
High Voltage, High Gain BIMOSFET[™] Monolithic Bipolar MOS Transistor

IXBA16N170AHV IXBT16N170AHV

TO-263HV (IXBA)

Symbol	Test Conditions	Maximum Ratings			
V _{CES}	$T_c = 25^{\circ}C$ to $150^{\circ}C$	1700	V		
V _{CGR}	$T_{J} = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	1700	V		
V _{ges}	Continuous	± 20	V		
V _{GEM}	Transient	± 30	V		
_{C25} _{C90} _{CM}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$ $T_{c} = 25^{\circ}C, 1ms$	16 10 40	A A A		
SSOA (RBSOA)	$V_{_{GE}}$ = 15V, $T_{_{VJ}}$ = 125°C, $R_{_{G}}$ = 33 Ω Clamped Inductive Load	I _{CM} = 40 1350	A V		
t _{sc} (SCSOA)	$V_{GE} = 15V, V_{CE} = 1200V, T_{J} = 125^{\circ}C$ $R_{G} = 33\Omega$, Non Repetitive	10	μs		
P _c	$T_c = 25^{\circ}C$	150	W		
T,		-55 +150	°C		
T _{JM}		150	°C		
T _{stg}		-55 +150	°C		
T _l T _{sold}	Maximum Lead Temperature for Solderin Plastic Body for 10s	g 300 260	O° O°		
F _c	Mounting Force (TO-263)	1065 / 2214.6	N/lb		
Weight	TO-263 TO-268	2.5 4.0	g g		

	Test Conditions Unless Otherwise Specified)	Characteristic Values Min.						
BV _{CES}	$I_{c} = 250 \mu A, V_{GE} = 0 V$	1700			V			
V _{GE(th)}	I_{c} = 250µA, V_{ce} = V_{ge}	2.5		5.5	V			
I _{CES}	$V_{\rm CE} = 0.8 \bullet V_{\rm CES}, V_{\rm GE} = 0V$	T _J = 125°C		50 1.5	μA mA			
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA			
V _{CE(sat)}	$I_{c} = 10A, V_{GE} = 15V, Note 1$			6.0	V			
		T _J = 125°C	5.0		V			

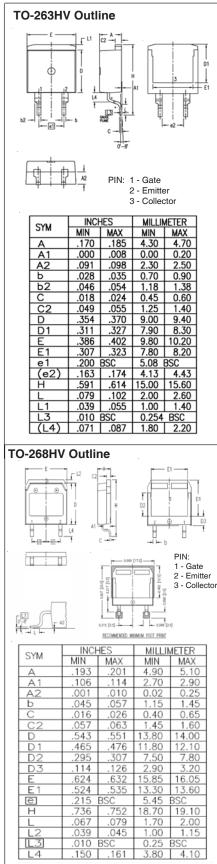
TO	-268HV (IXBT)	
		G	(Tab)
~	0	0	0

G = Gate	С	=	Collector
E = Emitter	Tab	=	Collector

Features

- High Voltage Package
- High Blocking Voltage
- Anti-Parallel Diode
- Low Conduction Losses

Advantages


- Low Gate Drive Requirement
- High Power Density

Applications:

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

		λιδ				
Symbo		teristic V	eristic Values			
$(T_{J} = 25)$	5°C U	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}		$I_{c} = 10A, V_{ce} = 10V, Note 1$	8.0	12.5		S
C _{ies})			1400		pF
C _{oes}	}	$V_{_{CE}} = 25V, V_{_{GE}} = 0V, f = 1MHz$		90		рF
C _{res}	J			31		pF
Q _{g(on)})			65		nC
G ge	}	$I_{c} = 10A, V_{ge} = 15V, V_{ce} = 0.5 \bullet V_{ces}$		13		nC
Q _{gc}	J			22		nC
t _{d(on)}		Inductive load, T ₁ = 25°C		15		ns
t _{ri}		$I_{c} = 10A, V_{GF} = 15V$		25		ns
t _{d(off)}	}	$V_{ce} = 0.8 \cdot V_{ces}, R_{g} = 10\Omega$		160	250	ns
t _{ri}		Note 2		50	100	ns
E _{off}	J			1.2	2.5	mJ
t _{d(on)})			15		ns
t _{ri}		Inductive load, T _J = 125°C		28		ns
E _{on}	ļ	$I_{c} = 10A, V_{GE} = 15V$		2.0		mJ
t _{d(off)}		$V_{ce} = 0.8 \bullet V_{ces}, R_{g} = 10\Omega$		220		ns
t _{fi}		Note 2		150		ns
E _{off})			2.6		mJ
R _{thJC}					0.83	°C/W

IXBA16N170AHV IXBT16N170AHV

Reverse Diode

Symbol Test ConditionsCharacteristic Value(T = 25°C Unless Otherwise Specified)Min. Typ. Ma						
V _F		$I_{\rm F} = 10$ A, $V_{\rm GE} = 0$ V			5.0	V
t _{rr}	J	$I_{_F}$ = 10A, $V_{_{GE}}$ = 0V, -di_{_F}/dt = 50A/µs		360		ns
I _{RM}	}	$V_{R} = 100V, V_{GE} = 0V$		10		Α

Notes:

- 1. Pulse test, t \leq 300µs, duty cycle, d \leq 2%.
- 2. Switching times & energy losses may increase for higher V_{CE}(clamp), T_J or R_G.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

	-									
IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,860,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXBA16N170AHV-TRL