

April 2001

IGBT

SGS23N60UFD

Ultra-Fast IGBT

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V } @ I_C = 12 \text{A}$
- · High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 42ns (typ.)

Application

AC & DC Motor controls, general purpose inverters, robotics, servo controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGS23N60UFD	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
	Collector Current	@ T _C = 25°C	23	А	
I _C	Collector Current	@ T _C = 100°C	12	А	
I _{CM (1)}	Pulsed Collector Current		92	Α	
I _F	Diode Continuous Forward Current	@ T _C = 100°C	12	А	
I _{FM}	Diode Maximum Forward Current		92	А	
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	73	W	
	Maximum Power Dissipation	@ T _C = 100°C	29	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temp. for soldering purposes, 1/8" from case for 5 second	s	300	°C	

Notes:(1) Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		1.7	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	600			V
$\Delta B_{VCES}/$ ΔT_J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	μΑ
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 12mA$, $V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	I _C = 12A, V _{GE} = 15V		2.1	2.6	V
$V_{CE(sat)}$	Saturation Voltage	I _C = 23A, V _{GE} = 15V		2.6		V
Dynami	c Characteristics					
C _{ies}	Input Capacitance		T	720		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V_{,} V_{GE} = 0V_{,}$		100		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		25		pF
SWILLIII	nd Characteristics					
	ng Characteristics Turn-On Delay Time			17		ns
t _{d(on)}	Turn-On Delay Time Rise Time			17 27		ns ns
t _{d(on)}	Turn-On Delay Time	Vcc = 300 V. Ic = 12A.			 130	
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time Rise Time	$V_{CC} = 300 \text{ V}, I_{C} = 12\text{A},$ $R_{G} = 23\Omega, V_{GF} = 15\text{V},$		27		ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{CC} = 300 \text{ V}, I_C = 12\text{A},$ $R_G = 23\Omega, V_{GE} = 15\text{V},$ Inductive Load, $T_C = 25^{\circ}\text{C}$		27 60	130	ns ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f t_{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_G = 23\Omega, V_{GE} = 15V,$		27 60 70	130 150	ns ns
$\begin{array}{c} t_{d(on)} \\ t_r \\ \\ t_{d(off)} \\ \\ t_f \\ \\ E_{on} \\ \\ E_{off} \end{array}$	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_G = 23\Omega, V_{GE} = 15V,$		27 60 70 115	130 150	ns ns ns µJ
$t_{d(on)}$ t_r $t_{d(off)}$ t_f t_{on} t_{on} t_{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 23\Omega, V_{GE} = 15V,$	 	27 60 70 115 135	130 150 	ns ns ns µJ µJ
$\begin{aligned} & \frac{t_{d(on)}}{t_r} \\ & t_r \\ & \frac{t_{d(off)}}{t_f} \\ & E_{on} \\ & E_{off} \\ & E_{ts} \\ & t_{d(on)} \end{aligned}$	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_G = 23\Omega, V_{GE} = 15V,$	 	27 60 70 115 135 250	130 150 400	ns ns ns Lμ Lμ Lμ
$\begin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{ts} \\ t_{d(on)} \\ t_r \end{array}$	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_G = 23\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	27 60 70 115 135 250 23	130 150 400	ns ns ns μ μ Lμ tu ns
td(on) tr td(off) tf Eon Eoff Ets td(on) tr	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 12A,$ $R_G = 23\Omega, V_{GE} = 15V,$	 	27 60 70 115 135 250 23 32	130 150 400 	ns ns ns Lu Lu Lu ns
td(on) tr td(off) tf Eon Eoff Ets td(on) tr	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_{G} = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_{C} = 12A,$	 	27 60 70 115 135 250 23 32 100	130 150 400 200	ns ns ns Lμ Lμ ns ns
td(on) tr td(off) tf Eon Ets td(on) tr td(off) tf Ets	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 12A,$ $R_G = 23\Omega, V_{GE} = 15V,$	 	27 60 70 115 135 250 23 32 100 220	130 150 400 200 250	ns ns ns Lμ Lμ Lμ ns ns ns
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} Et _{ts} t _{d(on)} t _r t _{d(off)} t _t E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _t	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss	$R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 12A,$ $R_G = 23\Omega, V_{GE} = 15V,$	 	27 60 70 115 135 250 23 32 100 220 205	130 150 400 200 250	ns ns ns μJ Lμ cn ns ns ns
td(on) tr td(off) tf Eon Eoff tts td(on) tr td(on) tr td(on) tr td(off) tr td(off) tf Eon	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- On Switching Loss	$R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 12A,$ $R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 125^{\circ}C$		27 60 70 115 135 250 23 32 100 220 205 320	130 150 400 200 250 	ns ns ns Lu Lu Lu sn sn sn sn Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu
td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets td(on) tr td(off) tf td Con Eoff Ets Con Eoff Eon	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- On Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Switching Loss	$R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 12A,$ $R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 125^{\circ}C$ $V_{CE} = 300 \text{ V}, I_C = 12A,$		27 60 70 115 135 250 23 32 100 220 205 320 525	130 150 400 200 250 800	ns ns ns sn Lu Lu Lu sn sn sn cn Lu
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_d(off) \\ t_f \\ E_{on} \\ E_{off} \\ E_{ts} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{o$	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}, I_C = 12A,$ $R_G = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 125^{\circ}C$		27 60 70 115 135 250 23 32 100 220 205 320 525 49	130 150 400 200 250 800 80	ns ns ns ns Lu Lu Lu ns ns ns ns Lu

