

## PART NUMBER

### 5476^BEA

#### Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

#### Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level

#### Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

*The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.*

# 54/7476

# 54H/74H76

# 54LS/74LS76

## DUAL JK FLIP-FLOP

(With Separate Sets, Clears and Clocks)

**DESCRIPTION** — The '76 and 'H76 are dual JK master/slave flip-flops with separate Direct Set, Direct Clear and Clock Pulse inputs for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputs; 4) transfer information from master to slave.

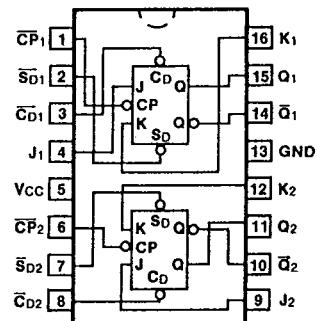
## TRUTH TABLE

| INPUTS  | OUTPUT      |             |
|---------|-------------|-------------|
| @ $t_n$ | @ $t_n + 1$ |             |
| J       | K'          | Q           |
| L       | L           | $Q_n$       |
| L       | H           | L           |
| H       | L           | H           |
| H       | H           | $\bar{Q}_n$ |

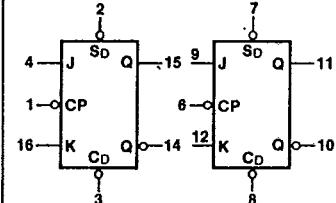
H = HIGH Voltage Level  
 L = LOW Voltage Level  
 $t_n$  = Bit time before clock pulse.  
 $t_n + 1$  = Bit time after clock pulse.

## CLOCK WAVEFORM




## Asynchronous Inputs:

LOW input to  $\bar{S}_D$  sets Q to HIGH level  
 LOW input to  $\bar{C}_D$  sets Q to LOW level  
 Clear and Set are independent of clock  
 Simultaneous LOW on  $\bar{C}_D$  and  $\bar{S}_D$   
 makes both Q and  $\bar{Q}$  HIGH


The 'LS76 is a dual JK, negative edge-triggered flip-flop also offering individual Direct Set, Direct Clear and Clock Pulse inputs. When the Clock Pulse input is HIGH, the JK inputs are enabled and data is accepted. This data will be transferred to the outputs according to the Truth Table on the HIGH-to-LOW clock transitions.

## ORDERING CODE: See Section 9

| PKGS            | PIN OUT | COMMERCIAL GRADE                                                                      | MILITARY GRADE                                                                            | PKG TYPE |
|-----------------|---------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|
|                 |         | $V_{CC} = +5.0 \text{ V} \pm 5\%$ ,<br>$T_A = 0^\circ\text{C}$ to $+70^\circ\text{C}$ | $V_{CC} = +5.0 \text{ V} \pm 10\%$ ,<br>$T_A = -55^\circ\text{C}$ to $+125^\circ\text{C}$ |          |
| Plastic DIP (P) | A       | 7476PC, 74H76PC<br>74LS76PC                                                           |                                                                                           | 9B       |
| Ceramic DIP (D) | A       | 7476DC, 74H76DC<br>74LS76DC                                                           | 5476DM, 54H76DM<br>54LS76DM                                                               | 6B       |
| Flatpak (F)     | A       | 7476FC, 74H76FC<br>74LS76FC                                                           | 5476FM, 54H76FM<br>54LS76FM                                                               | 4L       |

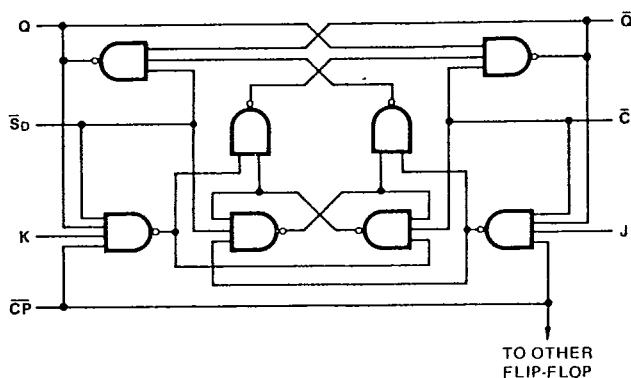
CONNECTION DIAGRAM  
PINOUT A

## LOGIC SYMBOL



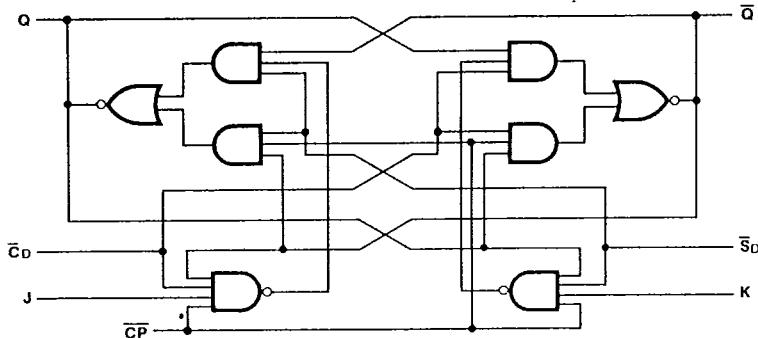
$V_{CC}$  = Pin 5  
 GND = Pin 13

T-46-07-07


76

## INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

| PIN NAMES                        | DESCRIPTION                              | 54/74 (U.L.)<br>HIGH/LOW | 54/74H (U.L.)<br>HIGH/LOW | 54/74LS (U.L.)<br>HIGH/LOW |
|----------------------------------|------------------------------------------|--------------------------|---------------------------|----------------------------|
| $J_1, J_2, K_1, K_2$             | Data Inputs                              | 1.0/1.0                  | 1.25/1.25                 | 0.5/0.25                   |
| $\bar{CP}_1, \bar{CP}_2$         | Clock Pulse Inputs (Active Falling Edge) | 2.0/2.0                  | 2.5/2.5                   | 2.0/0.5                    |
| $\bar{CD}_1, \bar{CD}_2$         | Direct Clear Inputs (Active LOW)         | 2.0/2.0                  | 2.5/2.5                   | 1.5/0.5                    |
| $SD_1, \bar{SD}_2$               | Direct Set Inputs (Active LOW)           | 2.0/2.0                  | 2.5/2.5                   | 1.5/0.5                    |
| $Q_1, \bar{Q}_1, Q_2, \bar{Q}_2$ | Outputs                                  | 20/10                    | 12.5/12.5                 | 10/5.0<br>(2.5)            |


## LOGIC DIAGRAMS (one half shown)

'76, 'H76



4

'LS76



1119

C-08

4-87 05476-2X

## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| SYMBOL          | PARAMETER            | 54/74 |     | 54/74H |     | 54/74LS |     | UNITS | CONDITIONS                                      |
|-----------------|----------------------|-------|-----|--------|-----|---------|-----|-------|-------------------------------------------------|
|                 |                      | Min   | Max | Min    | Max | Min     | Max |       |                                                 |
| I <sub>CC</sub> | Power Supply Current | 40    |     | 50     |     | 8.0     |     | mA    | V <sub>CC</sub> = Max,<br>V <sub>CP</sub> = 0 V |

AC CHARACTERISTICS: V<sub>CC</sub> = +5.0 V, T<sub>A</sub> = +25°C (See Section 3 for waveforms and load configurations)

| SYMBOL           | PARAMETER                                                                              | 54/74                                            |     | 54/74H                                           |     | 54/74LS                |     | UNITS | CONDITIONS      |  |  |
|------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-----|--------------------------------------------------|-----|------------------------|-----|-------|-----------------|--|--|
|                  |                                                                                        | C <sub>L</sub> = 15 pF<br>R <sub>L</sub> = 400 Ω |     | C <sub>L</sub> = 25 pF<br>R <sub>L</sub> = 280 Ω |     | C <sub>L</sub> = 15 pF |     |       |                 |  |  |
|                  |                                                                                        | Min                                              | Max | Min                                              | Max | Min                    | Max |       |                 |  |  |
| f <sub>max</sub> | Maximum Clock Frequency                                                                | 15                                               |     | 25                                               |     | 30                     |     | MHz   | Figs. 3-1, 3-9  |  |  |
| t <sub>PLH</sub> | Propagation Delay<br>C <sub>Pn</sub> to Q <sub>n</sub> or $\bar{Q}_n$                  | 25                                               |     | 21                                               |     | 20                     |     | ns    | Figs. 3-1, 3-9  |  |  |
| t <sub>PLH</sub> | Propagation Delay<br>$\bar{C}_{Dn}$ or $\bar{S}_{Dn}$ to Q <sub>n</sub> or $\bar{Q}_n$ | 25                                               |     | 13                                               |     | 20                     |     | ns    | Figs. 3-1, 3-10 |  |  |
|                  |                                                                                        | 40                                               |     | 27                                               |     | 30                     |     |       |                 |  |  |
|                  |                                                                                        | 40                                               |     | 24                                               |     | 30                     |     |       |                 |  |  |

AC OPERATING REQUIREMENTS: V<sub>CC</sub> = +5.0 V, T<sub>A</sub> = +25°C

| SYMBOL             | PARAMETER                                                             | 54/74 |     | 54/74H |     | 54/74LS |     | UNITS | CONDITIONS               |
|--------------------|-----------------------------------------------------------------------|-------|-----|--------|-----|---------|-----|-------|--------------------------|
|                    |                                                                       | Min   | Max | Min    | Max | Min     | Max |       |                          |
| t <sub>s</sub> (H) | Setup Time HIGH<br>J <sub>n</sub> or K <sub>n</sub> to $\bar{C}_{Pn}$ | 0     |     | 0      |     | 20      |     | ns    | Fig. 3-18<br>('76, 'H76) |
| t <sub>h</sub> (H) | Hold Time HIGH<br>J <sub>n</sub> or K <sub>n</sub> to C <sub>Pn</sub> | 0     |     | 0      |     | 0       |     | ns    |                          |
| t <sub>s</sub> (L) | Setup Time LOW<br>J <sub>n</sub> or K <sub>n</sub> to C <sub>Pn</sub> | 0     |     | 0      |     | 20      |     | ns    |                          |
| t <sub>h</sub> (L) | Hold Time LOW<br>J <sub>n</sub> or K <sub>n</sub> to $\bar{C}_{Pn}$   | 0     |     | 0      |     | 0       |     | ns    |                          |
| t <sub>w</sub> (H) | $\bar{C}_{Pn}$ Pulse Width                                            | 20    |     | 12     |     | 20      |     | ns    | Fig. 3-9                 |
| t <sub>w</sub> (L) | $\bar{C}_{Pn}$ Pulse Width                                            | 47    |     | 28     |     | 13.5    |     | ns    |                          |
| t <sub>w</sub> (L) | $\bar{C}_{Dn}$ or $\bar{S}_{Dn}$ Pulse Width LOW                      | 25    |     | 16     |     | 25      |     | ns    | Fig. 3-10                |