National Semiconductor is now part of Texas Instruments.

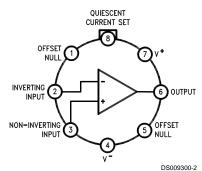
Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LM4250

Programmable Operational Amplifier

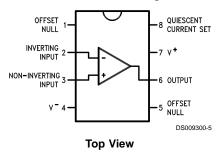
General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

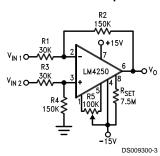

The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a 0°C to +70°C temperature range instead of the -55°C to +125°C temperature range of the LM4250.

Features

- ±1V to ±18V power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

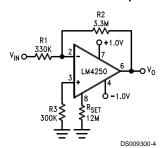

Connection Diagrams

Metal Can Package



Top View

Dual-In-Line Package



X5 Difference Amplifier

Quiescent $P_D = 0.6 \text{ mW}$

500 Nano-Watt X10 Amplifier

Quiescent P_D = 500 nW

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 3)

	LM4250	LM4250C
Supply Voltage	±18V	±18V
Operating Temp. Range	$-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	$0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C}$
Differential Input Voltage	±30V	±30V
Input Voltage (Note 2)	±15V	±15V
I _{SET} Current	150 nA	150 nA
Output Short Circuit Duration	Continuous	Continuous
T_{JMAX}		
H-Package	150°C	100°C
N-Package		100°C
J-Package	150°C	100°C
M-Package		100°C
Power Dissipation at T _A = 25°C		
H-Package (Still Air)	500 mW	300 mW
(400 LF/Min Air Flow)	1200 mW	1200 mW
N-Package		500 mW
J-Package	1000 mW	600 mW
M-Package		350 mW
Thermal Resistance (Typical) θ _{JA}		
H-Package (Still Air)	165°C/W	165°C/W
(400 LF/Min Air Flow)	65°C/W	65°C/W
N-Package		130°C/W
J-Package	108°C/W	108°C/W
M-Package		190°C/W
(Typical) θ _{JC}		
H-Package	21°C/W	21°C/W
Storage Temperature Range	-65°C to +150°C	−65°C to +150°C
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	260°C	
Small Outline Package		
Vapor Phase (60 seconds)	215°C	
Infrared (15 seconds)	220°C	
See AN-450 "Surface Mounting Methods on Product Reliability" for other methods		

surface mount devices.

ESD tolerance (Note 4) 800V

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Refer to RETS4250X for military specifications.

Note 4: Human body model, 1.5 $k\Omega$ in series with 100 pF.

Resistor Biasing Set Current Setting Resistor to V⁻

I _{SET}										
Vs	0.1 μΑ	0.5 μΑ	1.0 μΑ	5 μΑ	10 μA					
±1.5V	25.6 MΩ	5.04 MΩ	2.5 MΩ	492 kΩ	244 kΩ					
±3.0V	55.6 MΩ	11.0 MΩ	5.5 MΩ	1.09 MΩ	544 kΩ					
±6.0V	116 MΩ	23.0 MΩ	11.5 MΩ	2.29 MΩ	1.14 MΩ					
±9.0V	176 MΩ	35.0 MΩ	17.5 MΩ	3.49 MΩ	1.74 MΩ					
±12.0V	236 MΩ	47.0 MΩ	23.5 ΜΩ	4.69 MΩ	2.34 MΩ					
±15.0V	296 MΩ	59.0 MΩ	29.5 MΩ	5.89 MΩ	2.94 MΩ					

Electrical Characteristics

LM4250 (-55°C \leq T_A \leq +125°C unless otherwise specified.) T_A = T_J

		$V_S = \pm 1.5V$					
Parameter	Conditions	I _{SET}	= 1 μΑ	I _{SET} =	= 10 μΑ		
		Min	Max	Min	Max		
V _{os}	$R_S \le 100 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		3 mV		5 mV		
l _{os}	T _A = 25°C		3 nA		10 nA		
l _{bias}	T _A = 25°C		7.5 nA		50 nA		
Large Signal Voltage	$R_L = 100 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	40k					
Gain	$V_O = \pm 0.6 V$, $R_L = 10 \text{ k}\Omega$			50k			
Supply Current	$T_A = 25^{\circ}C$		7.5 µA		80 μΑ		
Power Consumption	T _A = 25°C		23 µW		240 μW		
V _{os}	$R_S \le 100 \text{ k}\Omega$		4 mV		6 mV		
I _{os}	T _A = +125°C		5 nA		10 nA		
	$T_A = -55^{\circ}C$		3 nA		10 nA		
l _{bias}			7.5 nA		50 nA		
Input Voltage Range		±0.6V		±0.6V			
Large Signal Voltage Gain	$V_{O} = \pm 0.5 V, R_{L} = 100 \text{ k}\Omega$	30k					
	$R_L = 10 \text{ k}\Omega$			30k			
Output Voltage Swing	$R_L = 100 \text{ k}\Omega$	±0.6V					
	$R_L = 10 \text{ k}\Omega$			±0.6V			
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70 dB		70 dB			
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	76 dB		76 dB			
Supply Current			8 μΑ		90 µA		

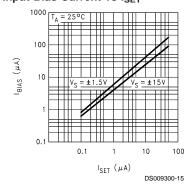
		V _S = ±15V					
Parameter	Conditions	I _{SET} :	= 1 μA	I _{SET} = 10 μA			
		Min		Min	Max		
V _{os}	$R_S \le 100 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		3 mV		5 mV		
l _{os}	$T_A = 25^{\circ}C$		3 nA		10 nA		
l _{bias}	$T_A = 25^{\circ}C$		7.5 nA		50 nA		
Large Signal Voltage	$R_{L} = 100 \text{ k}\Omega, T_{A} = 25^{\circ}\text{C}$	100k					
Gain	$V_O = \pm 10V$, $R_L = 10 \text{ k}\Omega$			100k			
Supply Current	$T_A = 25^{\circ}C$		10 μΑ		90 μΑ		
Power Consumption	$T_A = 25^{\circ}C$		300 μW		2.7 mW		
V _{os}	$R_S \le 100 \text{ k}\Omega$		4 mV		6 mV		
I _{os}	$T_A = +125^{\circ}C$		25 nA		25 nA		
	$T_A = -55^{\circ}C$		3 nA		10 nA		
l _{bias}			7.5 nA		50 nA		
Input Voltage Range		±13.5V		±13.5V			

Electrical Characteristics (Continued)

		V _S = ±15V						
Parameter	Conditions	I _{SET}	= 1 μΑ	I _{SET} = 10 μA				
		Min	Max	Min	Max			
Large Signal Voltage	$V_{O} = \pm 10V, R_{L} = 100 \text{ k}\Omega$	50k						
Gain	$R_L = 10 \text{ k}\Omega$			50k				
Output Voltage Swing	$R_L = 100 \text{ k}\Omega$	±12V						
	$R_L = 10 \text{ k}\Omega$			±12V				
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70 dB		70 dB				
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	76 dB		76 dB				
Supply Current			11 µA		100 μΑ			
Power Consumption			330 µW		3 mW			

Electrical Characteristics LM4250C (0°C \leq T_A \leq +70°C unless otherwise specified.) T_A = T_J

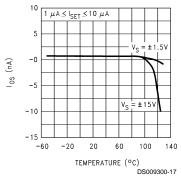
			$V_s = \pm 1.5V$					
Parameter	Conditions	I _{SET}	= 1 μΑ	I _{SET} = 10 μA				
		Min	Max	Min	Max			
V _{OS}	$R_S \le 100 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		5 mV		6 mV			
I _{os}	$T_A = 25^{\circ}C$		6 nA		20 nA			
I _{bias}	$T_A = 25^{\circ}C$		10 nA		75 nA			
Large Signal Voltage Gain	$R_L = 100 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	25k						
	$V_{O} = \pm 0.6 V, R_{L} = 10 \text{ k}\Omega$			25k				
Supply Current	$T_A = 25^{\circ}C$		8 μΑ		90 μΑ			
Power Consumption	$T_A = 25^{\circ}C$		24 µW		270 μW			
V _{os}	$R_S \le 10 \text{ k}\Omega$		6.5 mV		7.5 mV			
I _{os}			8 nA		25 nA			
I _{bias}			10 nA		80 nA			
Input Voltage Range		±0.6V		±0.6V				
Large Signal Voltage	$V_{O} = \pm 0.5 V, R_{L} = 100 \text{ k}\Omega$	25k						
Gain	$R_L = 10 \text{ k}\Omega$			25k				
Output Voltage Swing	$R_L = 100 \text{ k}\Omega$	±0.6V						
	$R_L = 10 \text{ k}\Omega$			±0.6V				
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70 dB		70 dB				
Supply Voltage Rejection Ratio	R _S ≤ 10 kΩ	74 dB		74 dB				
Supply Current			8 μΑ		90 μΑ			
Power Consumption			24 μW		270 μW			