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Units
V	Diode Forward Voltage	I _F = 12A	$T_C = 25^{\circ}C$		1.4	1.7	V
V_{FM}	Diode Forward Voltage	IF = 12A	T _C = 100°C		1.3		v
+	Diode Reverse Recovery Time		$T_C = 25^{\circ}C$		42	60	nc
t _{rr}			T _C = 100°C		80		ns
	Diode Peak Reverse Recovery	I _F = 12A,	$T_C = 25^{\circ}C$		3.5	6.0	Α
¹rr	Current	$di/dt = 200A/\mu s$	T _C = 100°C		5.6		_ A
	Diada Dayarra Dagayary Charge		$T_C = 25^{\circ}C$		80	180	nC
Q _{rr}	Diode Reverse Recovery Charge		T _C = 100°C	-	220		IIC

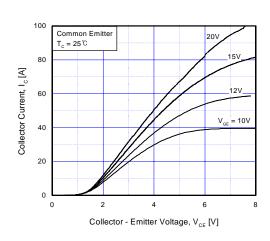


Fig 1. Typical Output Chacracteristics

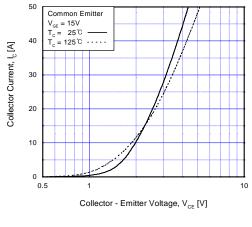


Fig 2. Typical Saturation Voltage Characteristics

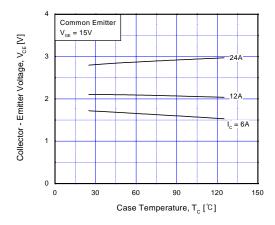


Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

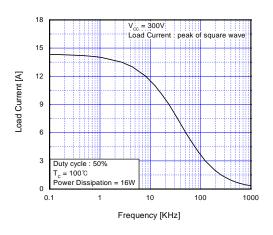


Fig 4. Load Current vs. Frequency

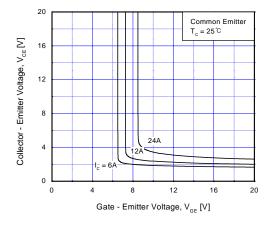


Fig 5. Saturation Voltage vs. V_{GE}

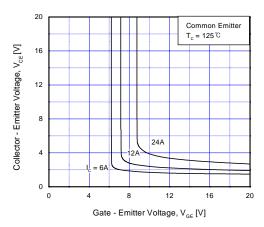


Fig 6. Saturation Voltage vs. $V_{\rm GE}$

SGS23N60UFD Rev. A

©2001 Fairchild Semiconductor Corporation

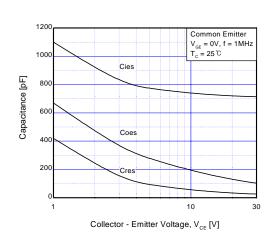
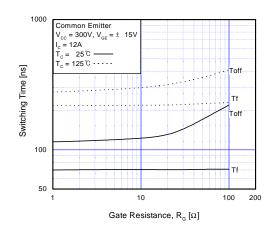



Fig 7. Capacitance Characteristics

Fig 8. Turn-On Characteristics vs.
Gate Resistance

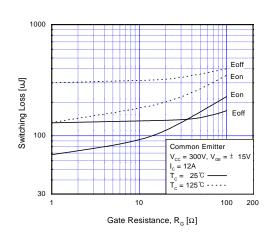
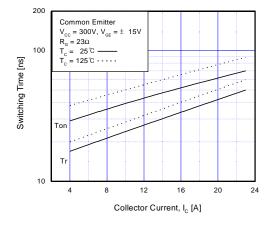



Fig 9. Turn-Off Characteristics vs.
Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

