE 3: I_{CC} is measured with the clear input grounded and all other inputs and outputs open.

switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from clock	CL = 15 pF,		25	40	ns
tpHL Propagation delay time, high-to-low-level output from clock	$R_1 = 400 \Omega$		25	40	ns
tpLH Propagation delay time, low-to-high-level output from preset or preset enable	See Figure 1		28	35	ns
tpHL Propagation delay time, high-to-low-level output from clear] Sectional			55	ns

recommended operating conditions

			SN54L9	6	UNIT
		MIN	NOM	MAX	ONI
v _{cc}	Supply voltage	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			٧
VIL	Low-level input voltage			0.8	V
ЮН	High-level output current			- 0.2	mA
lor	Low-level output current			8	mΑ
fclock	Clock frequency	0		5	MHz
tw	Width of clock, preset, or clear input	100			ns
t _{su}	Serial input setup time (See Figure 1)	100			ns
th	Serial input hold time (See Figure 1)	0			ns
TA	Operating free-air temperature	- 55		125	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				TEST CONDITIO	+	SN54L96			UNIT
	PARAMETER			MIN	TYP‡	MAX	UNIT		
	Voн	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,	I _{OH} = - 0.2 mA	2.4	3.2		٧
	VOL	V _{CC} = MIN,	V _{1H} = 2 V,	V _{IL} ≈ 0.8 V,	I _O _L = 8 mA		0.2	0.4	>
	I _I	V _{CC} = MAX,	V _I = 5.5 V				,	1	mA
ΉΗ	Any input except preset enable	V _{CC} = MAX,	V ₁ = 2.4 V					20	μА
•••	Preset enable	1						0.1	mA
IIL	Any input except preset enable	V _{CC} = MAX,	V ₁ = 0.4 V					- 0.8	mA
-11	Preset enable	1 00	•					– 4	
	losš	V _{CC} - MAX				- 10		- 29	mΑ
	¹cc	V _{CC} = MAX,	See Note 3				24	34	mA

- † For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time. NOTE 3: T_{CC} is measured with the clear input grounded and all other inputs and outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

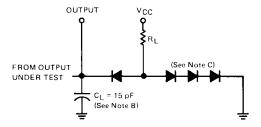
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	IDITIONS	MIN TYP	MAX	UNIT
tPLH tPHL	Clock				50 50	80 80	ns ns
t _{PLH}	Preset or Preset enable	Any	$R_L = 800 \Omega$, See Figure 1	C _L = 15 pF	56	70	ns
tPHL	Clear					110	ns

recommended operating conditions

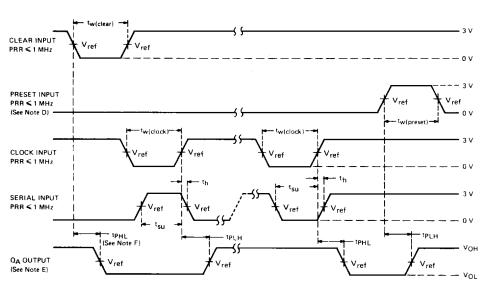
	S	N54LS9	6	S	N74LS9	96	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IOL			4			8	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock input pulse, tw(clock)	20			20			ns
Width of preset and clear input pulse, tw	30			30			ns
Serial input setup time, t _{setup} (see Figure 1)	30			30			ns
Serial input hold time, thold (see Figure 1)	0			0			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER					s	N54LS	96	SN74LS96			LIBUT
	PARAMETE	R	TES	TEST CONDITIONS [†]			TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input volt	age				2			2			V
VIL	VIL Low-level input voltage							0.7			8.0	٧
VIK	V _{IK} Input clamp voltage		V _{CC} = MIN,	I ₁ = -18 mA				-1.5			-1.5	V
VOH High-level output voltage		V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, , I _{OH} = -400 μ/	4	2.5	3.5		2.7	3.5		v	
Man A and land a second and taken		VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	V	
VOL	VOL Low-level output voltage		VIL = VIL max		I _{OL} = 8 mA					0.35	0.5	Ľ
	Input current at maximum	Preset enable	V _{CC} = MAX,	V1 = 7 V				0.5			0.5	mA
41	input voltage	All others						0.1			0.1	
1	High-level	Preset enable	V _{CC} = MAX,	Vı = 2 7 V				100			100	μД
чн	input current	All others	, , ,	71 2.7				20			20	
1	Low-level	Preset enable	V _{CC} = MAX,	V ₁ = 0.4 V				-2			-2	mA
HL	input current	All others	VCC - WAX,	V - 0.4 V				-0.4			-0.4	
los	Short-circuit output	t current §	V _{CC} = MAX			-20		-100	-20		-100	mA
¹cc	Supply current		V _{CC} = MAX,	See Note 3		T	12	20		12	20	mA


†For conditions shown at MIN or MAX, use the appropriate value specified under recommended operating conditions. † All typical values are at † C_C = 5 V, † T_A = 25 °C. † Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 3: † I_{CC} is measured with the clear input grounded and all other inputs and outputs open.

switching characteristics, VCC = 5 V, $TA = 25^{\circ}C$


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from clock	0 15 - 5		25	40	ns
tpHL Propagation delay time, high-to-low-level output from clock	$C_L = 15 pF$, $R_1 = 2 k\Omega$,		25	40	ns
tPLH Propagation delay time, low-to-high-level output from preset or preset enable	See Figure 1		28	35	ns
tPHL Propagation delay time, high-to-low-level output from clear	Joe , iguie i			55	ns

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. Input pulses are supplied by pulse generators having the following characteristics: duty cycle \leqslant 50%, $Z_{out} \approx$ 50 Ω ; for '96 and 'L96, $t_r \leqslant$ 10 ns, $t_f \leqslant$ 10 ns, and for 'LS96 t_r = 15 ns, t_f = 6 ns.

B. C_L includes probe and jig capacitance.

- C. All diodes are 1N3064 or equivalent.
 D. Preset may be tested by applying a high-level voltage to the individual preset inputs and pulsing the preset enable or by applying a b. Fireset may be rested by applying a nign-level voltage to the individual preset inputs and pulsing the preset enable of high-level voltage to the preset enable and pulsing the individual preset inputs.

 E. Q_A output is illustrated. Relationship of serial input to other Q outputs is illustrated in the typical shift sequence.

 F. Outputs are set to the high level prior to the measurement of t_{PHL} from the clear input,

 G. For '96 and 'L96, $V_{ref} = 1.5 V$; for 'LS96 $V_{ref} = 1.3 V$.

FIGURE 1-SWITCHING TIMES