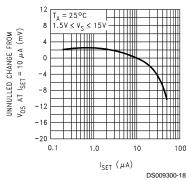

		$V_S = \pm 15V$					
Parameter	Conditions	I _{SET}	= 1 μΑ	I _{SET} = 10 μA			
		Min	Max	Min	Max		
V _{os}	$R_S \le 100 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$		5 mV		6 mV		
I _{os}	$T_A = 25^{\circ}C$		6 nA		20 nA		
l _{bias}	$T_A = 25^{\circ}C$		10 nA	75 1			
Large Signal Voltage	$R_{L} = 100 \text{ k}\Omega, T_{A} = 25^{\circ}\text{C}$	60k					
Gain	$V_O = \pm 10V$, $R_L = 10 \text{ k}\Omega$			60k			
Supply Current	$T_A = 25^{\circ}C$		11 µA		100 μΑ		
Power Consumption	$T_A = 25^{\circ}C$		330 µW		3 mW		
V _{os}	$R_S \le 100 \text{ k}\Omega$		6.5 mV		7.5 mV		
I _{os}			8 nA		25 nA		
l _{bias}			10 nA		80 nA		
	·	•	-		•		

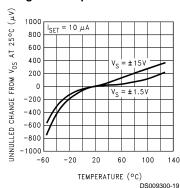
Electrical Characteristics (Continued)

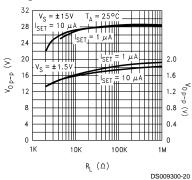

		V _S = ±15V						
Parameter	Conditions	I _{SET} =	: 1 µA	I _{SET} = 10 μA				
		Min	Max	Min	Max			
Input Voltage Range		±13.5V		±13.5V				
Large Signal Voltage	$V_{O} = \pm 10V, R_{L} = 100 \text{ k}\Omega$	50k						
Gain	$R_L = 10 \text{ k}\Omega$			50k				
Output Voltage Swing	$R_L = 100 \text{ k}\Omega$	±12V						
	$R_L = 10 \text{ k}\Omega$			±12V				
Common Mode Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega$	70 dB		70 dB				
Supply Voltage Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega$	74 dB		74 dB				
Supply Current			11 µA		100 μΑ			
Power Consumption			330 µW		3 mW			

Typical Performance Characteristics

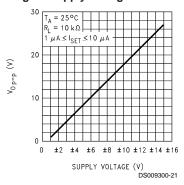

Input Bias Current vs I_{SET}


Input Bias Current vs Temperature

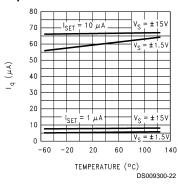

Input Offset Current vs Temperature


Unnulled Input Offset Voltage Change vs I_{SET}

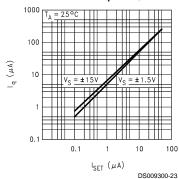
Unnulled Input Offset Voltage Change vs Temperature

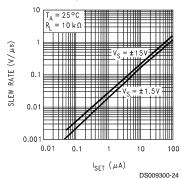


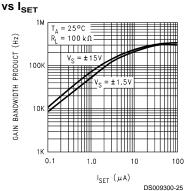
Peak to Peak Output Voltage Swing vs Load Resistance

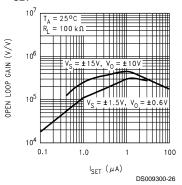


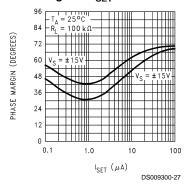
Typical Performance Characteristics (Continued)

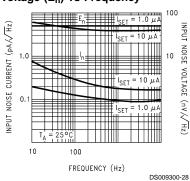

Peak to Peak Output Voltage Swing vs Supply Voltage

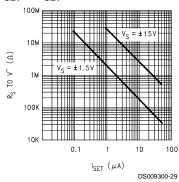

Quiescent Current ($I_{\rm q}$) vs Temperature


Quiescent Current (Iq) vs I_{SET}

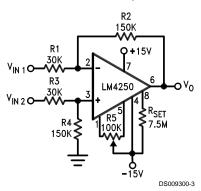

Slew Rate vs I_{SET}


Gain Bandwidth Product

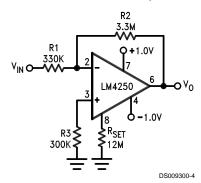

Open Loop Voltage Gain vs I_{SET}


Phase Margin vs I_{SET}

Input Noise Current (I_n) and Voltage (E_n) vs Frequency

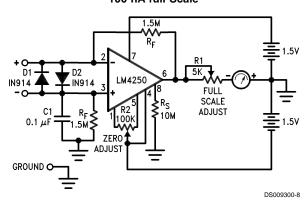


R_{SET} vs I_{SET}



Typical Applications

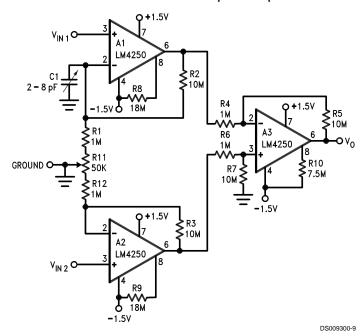
X5 Difference Amplifier


500 Nano-Watt X10 Amplifier

Quiescent $P_D = 500 \text{ nW}$

Quiescent $P_D = 0.6 \text{ mW}$

Floating Input Meter Amplifier 100 nA full Scale

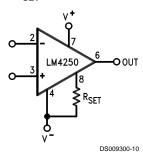


Quiescent $P_D = 1.8 \mu W$

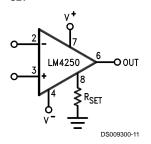
*Meter movement (0–100 $\mu A, 2 \ k\Omega$) marked for 0–100 nA full scale.

Typical Applications (Continued)

X100 Instrumentation Amplifier 10 μ W



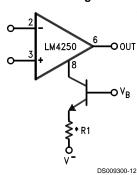
Note 5: Quiescent $P_D = 10 \mu W$.


Note 6: R2, R3, R4, R5, R6 and R7 are 1% resistors.

Note 7: R11 and C1 are for DC and AC common mode rejection adjustments.

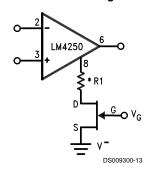
R_{SET} Connected to V^-

 \mathbf{R}_{SET} Connected to Ground

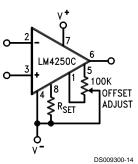

I_{SET} Equations:

$$I_{SET} \approx rac{V^+ \, + \, |V^-| \, - \, 0.5}{R_{SET}}$$
 where R_{SET} is connected to V^-

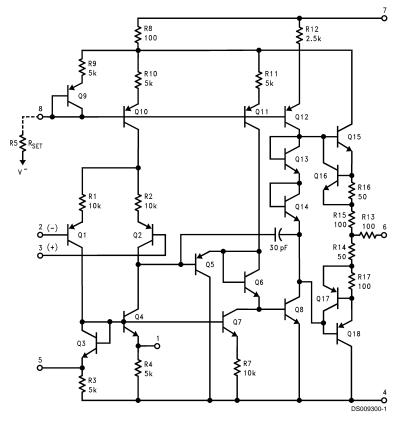
$$I_{SET} \approx \frac{V^+ \, - \, 0.5}{R_{SET}} \quad \mbox{where R_{SET} is} \\ \mbox{connected to ground.}$$


DS009300-30

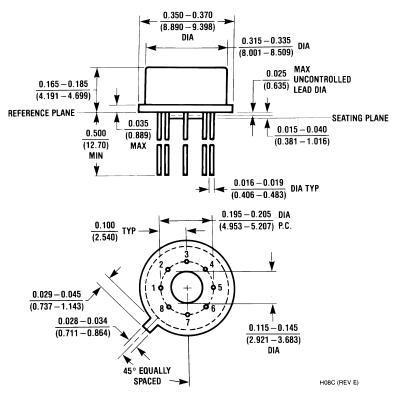
Transistor Current Sourcing Biasing

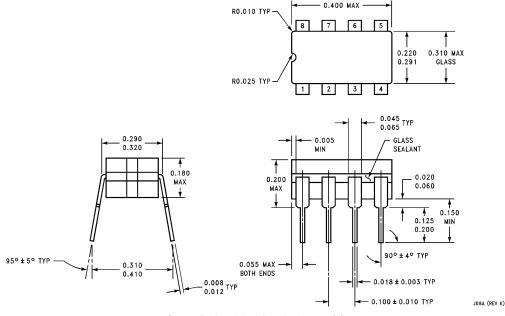


*R1 limits I_{SET} maximum


FET Current Sourcing Biasing

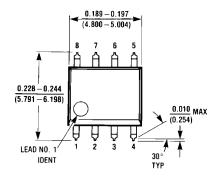
Offset Null Circuit

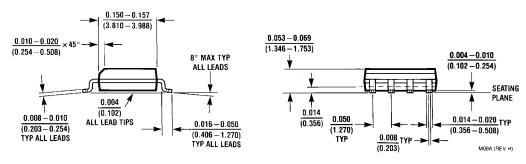

Schematic Diagram

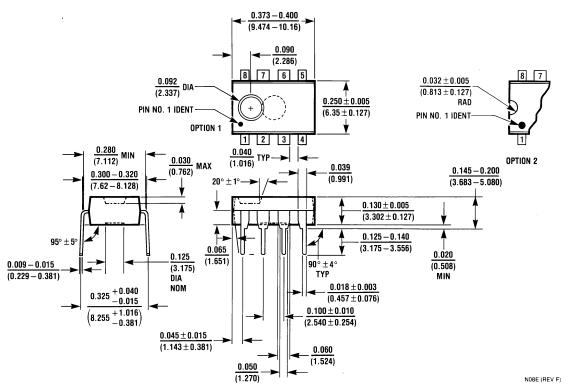

Ordering Information

Temperatur	e Range	Package	NSC
Military	Commercial		Package
-55° C \leq T _A \leq +125 $^{\circ}$ C	$0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C}$		Number
	LM4250CN	8-Pin	N08E
		Molded DIP	
	LM4250CM	8-Pin	M08A
	LM4250CMX	Surface Mount	
		8-Pin	J08E
LM4250J-MIL		Ceramic DIP	
	LM4250CH	8-Pin	H08C
		Metal Can	

Physical Dimensions inches (millimeters) unless otherwise noted




Metal Can Package (H)
Order Number LM4250CH
NS Package Number H08C


Ceramic Dual-In-Line Package (J) Order Number LM4250J-MIL NS Package Number J08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Small Outline Package (M)
Order Number LM4250CM or LM4250CMX
NS Package Number M08A

Molded Dual-In-Line Package (N) Order Number LM4250CN NS Package Number N08E

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

Application

<u>Products > Analog - Amplifiers > Operational Amplifiers > Micropower > LM4250</u>

LM4250 Product Folder

Programmable Operational Amplifier

<u>Description</u> <u>Features</u>	<u>Datasheet</u>	<u>& Models</u>	& Pricing	Tools	<u>Notes</u>
Parametric Table		Parametric	Table		
Channels (Channels)	1	Maximum	Supply Voltage	(Volt)	36
Input Output Type	Not Rail to Rail	Offset Volt	age, Max (mV)		6, 5
Bandwidth, typ (MHz)	.25	Input Bias	Current, Temp	Max (nA)	20
Slew Rate, typ (Volts/usec)	.20	Output Cui	rent, typ (mA)		12
Supply Current per Channel, typ (mA)	.01	Voltage No	ise, typ (nV/Hz)		40
Minimum Supply Voltage (Volt)	2	Shut down			No
	,	Special Fea	atures		Vos Adj, Adj Is

Package

Samples

Datasheet

General

Title	Size in Kbytes		Viev	v Online	Dow	nload	Receive	e via Email
LM4250 Programmable Operational Amplifier	494 Kbytes	29-Aug-00	<u>View</u>	<u>Online</u>	Down	nload	Receive	via Email
LM4250 Mil-Aero Datasheet MNLM4250-X	16 Kbytes		View	Online	Down	nload	Receive	via Email

If you have trouble printing or viewing PDF file(s), see Printing Problems.

Package Availability, Models, Samples & Pricing

Part	Package			Status	Models		Samples &				_		dgetary ricing	Std Pack	<u>Package</u>
Number	Туре	Pins	MSL	Status	SPICE	IBIS	Electronic Orders	Qty	SUS each	Size	<u>Marking</u>				
LM4250CM	SOIC NARROW	8	MSL	Full production	LM4250.MOD	N/A	24 Hour Buy Now	1K+	\$0.4810	rail of 95	[logo]¢2¢T LM42 50CM				
LM4250CMX	SOIC NARROW	8	MSL	Full production	LM4250.MOD	N/A	Buy Now	1K+	\$0.4810	reel of 2500	[logo]¢2¢T LM42 50CM				

LM4250CN	MDIP	8	MSL	Full production	LM4250.MOD	N/A	Buy Now	1K+	\$0.4980	rail of 40	[logo]¢U¢Z¢2¢T LM 4250CN
LM4250CH	<u>TO-5</u>	8	MSL	Full production	LM4250.MOD	N/A	Buy Now	1K+	\$1.5200	box of 500	[logo]¢Z¢2¢T LM4250CH
LM4250C MWA	<u>Wafer</u>		Full production	LM4250.MOD	N/A				wafer jar of N/A	-	
LM4250J- MIL	CERDIP	8	MSL	Full production	LM4250.MOD	N/A	Buy Now	50+	\$4.8300	rail of 40	[logo]¢Z¢S¢4¢A LM4250J -MIL \$E
LM4250J MD8	<u>Die</u>		Full production	LM4250.MOD	N/A	Samples			tray of N/A	-	
LM4250J MW8	Wafer		Full production	LM4250.MOD	N/A				wafer jar of N/A	-	
LM4250C MDA	<u>Die</u>		Full production	LM4250.MOD	N/A	Samples			tray of N/A	-	

General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a 0° C to $+70^{\circ}$ C temperature range instead of the -55° C to $+125^{\circ}$ C temperature range of the LM4250.

Features

- $\pm 1V$ to $\pm 18V$ power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

Design Tools

Title	Size in Kbytes		View Online	Download	Receive via Email
Amplifiers Selection Guide software for Windows	7 Kbytes	12-Jun-2002	View		

If you have trouble printing or viewing PDF file(s), see Printing Problems.

Application Notes

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
AN-71: Micropower Circuits Using the LM4250 Programmable Op Amp	195 Kbytes	4-Nov-95	View Online	Download	Receive via Email
LB-34: A Micropower Voltage Reference	74 Kbytes	28-Jun-96	View Online	Download	Receive via Email
AN-222: Application Note 222 Super Matched Bipolar Transistor Pair Sets New Standards for Drift and Noise	399 Kbytes	24-Feb-99	View Online	Download	Receive via Email
AN-88: Application Note 88 CMOS Linear Applications	87 Kbytes	24-Feb-99	View Online	Download	Receive via Email

If you have trouble printing or viewing PDF file(s), see Printing Problems.

[Information as of 5-Aug-2002]

Search	<u>Design</u>	Purchasing	Quality	Company	Home
Search	<u>Design</u>	Purchasing	Suanty		Hon

<u>About Languages</u>. <u>Website Guide</u>. <u>About "Cookies"</u>. National is <u>QS 9000 Certified</u>. <u>Privacy/Security Statement</u>. <u>Contact Us</u>. <u>Site Terms & Conditions of Use</u>. Copyright 2002 © National Semiconductor Corporation. <u>My Preferences</u>. **Feedback**