

PART NUMBER

54F827BLA-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54F827,74F827,74F828

54F827 74F827 74F828 10-Bit Buffers/Line Drivers

Literature Number: SNOS218A

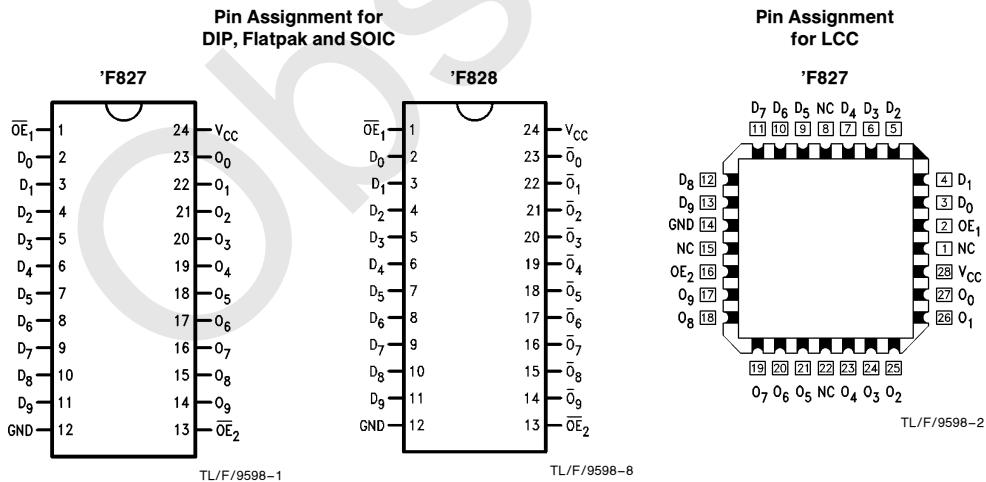
54F/74F827 • 74F828 10-Bit Buffers/Line Drivers

General Description

The 'F827 and 'F828 10-bit bus buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NOR output enables for maximum control flexibility.

The 'F827 and 'F828 are functionally- and pin-compatible to AMD's Am29827 and Am29828. The 'F828 is an inverting version of the 'F827.

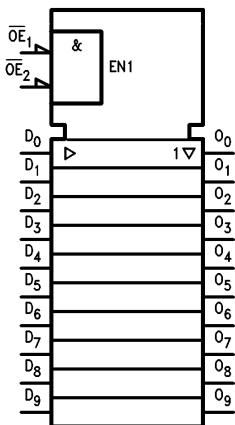
Features


- TRI-STATE® output
- 'F828 is inverting
- Direct replacement for AMD's Am29827 and Am29828

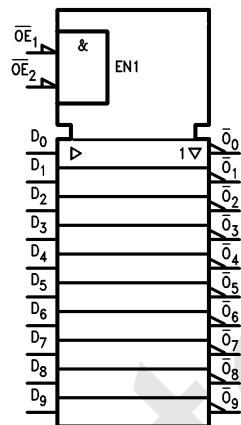
Commercial	Military	Package Number	Package Description
74F827SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
	54F827SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F827SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54F827FM (Note 2)	W24C	24-Lead Cerpak
	54F827LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C
74F828SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
74F828SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC

Note 1: Devices also available in 13" reel. Use suffix = SCX.

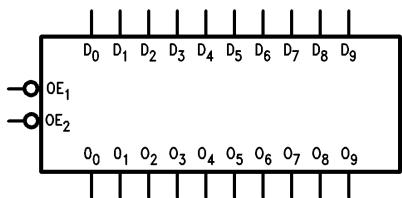
Note 2: Military grade device with environmental and burn-in processing. Use suffix = SDMQB, FMQB and LMQB.


Connection Diagrams

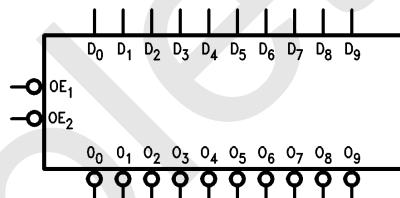
TRI-STATE® is a registered trademark of National Semiconductor Corporation.


Logic Symbols

IEEE/IEC
'F827


TL/F/9598-6

IEEE/IEC
'F828


TL/F/9598-7

'F827

TL/F/9598-3

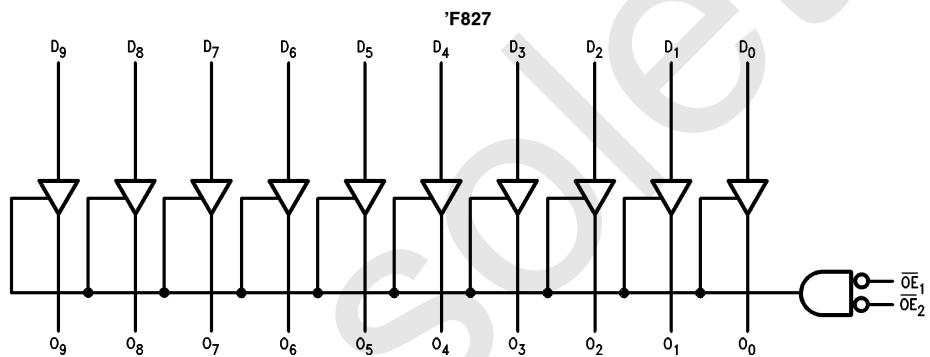
'F828

TL/F/9598-10

Unit Loading/Fan Out

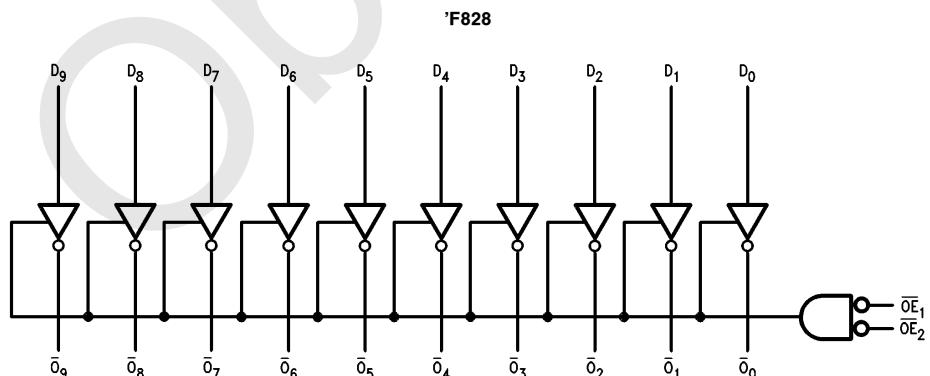
Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input I_{IH}/I_{IL} Output I_{OH}/I_{OL}
\bar{OE}_1, \bar{OE}_2	Output Enable Input	1.0/1.0	$20 \mu A / -0.6 \text{ mA}$
D_0-D_7	Data Inputs	1.0/1.0	$20 \mu A / -0.6 \text{ mA}$
O_0-O_7	Data Outputs, TRI-STATE	600/106.6 (80)	$-12 \text{ mA}/64 \text{ mA} (48 \text{ mA})$

Functional Description


The 'F827 and 'F828 are line drivers designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers which provide improved PC board density. The devices have TRI-STATE outputs controlled by the Output Enable (\bar{OE}) pins. The outputs can sink 64 mA (48 mA mil) and source 15 mA. Input clamp diodes limit high-speed termination effects.

Function Table

\bar{OE}	D_n	Inputs		Function	
		Outputs			
		O_n			
		'F827	'F828		
L	H	H	L	Transparent	
L	L	L	H	Transparent	
H	X	Z	Z	High Z	


H = HIGH Voltage level
L = LOW Voltage Level
Z = High Impedance
X = Immaterial

Logic Diagrams

TL/F/9598-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

TL/F/9598-11

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	−65°C to +150°C
Ambient Temperature under Bias	−55°C to +125°C
Junction Temperature under Bias Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to Ground Pin	−0.5V to +7.0V
Input Voltage (Note 2)	−0.5V to +7.0V
Input Current (Note 2)	−30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with V _{CC} = 0V)	−0.5V to V _{CC}
Standard Output	−0.5V to +5.5V
TRI-STATE Output	−0.5V to +5.5V

Current Applied to Output
in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