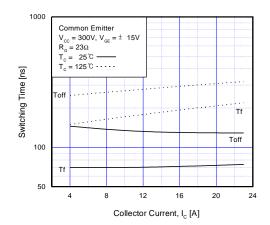
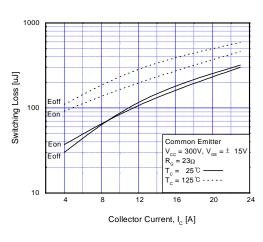



Fig 11. Turn-On Characteristics vs. Collector Current

Fig 12. Turn-Off Characteristics vs. Collector Current

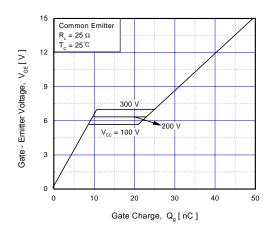
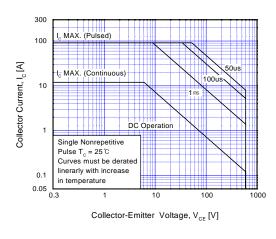



Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

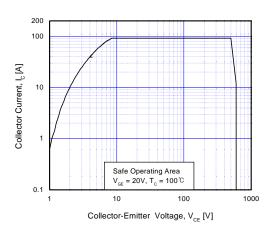
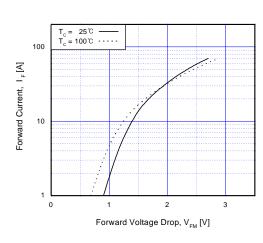



Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

Fig 17. Transient Thermal Impedance of IGBT

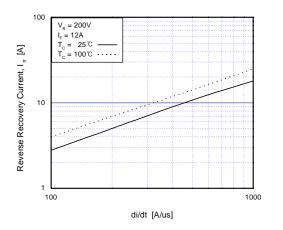
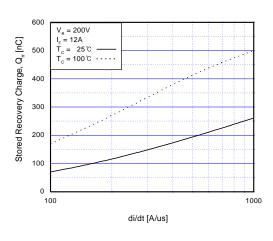



Fig 18. Forward Characteristics

Fig 19. Reverse Recovery Current

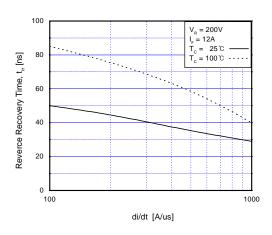
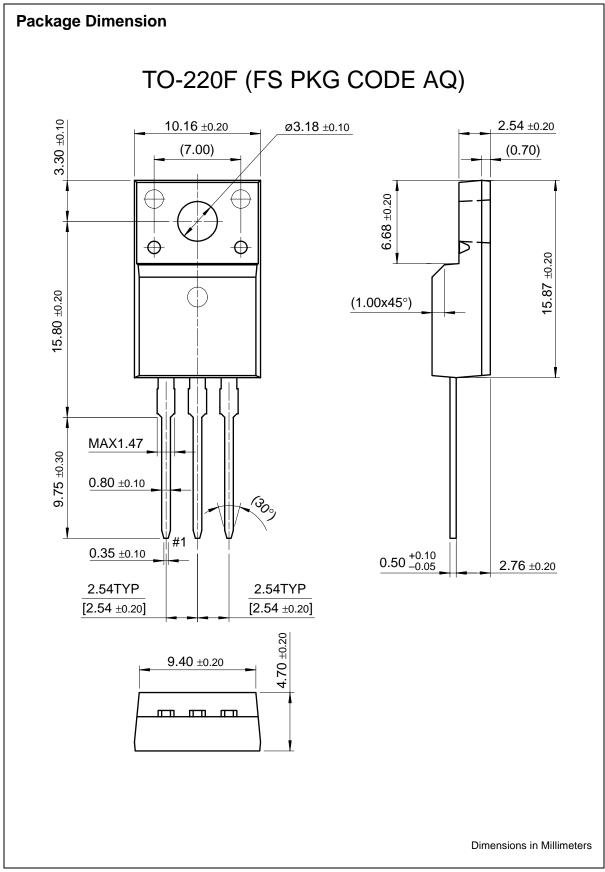



Fig 20. Stored Charge

Fig 21. Reverse Recovery Time

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST [®]	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP™	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench [®]	SuperSOT™-8
CROSSVOLT™	GTO™	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics™	UHC™
EcoSPARK™	LittleFET™	Quiet Series™	UltraFET [®]
E ² CMOS™	MicroFET™	SLIENT SWITCHER®	VCX™
EnSigna™	MICROWIRE™	SMART START™	
FACT™	OPTOLOGIC™	Star* Power™	
FACT Quiet Series™	OPTOPLANAR™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H1

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
SGS23N60UFDTU	Full Production	\$1.88	<u>TO-220F</u>	3	RAIL

^{* 1,000} piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor