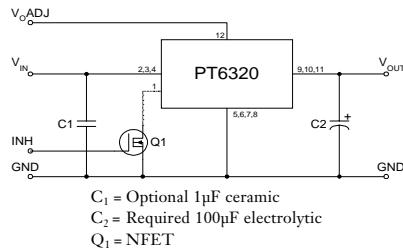


PT6320 Series


3 AMP ADJUSTABLE LOW VOLTAGE INPUT
INTEGRATED SWITCHING REGULATORS

SLTS065

(Revised 6/4/98)

Standard Application

Specifications

Characteristics (T_a=25°C unless noted)

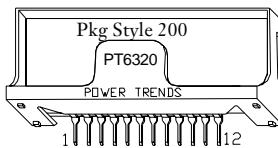
Characteristics (T _a =25°C unless noted)	Symbols	Conditions	PT6320 SERIES			
Output Current	I _o	Over V _{in} range	Min	Typ	Max	Units
Short Circuit Current	I _{sc}	V _{in} = V _o + 5V	—	5.0	—	A _{pk}
Input Voltage Range (Note: inhibit function cannot be used above 30V.)	V _{in}	0.1 ≤ I _o ≤ 3.0 A	V _o = 3.3V V _o = 5V	7 7	— —	26 30/38** V V
Output Voltage Tolerance	ΔV _o	Over V _{in} Range, I _o = 3.0 A T _a = 0°C to +60°C	—	±1.0	±2.0	%V _o
Line Regulation	Reg _{line}	Over V _{in} range	—	±0.25	±0.5	%V _o
Load Regulation	Reg _{load}	0.1 ≤ I _o ≤ 3.0 A	—	±0.25	±0.5	%V _o
V _o Ripple/Noise	V _n	V _{in} = V _{in} min, I _o = 3.0A	—	±2	—	%V _o
Transient Response with C _o = 100μF	t _{tr} V _{os}	50% load change V _o over/undershoot	—	100 5.0	200	μSec %V _o
Efficiency	η	V _{in} =9V, I _o = 0.5 A, V _o = 3.3V V _{in} =9V, I _o = 0.5 A, V _o = 5V	—	84 89	—	% %
Switching Frequency	f _o	Over V _{in} and I _o ranges	400	500	600	kHz
Shutdown Current	I _{sc}	V _{in} = 15V	—	100	—	μA
Quiescent Current	I _{nl}	I _o = 0A, V _{in} = 10V	—	10	—	mA
Output Voltage Adjustment Range	V _o	Below V _o Above V _o	See Application Notes.			
Absolute Maximum Operating Temperature Range	T _a		-40	—	+85	°C
Recommended Operating Temperature Range	T _a	Free Air Convection, (40-60LFM) At V _{in} = 24V, I _o = 2.5A	-40	—	+80***	°C
Thermal Resistance	θ _{ja}	Free Air Convection (40-60LFM)	—	30	—	°C/W
Storage Temperature	T _s	—	-40	—	+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3, 1 msec, Half Sine, mounted to a fixture	—	500	—	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, Soldered in a PC board	—	10	—	G's
Weight	—	—	—	6.5	—	grams

- Low Voltage Input (7V)
- 90% Efficiency
- Adjustable Output Voltage
- Internal Short Circuit Protection
- Over-Temperature Protection
- On/Off Control (Ground Off)

The PT6320 series is a low voltage input (typically 7V) version of Power Trends' high-performance 3A, 12 pin SIP Integrated Switching

Regulators (ISRs). These ISRs are designed with premium low threshold FETs for those applications requiring very low input/output voltage differentials such as battery powered equipment. This high-performance ISR family offers a unique combination of features combining 90% typical efficiency with open-collector on/off control and adjustable output voltage. Quiescent current in the shutdown mode is less than 100μA.

Pin-Out Information

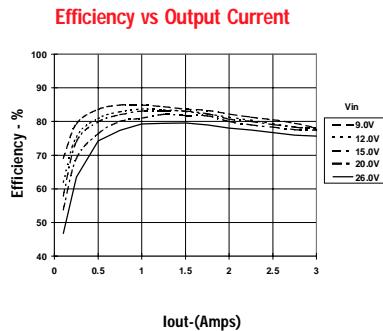

Pin	Function
1	Inhibit (30V max)
2	V _{in}
3	V _{in}
4	V _{in}
5	GND
6	GND
7	GND
8	GND
9	V _{out}
10	V _{out}
11	V _{out}
12	V _{out} Adj

Ordering Information

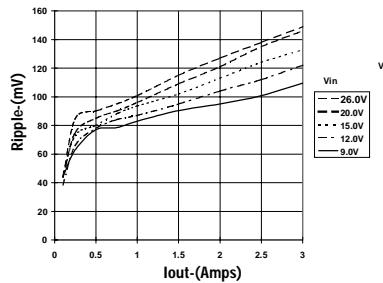
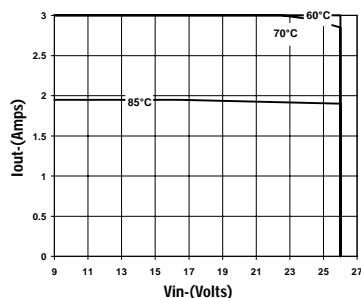
PT6322□ = +5 Volts
PT6323□ = +3.3 Volts

PT Series Suffix (PT1234X)

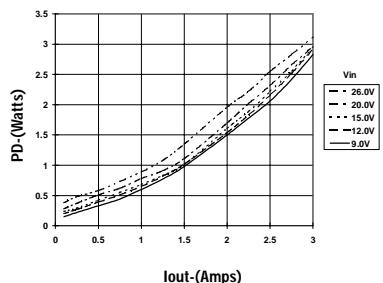
Case/Pin Configuration	
Vertical Through-Hole	N
Horizontal Through-Hole	A
Horizontal Surface Mount	C

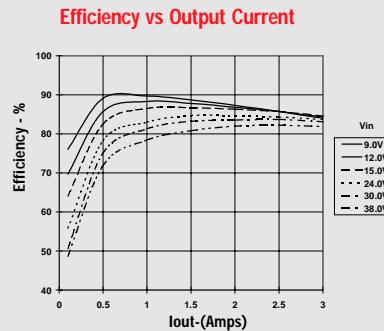

* ISR will operate to no load with reduced specifications.

** Input voltage cannot exceed 30V when the inhibit function is used. *** See Thermal Derating chart.

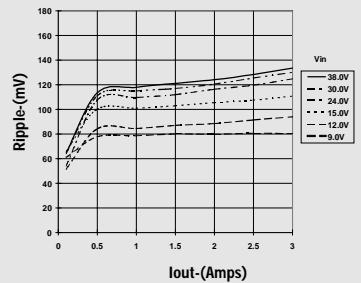
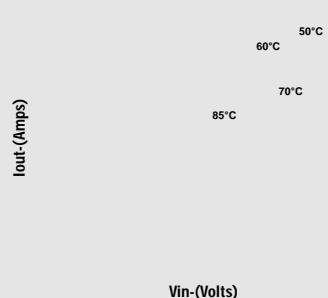


Note: The PT6320 Series requires a 100μF electrolytic or tantalum output capacitor for proper operation in all applications.

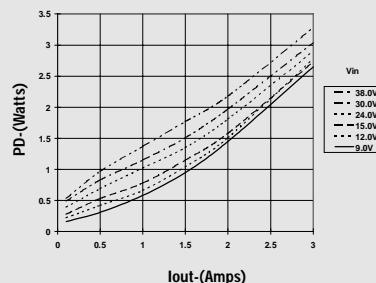
CHARACTERISTIC DATA


PT6323, 3.3 VDC (See Note 1)


Ripple vs Output Current

Thermal Derating (T_a) (See Note 2)



Power Dissipation vs Output Current


PT6322, 5.0 VDC (See Note 1)

Ripple vs Output Current

Thermal Derating (T_a) (See Note 2)

Power Dissipation vs Output Current

Note 1: All data listed in the above graphs except for derating data has been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

Note 2: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM. (See Thermal Application note.)

[More Application Notes](#)

Adjusting the Output Voltage of Power Trends' Wide Input Range Bus ISRs

The output voltage of the Power Trends' Wide Input Range Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model for either series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R_2 , between pin 12 (V_o adjust) and pins 5-8 (GND).

Adjust Down: Add a resistor (R1), between pin 12 (V_o adjust) and pins 9-11(V_{out}).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor; either (R1) or R_2 as appropriate.

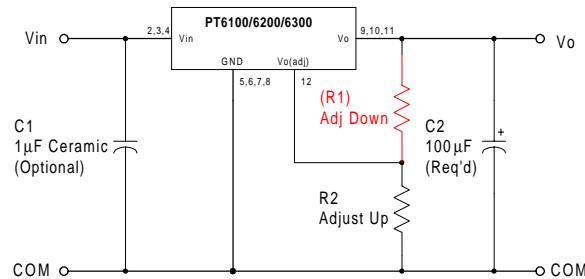
Notes:

1. Use only a single 1% resistor in either the (R1) or R_2 location. Place the resistor as close to the ISR as possible.
2. Never connect capacitors from V_o adjust to either GND or V_{out} . Any capacitance added to the V_o adjust pin will affect the stability of the ISR.
4. Adjustments to the output voltage may place additional limits on the maximum and minimum input voltage for the part. The revised maximum and minimum input voltage limits must comply with the following requirements. Note that the minimum input voltage limits are also model dependent.

$$V_{in}(\text{max}) = (8 \times V_a)V \text{ or } *30/38V, \text{ whichever is less.}$$

**Limit is 30V when inhibit function is active.*

PT6x0x/PT6x1x series:


$$V_{in}(\text{min}) = (V_a + 4)V \text{ or } 9V, \text{ whichever is greater.}$$

PT6x2x series:

$$V_o < 10V; \quad V_{in}(\text{min}) = (V_a + 2.0)V \text{ or } 7.0V, \text{ whichever is greater.}$$

$$V_o \geq 10V; \quad V_{in}(\text{min}) = (V_a + 2.5)V$$

Figure 1

The values of (R1) [adjust down], and R_2 [adjust up], can also be calculated using the following formulae.

$$(R1) = \frac{R_o(V_a - 1.25)}{V_o - V_a} \text{ k}\Omega$$

$$R_2 = \frac{1.25 R_o}{V_a - V_o} \text{ k}\Omega$$

Where: V_o = Original output voltage
 V_a = Adjusted output voltage
 R_o = The resistance value from Table 1

Table 1

ISR ADJUSTMENT RANGE AND FORMULA PARAMETERS

	PT6102	PT6101		PT6103
1Adc Rated	PT6122	PT6121		
	PT6213		PT6212	PT6214
2Adc Rated	PT6223		PT6222	
	PT6303		PT6302	PT6304
3Adc Rated	PT6323		PT6322	
V_o (nom)	3.3	5.0	5.0	12.0
V_a (min)	1.89	1.88	2.18	2.43
V_a (max)	6.07	11.25	8.5	22.12
R_o (k Ω)	66.5	150.0	90.9	243.0

Table 2

ISR ADJUSTMENT RESISTOR VALUES

	PT6102	PT6101		PT6103
1Adc Rated	PT6122	PT6121		
2Adc Rated	PT6213		PT6212	PT6214
	PT6223		PT6222	
3Adc Rated	PT6303		PT6302	PT6304
	PT6323		PT6322	
<i>V_o (nom)</i>	3.3	5.0	5.0	12.0
<i>V_a (req.d)</i>				
1.9	(30.9)kΩ	(31.5)kΩ		
2.0	(38.4)kΩ	(37.5)kΩ		
2.1	(47.1)kΩ	(44.0)kΩ		
2.2	(57.4)kΩ	(50.9)kΩ	(30.8)kΩ	
2.3	(69.8)kΩ	(58.3)kΩ	(35.4)kΩ	
2.4	(85.0)kΩ	(66.3)kΩ	(40.2)kΩ	
2.5	(104.0)kΩ	(75.0)kΩ	(45.5)kΩ	(32.0)kΩ
2.6	(128.0)kΩ	(84.4)kΩ	(51.1)kΩ	(34.9)kΩ
2.7	(161.0)kΩ	(94.6)kΩ	(57.3)kΩ	(37.9)kΩ
2.8	(206.0)kΩ	(106.0)kΩ	(64.0)kΩ	(40.9)kΩ
2.9	(274.0)kΩ	(118.0)kΩ	(71.4)kΩ	(44.1)kΩ
3.0	(388.0)kΩ	(131.0)kΩ	(79.5)kΩ	(47.3)kΩ
3.1	(615.0)kΩ	(146.0)kΩ	(88.5)kΩ	(50.5)kΩ
3.2	(1300.0)kΩ	(163.0)kΩ	(98.5)kΩ	(53.8)kΩ
3.3		(181.0)kΩ	(110.0)kΩ	(57.3)kΩ
3.4	831.0kΩ	(202.0)kΩ	(122.0)kΩ	(60.8)kΩ
3.5	416.0kΩ	(225.0)kΩ	(136.0)kΩ	(64.3)kΩ
3.6	227.0kΩ	(252.0)kΩ	(153.0)kΩ	(68.0)kΩ
3.7	208.0kΩ	(283.0)kΩ	(171.0)kΩ	(71.7)kΩ
3.8	166.0kΩ	(319.0)kΩ	(193.0)kΩ	(75.6)kΩ
3.9	139.0kΩ	(361.0)kΩ	(219.0)kΩ	(79.5)kΩ
4.0	119.0kΩ	(413.0)kΩ	(250.0)kΩ	(83.5)kΩ
4.1	104.0kΩ	(475.0)kΩ	(288.0)kΩ	(87.7)kΩ
4.2	92.4kΩ	(533.0)kΩ	(335.0)kΩ	(91.9)kΩ
4.3	83.1kΩ	(654.0)kΩ	(396.0)kΩ	(96.3)kΩ
4.4	75.6kΩ	(788.0)kΩ	(477.0)kΩ	(101.0)kΩ
4.5	69.3kΩ	(975.0)kΩ	(591.0)kΩ	(105.0)kΩ
4.6	63.9kΩ	(1260.0)kΩ	(761.0)kΩ	(110.0)kΩ
4.7	59.4kΩ	(1730.0)kΩ	(1050.0)kΩ	(115.0)kΩ
4.8	55.4kΩ		(1610.0)kΩ	(120.0)kΩ
4.9	52.0kΩ			(125.0)kΩ
5.0	48.9kΩ			(130.0)kΩ
5.1	46.2kΩ	1880.0kΩ	1140.0kΩ	(136.0)kΩ
5.2	43.8kΩ	937.0kΩ	568.0kΩ	(141.0)kΩ
5.3	41.6kΩ	625.0kΩ	379.0kΩ	(147.0)kΩ
5.4	39.6kΩ	469.0kΩ	284.0kΩ	(153.0)kΩ
5.5	37.8kΩ	375.0kΩ	227.0kΩ	(159.0)kΩ
5.6	36.1kΩ	313.0kΩ	189.0kΩ	(165.0)kΩ
5.7	34.6kΩ	268.0kΩ	162.0kΩ	(172.0)kΩ
5.8	33.3kΩ	234.0kΩ	142.0kΩ	(178.0)kΩ
5.9	32.0kΩ	208.0kΩ	126.0kΩ	(185.0)kΩ
6.0	30.8kΩ	188.0kΩ	114.0kΩ	(192.0)kΩ

R1 = (Red) R2 = Black

ISR ADJUSTMENT RESISTOR VALUES (Cont)

	PT6101		PT6103
1Adc Rated	PT6121		
2Adc Rated		PT6212	PT6214
		PT6222	
3Adc Rated		PT6302	PT6304
		PT6322	
<i>V_o (nom)</i>	5.0	5.0	12.0
<i>V_a (req.d)</i>			
6.2	156.0kΩ	94.7kΩ	(207.0)kΩ
6.4	134.0kΩ	81.2kΩ	(223.0)kΩ
6.6	117.0kΩ	71.0kΩ	(241.0)kΩ
6.8	104.0kΩ	63.1kΩ	(259.0)kΩ
7.0	93.8kΩ	56.8kΩ	(279.0)kΩ
7.2	85.2kΩ	51.6kΩ	(301.0)kΩ
7.4	78.1kΩ	47.3kΩ	(325.0)kΩ
7.6	72.1kΩ	43.7kΩ	(351.0)kΩ
7.8	67.0kΩ	40.6kΩ	(379.0)kΩ
8.0	62.5kΩ	37.9kΩ	(410.0)kΩ
8.2	58.6kΩ	35.5kΩ	(444.0)kΩ
8.4	55.1kΩ	33.4kΩ	(483.0)kΩ
8.6	52.1kΩ		(525.0)kΩ
8.8	49.3kΩ		(573.0)kΩ
9.0	46.9kΩ		(628.0)kΩ
9.5	41.7kΩ		(802.0)kΩ
10.0	37.5kΩ		(1060.0)kΩ
10.5	34.1kΩ		(1500.0)kΩ
11.0	31.3kΩ		
11.5			
12.0			
12.5			608.0kΩ
13.0			304.0kΩ
13.5			203.0kΩ
14.0			152.0kΩ
14.5			122.0kΩ
15.0			101.0kΩ
15.5			86.8kΩ
16.0			75.9kΩ
16.5			67.5kΩ
17.0			60.8kΩ
17.5			55.2kΩ
18.0			50.6kΩ
18.5			46.7kΩ
19.0			43.4kΩ
19.5			40.5kΩ
20.0			38.0kΩ
20.5			35.7kΩ
21.5			33.8kΩ
21.5			32.0kΩ
22.0			30.4kΩ

[More Application Notes](#)

Using the Inhibit Function on Power Trends' Wide Input Range Bus ISRs

For applications requiring output voltage On/Off control, the 12pin ISR products incorporate an inhibit function. The function has uses in areas such as battery conservation, power-up sequencing, or any other application where the regulated output from the module is required to be switched off. The On/Off function is provided by the *Inhibit* control, pin 1.

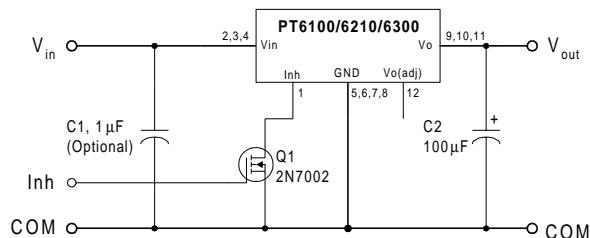
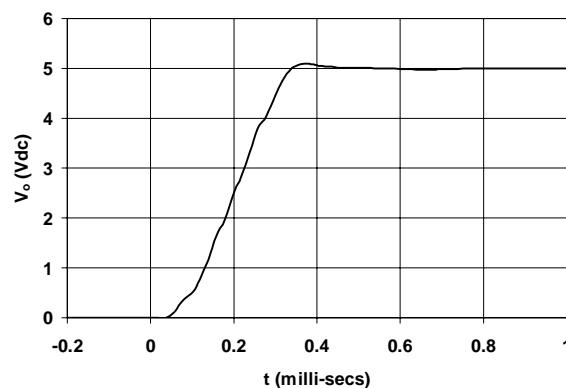

The ISR functions normally with pin 1 open-circuit, providing a regulated output whenever a valid source voltage is applied to V_{in} , (pins 2, 3, & 4). When a low-level² ground signal is applied to pin 1 the regulator output is disabled, and the input current to the ISR is reduced to about $100\mu A$ ³.

Figure 1 shows an application schematic, which details the typical use of the inhibit function. Note the discrete transistor, Q1. The inhibit control has its own internal pull-up with a maximum open-circuit voltage of 8.3VDC. Only devices with a true open-collector or open-drain output can be used to control this pin. A discrete bipolar transistor or MOSFET is recommended.

Notes:


1. The inhibit control logic is similar for all Power Trends' modules, but the flexibility and threshold tolerances will be different. For specific information on the inhibit function of other ISR models, consult the applicable application note.
2. Use only a true open-collector device (preferably a discrete transistor) for the inhibit input. Do Not use a pull-up resistor, or drive the input directly from the output of a TTL or other logic gate. To disable the output voltage, the control pin should be pulled low to less than +1.5VDC.
3. The following equation may be used to determine the approximate current drawn from the input supply at V_{in} , and through Q1 when the inhibit is active.

$$I_{stby} = V_{in} \div 155k\Omega \pm 2\%$$
4. When the inhibit control pin is active, i.e. pulled low, the maximum input voltage is limited to +30Vdc.
5. Do not control the inhibit input with an external DC voltage. This will lead to erratic operation of the ISR and may over-stress the regulator.
6. Avoid capacitance greater than 500pF at the Inhibit control pin. Excessive capacitance at this pin will cause the ISR to produce a pulse on the output voltage bus at turn-on.
7. Keep the On/Off transition to less than $10\mu s$. This prevents erratic operation of the ISR, which can cause a momentary high output voltage.

Figure 1

Turn-On Time: The output of the ISR is enabled automatically when external power is applied to the input. The *Inhibit* control pin is pulled high by its internal pull-up resistor. The ISR produces a fully regulated output voltage within 1-msec of either the release of the Inhibit control pin, or the application of power. The actual turn-on time will vary with the input voltage, output load, and the total amount of capacitance connected to the output. Using the circuit of Figure 1, Figure 2 shows the typical rise in output voltage for the PT6101 following the turn-off of Q1 at time $t = 0$. The waveform was measured with a 9Vdc input voltage, and 5-Ohm resistive load.

Figure 2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com