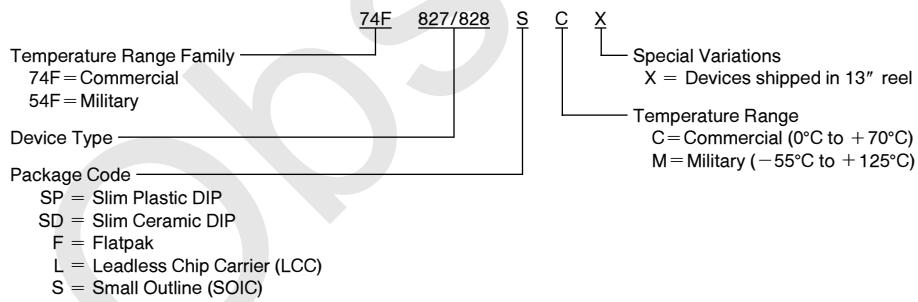
Recommended Operating Conditions

Free Air Ambient Temperature	−55°C to +125°C
Military	0°C to +70°C
Commercial	
Supply Voltage	+4.5V to +5.5V
Military	+4.5V to +5.5V
Commercial	

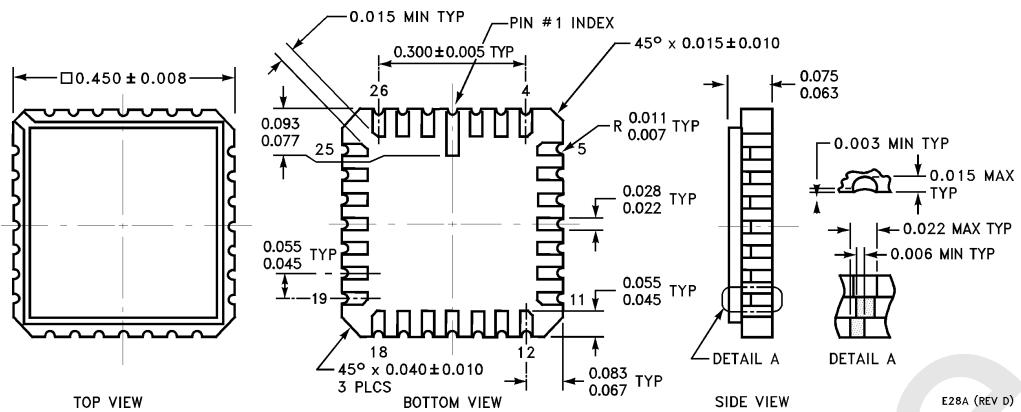
DC Electrical Characteristics

Symbol	Parameter	54F/74F			Units	V _{CC}	Conditions
		Min	Typ	Max			
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage		0.8		V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage		−1.2		V	Min	I _{IN} = −18 mA
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.4 2.0 2.4 2.0 2.7		V	Min	I _{OH} = −3 mA I _{OH} = −12 mA I _{OH} = −3 mA I _{OH} = −15 mA I _{OH} = −3 mA
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}		0.55 0.55	V	Min	I _{OL} = 48 mA I _{OL} = 64 mA
I _{IH}	Input HIGH Current	54F 74F		20.0 5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F		100 7.0	μA	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current	54F 74F		250 50	μA	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test	74F	4.75		V	0.0	I _{ID} = 1.9 μA All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F		3.75	μA	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current			−0.6	mA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current			50	μA	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current			−50	μA	Max	V _{OUT} = 0.5V
I _{os}	Output Short-Circuit Current	−100	−225		mA	Max	V _{OUT} = 0V

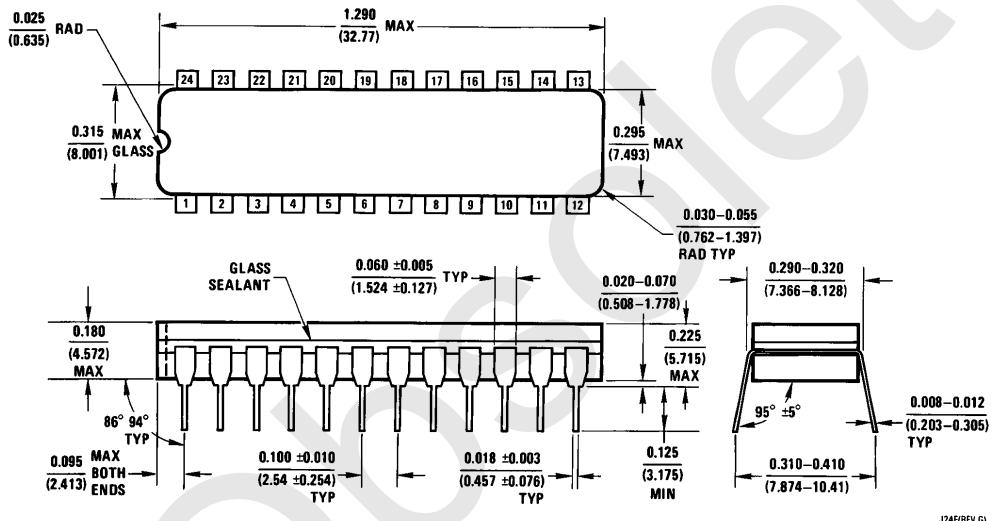
DC Electrical Characteristics (Continued)


Symbol	Parameter	54F/74F			Units	V _{CC}	Conditions
		Min	Typ	Max			
I _{ZZ}	Bus Drainage Test			500	μA	0.0V	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current ('F827)			30	45	mA	V _O = HIGH
I _{CCL}	Power Supply Current ('F827)			60	90	mA	V _O = LOW
I _{CCZ}	Power Supply Current ('F827)			40	60	mA	V _O = HIGH Z
I _{CCH}	Power Supply Current ('F828)			14	20	mA	V _O = HIGH
I _{CCL}	Power Supply Current ('F828)			56	85	mA	V _O = LOW
I _{CCZ}	Power Supply Current ('F828)			35	50	mA	V _O = HIGH Z

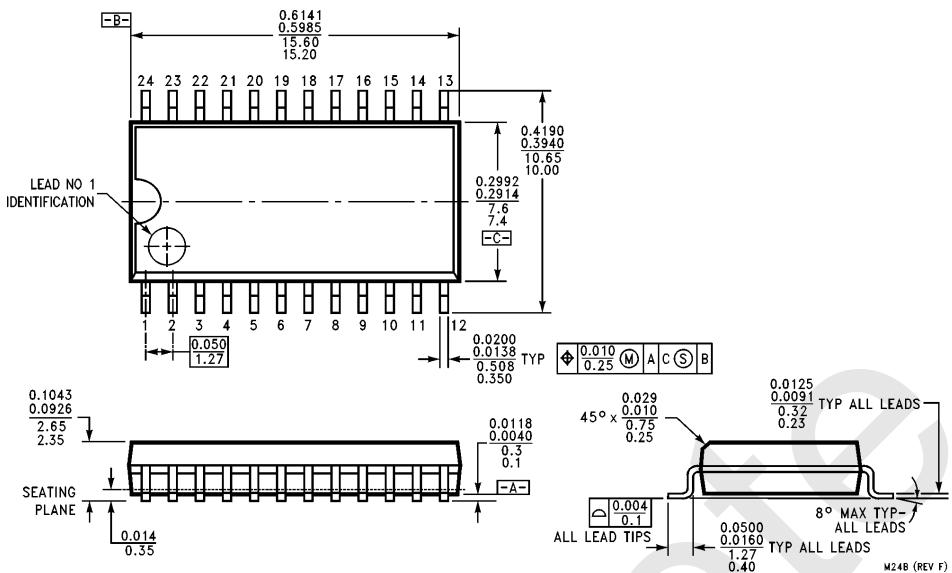
AC Electrical Characteristics


Symbol	Parameter	74F			54F		74F		Units	
		T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF			
		Min	Typ	Max	Min	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation Delay Data to Output ('F827)	1.0 1.5	3.0 3.3	5.5 5.5	1.0 1.5	7.5 7.0	1.0 1.5	6.5 6.0	ns	
t _{PLH} t _{PHL}	Propagation Delay Data to Output ('F828)	1.0 1.0	3.0 2.0	5.0 4.0			1.0 1.0	5.5 4.0	ns	
t _{PZH} t _{PZL}	Output Enable Time O _E to O _n	3.0 3.5	5.7 6.8	9.0 11.5	2.5 3.0	10.0 12.5	2.5 3.0	9.5 12.0	ns	
t _{PHZ} t _{PLZ}	Output Disable Time O _E to O _n	1.5 1.0	3.3 3.5	8.0 8.0	1.5 1.0	9.0 9.0	1.5 1.0	8.5 8.5	ns	

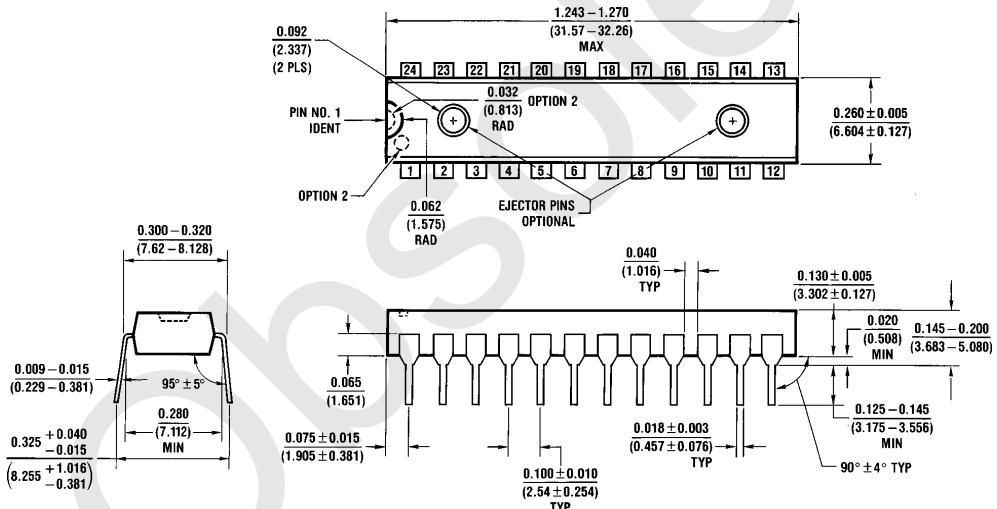
Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

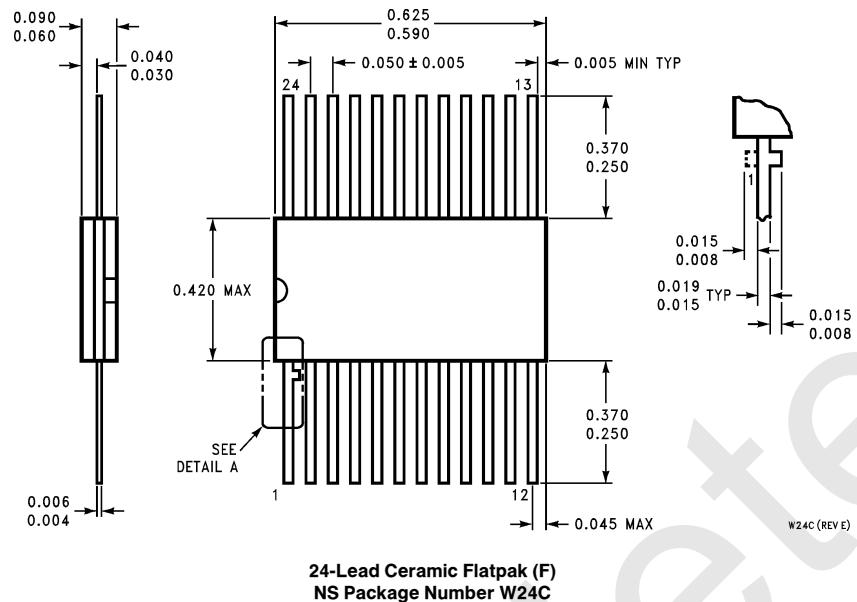


28-Lead Ceramic Leadless Chip Carrier (L)
NS Package Number E28A



24-Lead (0.300" Wide) Ceramic Dual-In-Line Package (SD)
NS Package Number J24F

Physical Dimensions inches (millimeters) (Continued)



**24-Lead Small Outline Integrated Circuit (S)
NS Package Number M24B**

**24-Lead Plastic Slim (0.300" Wide) Dual-In-Line Package (SP)
NS Package Number N24C**

Physical Dimensions inches (millimeters) (Continued)

24-Lead Ceramic Flatpak (F)
NS Package Number W24C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: (1800) 272-9959 TWX: (910) 339-9240	National Semiconductor GmbH Livr-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihamachi Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998
--	---	---	--	--	--

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Mobile Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Transportation and Automotive	www.ti.com/automotive
Video and Imaging	www.ti.com/video

[TI E2E Community Home Page](#)

[e2e.ti.com](#)

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated