

R8A66165SP / R8A66166SP / R8A66167SP / R8A66168SP n-BIT HIGH VOLTAGE OUTPUT LED DRIVER WITH SHIFT REGISTER AND LATCH

REJ03F0281-0101 Rev. 1.01 Dec. 15. 2008

DESCRIPTION

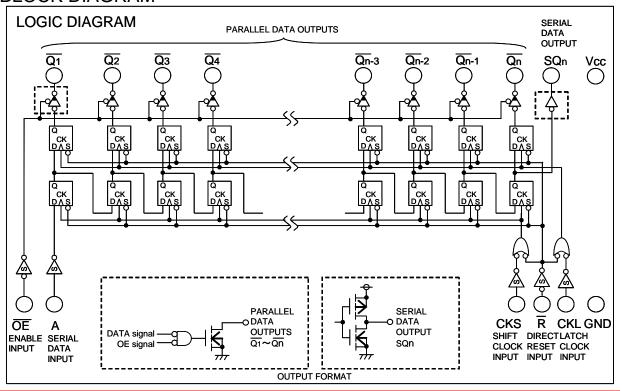
R8A66165~R8A66168 are high voltage LED array driver having n-bit serial input and parallel output shift register function with direct coupled reset input and output latch function.

These products guarantees the output current of 24mA which is sufficient for anode common LED drive, capable of following n-bits continuously at the same time. Parallel output is 24V high voltage open drain output.

In addition, as this product has been designed in complete CMOS, power consumption can be greatly reduced when compared with conventional BIPOLAR or Bi-CMOS products.

The product part number and the parallel data outputs number are shown in the following table.

Parallel data outputs	$\overline{Q1}{\sim}\overline{Qn}$	SQn
number n		
8-Bit	$\overline{Q1}{\sim}\overline{Q8}$	SQ8
16-Bit	<u>Q</u> 1∼ <u>Q16</u>	SQ16
24-Bit	<u>Q1</u> ∼ <u>Q24</u>	SQ24
32-Bit	<u>Q1</u> ∼ <u>Q32</u>	SQ32
	number n 8-Bit 16-Bit 24-Bit	number n $\overline{Q1} \sim \overline{Q8}$ 8-Bit $\overline{Q1} \sim \overline{Q16}$ 16-Bit $\overline{Q1} \sim \overline{Q16}$ 24-Bit $\overline{Q1} \sim \overline{Q24}$


FEATURES

- Anode common LED drive
- Vcc 5V or 3.3V single power supply
- High voltage, High output current: all parallel outputs Q1 ~Qn Vo =24V high voltage, IoL =24mA simultaneous lighting available
- Low power dissipation: 100uW/package (max) (Vcc =5.0V, Ta =25°C, quiescent state)
- High noise margin: Schmitt input circuit provides responsiveness to a long line length
- Equipped with direct-coupled reset
- Open drain output: (except serial data output SQn)
- Wide operating temperature range: Ta = -40°C~+85°C

APPLICATION

• LED array drive, The various high voltage LED display modules

BLOCK DIAGRAM

	I N					
PIN SPECIFICATIO	'IN		R8A66165SP	R8A66166SP	R8A66167SP	R8A66168SP
Pin Name	Symbol	In/Out	8-BIT	16-BIT	24-BIT	32-BIT
DIRECT RESET INPUT	/R	Input	1	1	1	1
SERIAL DATA INPUT	А	Input	1	1	1	1
SHIFT CLOCK INPUT	CKS	Input	1	1	1	1
LATCH CLOCK INPUT	CKL	Input	1	1	1	1
ENABLE INPUT	/OE	Input	1	1	1	1
PARALLEL DATA OUTPUTS	/Q1~/Qn	Output	8	16	24	32
SERIAL DATA OUTPUT	SQn	Output	1	1	1	1
Vcc	Vcc	-	1	1	2	3
GND	GND	-	1	1	4	7
Total pin count		•	16	24	36	48

PIN CONFIGURATION (TOP VIEW)

			_
Vcc	1	0	16 → /Q1
Α	→ 2	R8	15 → /Q2
/OE	→ 3	\approx	14 → /Q3
CKL	→ 4	66	13 → /Q4
/R	→ 5	<u> </u>	12 → /Q5
CKS	→ 6	65	11 → /Q6
GND	7	3	10 → /Q7
SQ8	← 8	U	9 → /Q8

/Q1	← 1	0		24	→ /Q3
/Q2	← 2			23	→ /Q4
Vcc	3			22	\rightarrow /Q5
Α	→ 4		R8	21	→ /Q6
/OE	→ 5		$\stackrel{\sim}{\sim}$	20	→ /Q7
CKL	→ 6		99	19	→ /Q8
/R	→ 7		_	18	→ /Q9
CKS	→ 8		99	17	→ /Q10
GND	9		JS	16	→ /Q11
SQ16	← 10		U	15	→ /Q12
/Q15	← 11			14	→ /Q13
/Q16	← 12			13	→ /Q14

/Q1	← 1	0	36	→ /Q5
/Q2	← 2		35	→ /Q6
/Q3	← 3		34	→ /Q7
/Q4	← 4		33	→ /Q8
GND	5		32	GND
Vcc	6		31	→ /Q9
Α	→ 7	Ŋ	30	→ /Q10
/OE	→ 8	ω Δ	29	→ /Q11
CKL	→ 9	6	28	→ /Q12
/R	→ 10	6	27	→ /Q13
CKS	→ 11	6	26	→ /Q14
Vcc	12	S	25	→ /Q15
GND	13	Ū	24	→ /Q16
SQ24	← 14		23	GND
/Q21	← 15		22	→ /Q17
/Q22	← 16		21	→ /Q18
/Q23	← 17		20	→ /Q19
/Q24	← 18		19	→ /Q20

GND	1	0		48	\rightarrow	/Q7
/Q1	← 2			47	\rightarrow	/Q8
/Q2	← 3			46	\rightarrow	/Q9
/Q3	← 4			45	\rightarrow	/Q10
/Q4	← 5			44	\rightarrow	/Q11
/Q5	← 6			43		GND
/Q6	← 7			42	\rightarrow	/Q12
GND	8			41	\rightarrow	/Q13
Vcc	9			40	\rightarrow	/Q14
Α	→ 10		굤	39	\rightarrow	/Q15
/OE	→ 11		$\widetilde{\triangleright}$	38	\rightarrow	/Q16
CKL	→ 12		66	37		Vcc
/R	→ 13		=	36		GND
CKS	→ 14		<u>დ</u>	35	\rightarrow	/Q17
Vcc	15		Ş	34	\rightarrow	/Q18
GND	16		U	33	\rightarrow	/Q19
SQ32	← 17			32	\rightarrow	/Q20
/Q27	← 18			31	\rightarrow	/Q21
/Q28	← 19			30		GND
/Q29	← 20			29	\rightarrow	/Q22
/Q30	← 21			28	\rightarrow	/Q23
/Q31	← 22			27	\rightarrow	/Q24
/Q32	← 23			26	\rightarrow	/Q25
GND	24			25	\rightarrow	/Q26

FUNCTIONAL DESCRIPTION

As R8A66165~R8A66168 uses silicon gate CMOS process. It realizes high-speed and high-output currents sufficient for LED drive while maintaining low power consumption and allowance for high noises.

Each bit of a shift register consists of two flip-flop having independent clocks for shifting and latching.

As for clock input, shift clock input CKS and latch clock input CKL are independent from each other, shift and latch operations being made when "L" changes to "H".

Serial data input A is the data input of the first-step shift register and the signal of A shifts shifting registers one by one when a pulse is impressed to CKS. When A is "H", the signal of "L" shifts.

When the pulse is impressed to CKL, the contents of the shifting register at that time are stored in a latching register, and they appear in the parallel data outputs from $\overline{Q1} \sim \overline{Qn}$.

Outputs $\overline{Q1} \sim \overline{Qn}$ are 24V high voltage open drain outputs.

To extend the number of bits, use the serial data output SQn which shows the output of the shifting register of the last n bit.

When reset input \overline{R} is changed to "L", $\overline{Q1} \sim \overline{Qn}$ and SQn are reset. In this case, shifting and latching register are set.

If "H" is impressed to output enable input \overline{OE} , $\overline{Q1} \sim \overline{Qn}$ reaches the high impedance state, but SQn does not reach the high impedance state. Furthermore, change in \overline{OE} does not affect shift operation.

FUNCTION TABLE (Note 1)

Onereti				Input							Parallel da	ta outp	ut			Serial data	Remarks
Operation	on mode	R	CKS	CKL	Α	Œ	ĺα	Q	ľα̈́	Q ₄		Qn-3	Qn-2	Qn-1	Ιœ	output SQn	Remarks
Re	set	L	Х	Х	Χ	Х	Z	Z	Z	Z		Z	Z	Z	Z	L	_
	Shift t ₁	Н	1	Х	Н	L	Q ₁ 0	Q ₂ 0	Q ₃ 0	Q ₄ 0		Qn-3 ⁰	Qn-2 ⁰	Qn-1 ⁰	<u>o</u>	qn-1 ⁰	Output
Shift Latch	Latch t2	Н	Х	1	Χ	L	L	q1 ⁰	q2 ⁰	q3 ⁰		qn-4 ⁰	qn-3 ⁰	qn-2 ⁰	qn-1 ⁰	qn-1 ⁰	Lighting "H"
operation	Shift t1	Η	1	Х	L	L	Q ₁ 0	Q ₂ 0	Q ₃ 0	Q ₄ 0		Qn-3 ⁰	Qn-2 ⁰	Q _{n-1} 0	Qn Qn	qn-1 ⁰	Output Lights-out
	Latch t2	Н	Х	1	Χ	L	Ζ	q1 ⁰	q2 ⁰	q з0		qn-4 ⁰	qn-3 ⁰	qn-2 ⁰	qn-10	qn-1 ⁰	"L"
Output	disable	Х	Х	Х	Χ	Н	Z	Z	Z	Z		Z	Z	Z	Z	qn	_

Note1: ↑ : Change from low-level to high-level

 $\overline{\mathbb{Q}}^0$: Output state $\overline{\mathbb{Q}}$ before CKL changed

X : Irrelevant

 $q^0\;$: Contents of shift register before CKS changed

q : Contents of shift register t1, t2 : t2 is set after t1 is set Z: High impedance

ABSOLUTE MAXIMUM RATINGS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter		Conditions	Ratings	Unit
Vcc	Supply voltage			−0.5~+7.0	V
Vı	Input voltage			-0.5~Vcc+0.5	V
Vo	Output voltage Q1~Qn			-0.5~ +27	V
		SQn		-0.5~Vcc+0.5	V
lo	Output current per	Q1∼Qn		50	mA
	Output pin	SQn		±25	1
ICC	Supply / GND current	R8A66165SP	VCC、GND	-20、+220	mA
		R8A66166SP	1	-20、+410	1
		R8A66167SP	1	-20、+600	1
		R8A66168SP	1	-20、+790	1
Pd	Power dissipation	R8A66165SP		500	mW
		R8A66166SP	1	500	1
		R8A66167SP	1	650	1
		R8A66168SP	1	650	1
Tstg	Storage temperature range	-		−65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter				Unit		
				Min.	Тур.	Max.]
VCC	Supply voltage		5.0V support	4.5	5.0	5.5	٧
			3.3V support	3.0	3.3	3.6	٧
Vı	Input voltage		-	0		Vcc	V
Vo	Output voltage		SQn	0		Vcc	V
		Q1~Qn	IOZH≦10uA	0		24	V
Topr	Operating temperating	ature range		-40		85	°C

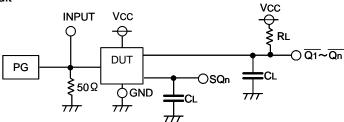
ELECTRICAL CHARACTERISTICS (Ta=-40~+85°C,Vcc=3.0~5.5V, unless otherwise noted)

Symbol	Parameter	Test co	onditions		Limits		Unit
				Min.	Тур.	Max.	
VT+	Positive-going threshold voltage	Vo=0.1V, Vc	Vo=0.1V, Vcc-0.1V			0.70xVcc	٧
VT-	Negative-going threshold voltage	VO=0.1V, VC	C-0.1V	0.20xVCC		0.46xVCC	٧
VOL	Low-level output voltage Q1~Qn	VI=VT+,VT-	IOL=24mA (Note 3)			0.55	V
Voh	High-level output voltage SQn	VI=VT+,VT-	IOH=-4mA	VCC-0.40			٧
VOL	Low-level output voltage SQn	VI=VT+,VT-	IOL=4mA			0.40	٧
lін	High-level input current	VI=VCC				5	uA
IIL	Low-level input current	VI=GND				-5	uA
loz	Off-state output leak	VI=VT+,VT-	VO=0~24V			±10	uA
ICC	Quiescent supply current	VI=VCC,GND				1	mA

Note2: ELECTRICAL CHARACTERISTICS (except ICC) above is the specification per a pin.

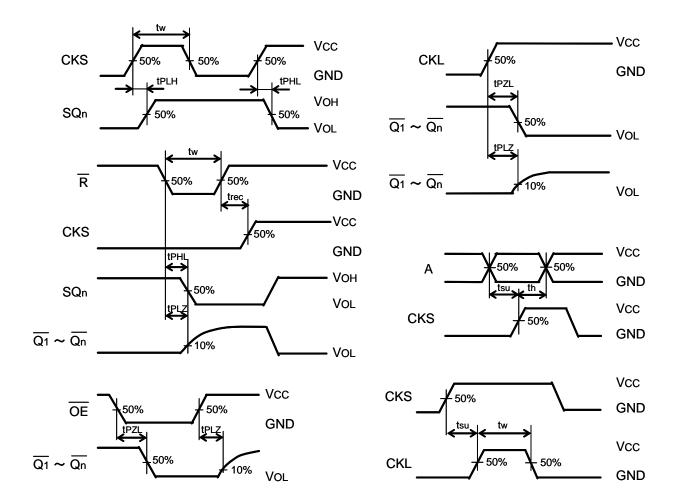
Note3 : Each pin of $\overline{Q1} \sim \overline{Qn}$ guarantees IOL=24mA.

Simultaneous lighting of all n-bits is available both for dynamic and static lighting.


SWITCHING CHARACTERISTICS (Ta=-40~+85°C, VCC=5.0V or 3.3V)

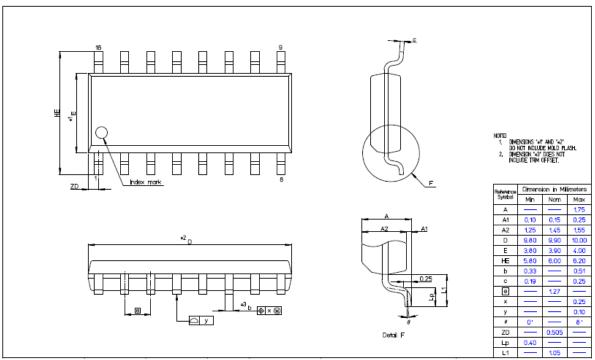
Symbol	Parameter		Test	5.0V	specific	ation	3.3\	specific	ation	Unit
			conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	
fmax	Maximum clock frequency					4			3.3	MHz
tPLH	Output "L-H" and "H-L"	CKS-SQn				125			150	ns
tPHL	propagation time					125			150	ns
tPHL	Output "H-L" propagation time	R-SQn	CL=50pF			125			150	ns
tPLZ	Output "L-Z" propagation time	R-Q1~Qn (turned off)	RL=1KΩ			200			220	ns
tPZL	Output "Z-L" propagation time	CKL-Q1~Qn (turned on)	(Note 4)			125			150	ns
tPLZ	Output "L-Z" propagation time	CKL-Q1~Qn (turned off)				200			220	ns
tPZL	Output "Z-L" propagation time	OE-Q1~Qn (turned on)				125			150	ns
tPLZ	Output "L-Z" propagation time	OE-Q1~Qn (turned off)				200			220	ns
Cı	Input capacitance					10			10	pF

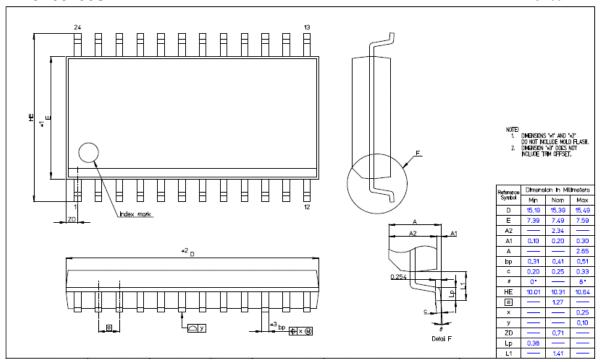
TIMING REQUIREMENTS (Ta=-40~+85°C, VCC=5.0V or 3.3V)


Symbol	Parameter	Test	5.0\	specific	ation	3.3V	ation	Unit	
		conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	
tw	CKS,CKL,R pulse width		125			150			ns
tsu	A setup time with respect to CKS		125			150			ns
tsu	CKS setup time with respect to CKL	(Note 4)	125			150			ns
th	A hold time with respect to CKS		15			20			ns
trec	R recovery time with respect to CKS, CKL		70			80			ns

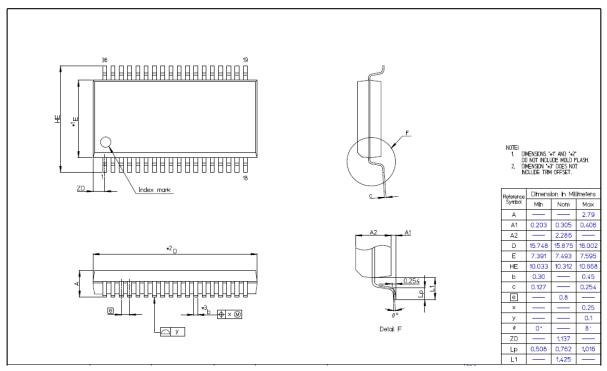
Note 4: Test Circuit

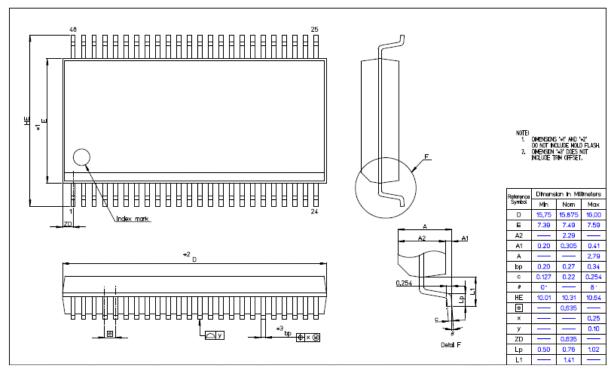
- (1) The pulse generator (PG) has the following characteristics (10%~90%). :tr = 6ns, tf = 6ns.
- (2) The capacitance CL includes stray wiring capacitance and the probe input capacitance.


TIMING DIAGRAM


PACKAGE OUTLINE

Product part number	Package	RENESAS Code	Previous Code
R8A66165SP	16pin SOP	PRSP0016DJ-A	16P2X-E
R8A66166SP	24pin SOP	PRSP0024DF-A	24P2X-B
R8A66167SP	36pin SSOP	PRSP0036GC-A	36P2X-B
R8A66168SP	48pin SSOP	PRSP0048ZB-A	48P2X-A


R8A66165SP PRSP0016DJ-A



All trademarks and registered trademarks are the property of their respective owners.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application critical expensions of the purpose of any other military use. When exporting the products or technology described in this document for the purpose of military applications, and procedures required by such laws and regulations, and procedures required to the date this document in the such and the procedure of the procedure o

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510