

# RADIATION HARDENED NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/544

Qualified Levels: JANSM, JANSD, JANSP, JANSL, JANSR, JANSF

#### **DESCRIPTION**

These RHA level 2N5152U3 and 2N5154U3 silicon transistor devices are military Radiation Hardness Assurance qualified up to a JANSF level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website <a href="http://www.microsemi.com">http://www.microsemi.com</a>.

#### **FEATURES**

- JEDEC registered 2N5152 and 2N5154.
- JANS RHA qualifications are available per MIL-PRF-19500/544.

#### **APPLICATIONS / BENEFITS**

- High frequency operation.
- Lightweight.
- High-speed power-switching applications.
- · High-reliability applications.

TO-39 Package

JANS\_2N5152 & JANS\_2N5154

U3 (SMD-0.5)

Also available in:

TO-5 Package

**Package** 

(long-leaded) JANS\_2N5152L & JANS\_2N5154L

#### **MAXIMUM RATINGS**

| Parameters/Test Conditions                               | Symbol                              | Value       | Unit |
|----------------------------------------------------------|-------------------------------------|-------------|------|
| Junction and Storage Temperature                         | T <sub>J</sub> and T <sub>STG</sub> | -65 to +200 | °C   |
| Thermal Resistance Junction-to-Ambient                   | R <sub>OJA</sub>                    | 175         | °C/W |
| Thermal Resistance Junction-to-Case                      | R <sub>eJC</sub>                    | 10          | °C/W |
| Reverse Pulse Energy (1)                                 |                                     | 15          | mJ   |
| Collector Current (dc)                                   | Ic                                  | 2           | Α    |
| Collector to base voltage (static), emitter open         | $V_{CBO}$                           | 100         | V    |
| Collector to emitter voltage (static) base open          | V <sub>CEO</sub>                    | 80          | V    |
| Emitter to base voltage (static) collector open          | V <sub>EBO</sub>                    | 5.5         | V    |
| Steady-State Power Dissipation @ T <sub>A</sub> = +25 °C | P <sub>D</sub>                      | 1           | W    |
| Steady-State Power Dissipation @ T <sub>C</sub> = +25 °C | P <sub>D</sub>                      | 10          | W    |

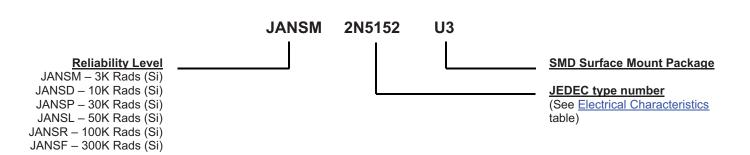
<u>Notes</u>: 1. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load energy test circuit.

#### MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

#### MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298


#### Website:

www.microsemi.com

#### **MECHANICAL and PACKAGING**

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, A = anode.
- POLARITY: See <u>schematic</u> on last page.
- WEIGHT: 0.9 grams.
- See Package Dimensions on last page.

#### PART NOMENCLATURE



| SYMBOLS & DEFINITIONS |                                                             |  |  |
|-----------------------|-------------------------------------------------------------|--|--|
| Symbol                | Definition                                                  |  |  |
| $C_{obo}$             | Common-base open-circuit output capacitance.                |  |  |
| I <sub>CEO</sub>      | Collector cutoff current, base open.                        |  |  |
| I <sub>CEX</sub>      | Collector cutoff current, circuit between base and emitter. |  |  |
| I <sub>EBO</sub>      | Emitter cutoff current, collector open.                     |  |  |
| h <sub>FE</sub>       | Common-emitter static forward current transfer ratio.       |  |  |
| $V_{CEO}$             | Collector-emitter voltage, base open.                       |  |  |
| $V_{CBO}$             | Collector-emitter voltage, emitter open.                    |  |  |
| $V_{EBO}$             | Emitter-base voltage, collector open.                       |  |  |



# **ELECTRICAL CHARACTERISTICS** @ T<sub>A</sub> = +25 °C unless otherwise noted.

#### **OFF CHARACTERISTICS**

| Parameters / Test Conditions         | Symbol           | Min. | Max. | Unit     |
|--------------------------------------|------------------|------|------|----------|
| Collector-Emitter Breakdown Voltage  | \/               | 80   |      |          |
| $I_C = 100 \text{ mA}, I_B = 0$      | $V_{(BR)CEO}$    | 00   |      | V        |
| Emitter-Base Cutoff Current          |                  |      | 1.0  |          |
| $V_{EB} = 4.0 \text{ V}, I_{C} = 0$  | I <sub>EBO</sub> |      | 1.0  | μA<br>mA |
| $V_{EB} = 5.5 \text{ V}, I_{C} = 0$  |                  |      | 1.0  | IIIA     |
| Collector-Emitter Cutoff Current     |                  |      | 1.0  |          |
| $V_{CE} = 60 \text{ V}, V_{BE} = 0$  | I <sub>CES</sub> |      | 1.0  | μA<br>mA |
| $V_{CE} = 100 \text{ V}, V_{BE} = 0$ |                  |      | 1.0  | ША       |
| Collector-Emitter Cutoff Current     |                  |      | 50   |          |
| $V_{CE} = 40 \text{ V}, I_{B} = 0$   | I <sub>CEO</sub> |      | 50   | μA       |

#### **ON CHARACTERISTICS**

| Parameters / Test Conditions                |          | Symbol        | Min. | Max. | Unit |
|---------------------------------------------|----------|---------------|------|------|------|
| Forward-Current Transfer Ratio              |          |               |      |      |      |
| $I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 5 V     | 2N5152U3 |               | 20   |      |      |
|                                             | 2N5154U3 |               | 50   |      |      |
| $I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$ | 2N5152U3 | $h_{FE}$      | 30   | 90   |      |
|                                             | 2N5154U3 |               | 70   | 200  |      |
| $I_C = 5A$ , $V_{CE} = 5V$                  | 2N5152U3 |               | 20   |      |      |
|                                             | 2N5154U3 |               | 40   |      |      |
| Collector-Emitter Saturation Voltage        |          |               |      | 0.75 |      |
| $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$ |          | $V_{CE(sat)}$ |      | 1.5  | V    |
| $I_C = 5.0 \text{ A}, I_B = 500 \text{ mA}$ |          |               |      | 1.5  |      |
| Base-Emitter Voltage Non-Saturation         |          | $V_{BE}$      |      | 1.45 | V    |
| $I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$ |          | V BE          |      | 1.45 | V    |
| Base-Emitter Saturation Voltage             |          |               |      | 1.45 |      |
| $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$ |          | $V_{BE(sat)}$ |      | 2.2  | V    |
| $I_C = 5.0 \text{ A}, I_B = 500 \text{ mA}$ |          |               |      | ۷.۷  |      |

#### **DYNAMIC CHARACTERISTICS**

| Parameters / Test Conditions                                                  |                      | Symbol           | Min. | Max. | Unit |
|-------------------------------------------------------------------------------|----------------------|------------------|------|------|------|
| Magnitude of Common Emitter Small-Signal Short-                               |                      |                  |      |      |      |
| Circuit Forward Current Transfer Ratio                                        | 2N5152U3<br>2N5154U3 | h <sub>fe</sub>  | 6    |      |      |
| $I_C = 500 \text{ mA}, V_{CE} = 5 \text{ V}, f = 10 \text{ MHz}$              |                      |                  | ,    |      |      |
| Small-signal short Circuit Forward-Current                                    |                      |                  |      |      |      |
| Transfer Ratio                                                                | 2N5152U3             | h <sub>fe</sub>  | 20   |      |      |
| $I_C = 100 \text{ mA}, V_{CE} = 5 \text{ V}, f = 1 \text{ KHz}$               | 2N5154U3             |                  | 50   |      |      |
| Output Capacitance<br>V <sub>CB</sub> = 10 V, I <sub>E</sub> = 0, f = 1.0 MHz |                      | C <sub>obo</sub> |      | 250  | pF   |



#### **ELECTRICAL CHARACTERISTICS** @ T<sub>A</sub> = +25 °C unless otherwise noted. (continued)

#### **SWITCHING CHARACTERISTICS**

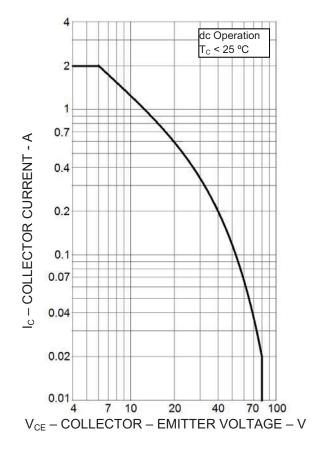
| Parameters / Test Conditions                              | Symbol           | Min. | Max. | Unit |
|-----------------------------------------------------------|------------------|------|------|------|
| Turn-On Time $I_C = 5 \text{ A}, I_{B1} = 500 \text{ mA}$ | t <sub>on</sub>  |      | 0.5  | μs   |
| Turn-Off Time $R_L = 6\Omega$                             | t <sub>off</sub> |      | 1.5  | μs   |
| Storage Time I <sub>B2</sub> = -500 mA                    | t <sub>S</sub>   |      | 1.4  | μs   |
| Fall Time $V_{BE(OFF)} = 3.7 \text{ V}$                   | t <sub>f</sub>   |      | 0.5  | μs   |

### SAFE OPERATING AREA (See SOA graph below and MIL-STD-750, method 3053)

**DC Tests** 

 $T_C$  = +25 °C,  $t_P$  = 1.0 s, 1 Cycle

Test 1


 $V_{CE}$  = 5.0 V,  $I_{C}$  = 2.0 A

Test 2

 $V_{CE} = 32 \text{ V}, I_{C} = 310 \text{ mA}$ 

Test 3

 $V_{CE} = 80 \text{ V}, I_{C} = 12.5 \text{ mA}$ 



Maximum Safe Operating Area



#### ELECTRICAL CHARACTERISTICS @ T<sub>A</sub> = +25 °C, unless otherwise noted (continued)

#### POST RADIATION ELECTRICAL CHARACTERISTICS

| Parameters / Test Conditions                                                                                             |          | Symbol               | Min. | Max.         | Unit |
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------|------|--------------|------|
| Collector to Emitter Cutoff Current                                                                                      |          | I <sub>CEO</sub>     |      | 100          | μA   |
| V <sub>CE</sub> = 40 V                                                                                                   |          | ICEO                 |      | 100          | μΛ   |
| Emitter to Base Cutoff Current                                                                                           |          | I <sub>EBO</sub>     |      | 2.0          | μΑ   |
| V <sub>EB</sub> = 4 V                                                                                                    |          | iEBO                 |      | 2.0          | μΛ   |
| Breakdown Voltage, Collector to Emitter                                                                                  |          | V <sub>(BR)CEO</sub> | 80   |              | V    |
| I <sub>C</sub> = 100 mA                                                                                                  |          | V (BR)CEO            | 00   |              | V    |
| Collector to Emitter Cutoff Current                                                                                      |          | 1                    |      | 2.0          | ^    |
| V <sub>CE</sub> = 60 V                                                                                                   |          | I <sub>CES</sub>     |      | 2.0          | μΑ   |
| Emitter to Base Cutoff Current                                                                                           |          | l                    |      | 2.0          | mA   |
| V <sub>EB</sub> = 5.5 V                                                                                                  |          | I <sub>EBO</sub>     |      | 2.0          | ША   |
| Forward-Current Transfer Ratio (1)                                                                                       |          |                      |      |              |      |
| $I_C = 50 \text{ mA}, V_{CE} = 5 \text{ V}$                                                                              | 2N5152U3 |                      | [10] |              |      |
|                                                                                                                          | 2N5154U3 |                      | [25] |              |      |
| $I_C = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$                                                                              | 2N5152U3 | [h <sub>FE</sub> ]   | [15] | 90           |      |
|                                                                                                                          | 2N5154U3 | [14]                 | [35] | 200          |      |
| $I_C = 5 \text{ A pulsed}, V_{CE} = 5 \text{ V}$                                                                         | 2N5152U3 |                      | [10] |              |      |
|                                                                                                                          | 2N5154U3 |                      | [20] |              |      |
| Base to Emitter voltage (non-saturated)                                                                                  |          | $V_{BE}$             |      | 1.45         | V    |
| $V_{CE} = 5 \text{ V}, I_{C} = 2.5 \text{ A}, \text{ pulsed}$                                                            |          | * BE                 |      |              | •    |
| Collector-Emitter Saturation Voltage                                                                                     |          | .,                   |      |              | .,   |
| $I_{\rm C}$ = 2.5 mA, $I_{\rm B}$ = 250 mA, pulsed                                                                       |          | $V_{CE(sat)}$        |      | 0.86         | V    |
| I <sub>C</sub> = 500 mA, I <sub>B</sub> = 500 mA, pulsed                                                                 |          |                      |      | 1.73         |      |
| Base-Emitter Saturation Voltage                                                                                          |          | \/                   |      | 1.67         | V    |
| $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}, \text{ pulsed}$<br>$I_C = 5 \text{ A}, I_B = 500 \text{ mA}, \text{ pulsed}$ |          | $V_{BE(sat)}$        |      | 1.67<br>2.53 | V    |

<sup>(1)</sup> See method 1019 of MIL-STD-750 for how to determine  $[h_{FE}]$  by first calculating the delta  $(1/h_{FE})$  from the preand post-radiation  $h_{FE}$ . Notice the  $[h_{FE}]$  is not the same as  $h_{FE}$  and cannot be measured directly. The  $[h_{FE}]$  value can never exceed the pre-radiation minimum  $h_{FE}$  that it is based upon.



#### **GRAPHS**

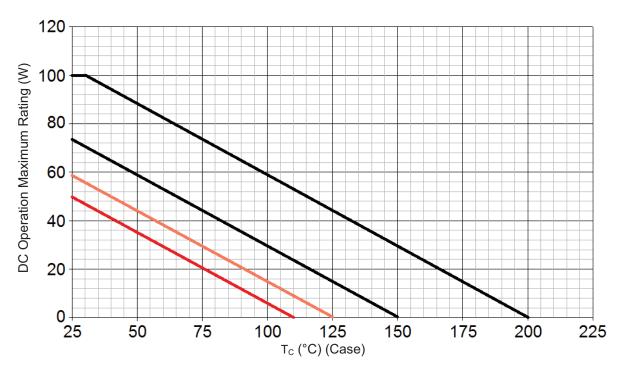



FIGURE 1
Temperature-Power Derating Curve

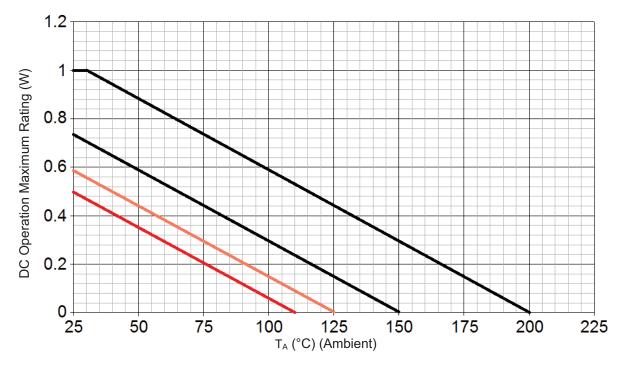



FIGURE 2
Temperature-Power Derating Curve



## GRAPHS (continued)

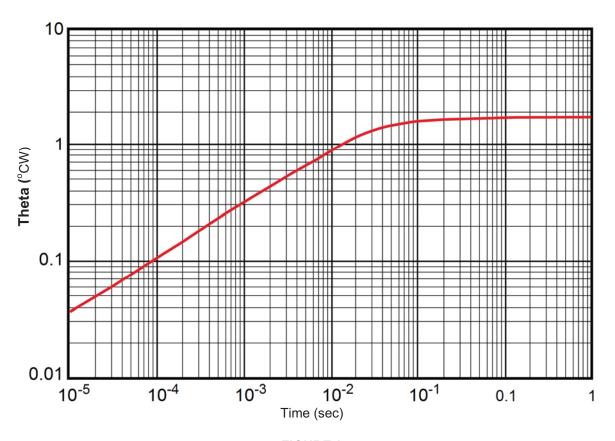
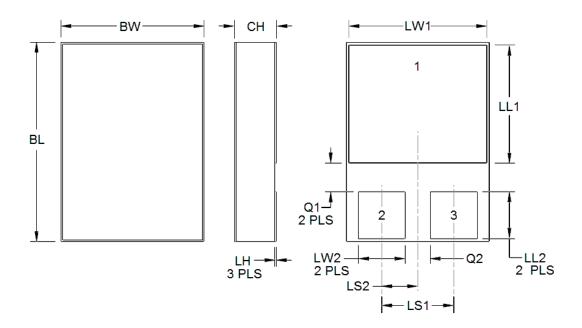
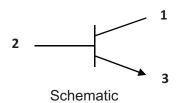




FIGURE 3

Maximum Thermal Impedance (ReJC)




#### **PACKAGE DIMENSIONS**



#### NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to  $\Phi x$  symbology.



| Symbol | DIMENSIONS |      |             |       |  |
|--------|------------|------|-------------|-------|--|
| Symbol | IN         | СН   | MILLIMETERS |       |  |
|        | Min        | Max  | Min         | Max   |  |
| BL     | .395       | .405 | 10.03       | 10.29 |  |
| BW     | .291       | .301 | 7.39        | 7.65  |  |
| CH     | .112       | .124 | 2.84        | 3.15  |  |
| LH     | .010       | .020 | 0.25        | 0.51  |  |
| LL1    | .220       | .230 | 5.59        | 5.84  |  |
| LL2    | .115       | .125 | 2.92        | 3.18  |  |
| LS1    | .150 BSC   |      | 3.81 BSC    |       |  |
| LS2    | .075       | BSC  | 1.91 BSC    |       |  |
| LW1    | .281       | .291 | 7.14        | 7.39  |  |
| LW2    | .090       | .100 | 2.29        | 2.54  |  |
| Q1     | .030       |      | 0.76        |       |  |
| Q2     | .030       |      | 0.76        |       |  |
| Term 1 | Collector  |      |             |       |  |
| Term 2 | Base       |      |             |       |  |
| Term 3 | Emitter    |      |             |       |  |