Stackpole Electronics, Inc.

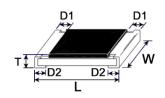
Resistive Product Solutions

Features:

- 0201 to 1225 sizes available
- Power ratings to 3W
- Available in E24 and other common values
- E96 and other values may be available upon request
- · RoHS compliant, REACH compliant, lead free and halogen free
- CSRN2512 is AEC-Q200 compliant

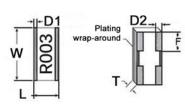
Electrical Specifications							
Type/Code	Power Rating (W)	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance				
Type/Oode	@ 70°C		1%, 2%, 5%				
		± 1000	0.1 - 0.13				
CSR0201	0.05	± 600	0.15 - 0.5				
		± 300	0.51 - 1				
CSR0402	0.125	± 200 ⁽¹⁾	0.05 - 1				
CCDCCC	0.405	± 300 ⁽³⁾	0.02 - 0.3				
CSR0603	0.125	± 200 ⁽²⁾	0.33 - 1				
		± 400	0.051 - 0.1				
CSR0603-HP	0.2	± 300	0.11 - 0.5				
		± 200	0.51 - 1				
CSR0805	0.25	± 200 ⁽³⁾	0.02 - 1				
		± 400	0.051 - 0.1				
CSR0805-HP	0.5	± 300	0.102 - 0.5				
		± 200	0.51 - 1				
CSR1206	0.5	± 100 ⁽²⁾	0.01 - 1				
	0.5	± 600	0.01 - 0.02				
CSR1210		± 400	0.022 - 0.051				
CONTETO	0.5	± 300	0.056 - 0.091				
		± 200	0.1 - 1				
		± 600	0.01 - 0.02				
0004040 UD	0.75	± 400	0.022 - 0.05				
CSR1210-HP	0.75	± 300	0.051 - 0.091				
		± 200	0.1 - 1				
CSR2010	1	± 200 ⁽³⁾	0.01 - 1				
CSRN2010	1	± 200	0.01 - 1				
CSR2512	2	± 200 ⁽³⁾	0.01 - 1				
CSRN2512 ^(*)	2	± 200	0.01 - 1				
		± 300	0.003 - 0.004				
		± 200	0.005 - 0.02				
CSR1225	3	± 150	0.022 - 0.03				
		± 100	0.033 - 7.5				

^{*} AEC-Q200 Compliant


Please refer to the High-Power Resistor Application Note for more information on designing and implementing high power resistor types.

⁽¹⁾ Contact Stackpole for TCR below 500 $\text{m}\Omega$

⁽²⁾ Contact Stackpole for TCR below 150 m Ω


⁽³⁾ Contact Stackpole for TCR below 100 m Ω

Mechanical Specifications

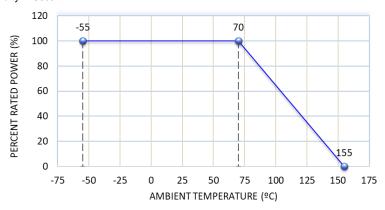
Type/Code	Typical Unit Weight (mg)	L Body Length	W Body Width	T Body Height	D1 Top Termination	D2 Bottom Termination	Unit
	vveigni (mg)	, ,	•	,	•		
CSR0201	0.18	0.024 ± 0.001	0.012 ± 0.001	0.009 ± 0.002	0.005 ± 0.002	0.006 ± 0.002	inches
CSRUZUT	0.16	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.05	0.12 ± 0.05	0.15 ± 0.05	mm
0000400	0.70	0.039 ± 0.002	0.020 ± 0.002	0.013 ± 0.004	0.010 ± 0.004	0.008 ± 0.004	inches
CSR0402	0.70	1.00 ± 0.05	0.50 ± 0.05	0.32 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	mm
0000000	0.0	0.063 ± 0.004	0.031 ± 0.004	0.018 ± 0.004	0.012 ± 0.008	0.012 ± 0.008	inches
CSR0603	2.0	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	mm
CSR0805	4.6	0.079 ± 0.006	0.049 ± 0.006	0.022 ± 0.004	0.012 ± 0.008	0.016 ± 0.010	inches
CSR0805-HP	5.3	2.00 ± 0.15	1.25 ± 0.15	0.55 ± 0.10	0.30 ± 0.20	0.40 ± 0.25	mm
0004000	0.7	0.120 ± 0.006	0.061 ± 0.006	0.022 ± 0.004	0.020 ± 0.012	0.016 ± 0.010	inches
CSR1206	8.7	3.05 ± 0.15	1.55 ± 0.15	0.55 ± 0.10	0.50 ± 0.30	0.40 ± 0.25	mm
CCD4040	40.0	0.122 ± 0.004	0.102 ± 0.006	0.022 ± 0.004	0.020 ± 0.012	0.020 ± 0.010	inches
CSR1210	16.0	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.50 ± 0.30	0.50 ± 0.25	mm
CCD2040	27.0	0.197 ± 0.008	0.096 ± 0.006	0.024 ± 0.006	0.024 ± 0.012	0.067 ± 0.010	inches
CSR2010	27.0	5.00 ± 0.20	2.45 ± 0.15	0.60 ± 0.15	0.60 ± 0.30	1.70 ± 0.25	mm
CCDNOAA	00.7	0.197 ± 0.004	0.098 ± 0.006	0.024 ± 0.006	0.024 ± 0.012	0.020 ± 0.010	inches
CSRN2010	23.7	5.00 ± 0.10	2.50 ± 0.15	0.60 ± 0.15	0.60 ± 0.30	0.50 ± 0.25	mm
0000540	F2.0	0.250 ± 0.004	0.122 ± 0.006	0.024 ± 0.004	0.024 ± 0.012	0.083 ± 0.004	inches
CSR2512	53.6	6.35 ± 0.10	3.10 ± 0.15	0.60 ± 0.10	0.60 ± 0.30	2.10 ± 0.10	mm
CCDNOC40	40.0	0.250 ± 0.004	0.122 ± 0.006	0.024 ± 0.004	0.024 ± 0.012	0.022 ± 0.010	inches
CSRN2512	40.0	6.35 ± 0.10	3.10 ± 0.15	0.60 ± 0.10	0.60 ± 0.30	0.55 ± 0.25	mm

Mechanical Specifications - Four Terminals

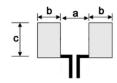
Type/Code We	eight (mg)	L	W	Т	D1	D2	F	Unit
CSR1225	64.9	0.126 ± 0.006 3.20 ± 0.15	0.254 ± 0.006 6.45 ± 0.15	0.035 ± 0.006 0.90 ± 0.15	0.024 ± 0.012 0.60 ± 0.30	0.031 ± 0.010 0.80 ± 0.25	0.090 ± 0.005 2.29 ± 0.13	inches mm

Stackpole Electronics, Inc. Resistive Product Solutions

	Performance Characteristics							
Test	Test Method	Test Specification	Typical	Test Condition				
Temperature Coefficient of Resistance (TCR)	JIS-C-5201-1 4.8 IEC-60115-1 4.8	As per specification	Pass	At 25°C/-55°C and 25°C/+125°C, 25°C is the reference temperature.				
High Temperature Exposure	MIL-STD-202 Method 108	1% Tol: \pm (1% + 0.05Ω) 2%, 5% Tol: \pm (1.5% + 0.1Ω)	≤ 0.5%	1000 hours at T = 155°C. Unpowered. Measurement at 24 ± 4 hours after test conclusion.				
Short Time Overload	JIS-C-5201-1 4.13 IEC 60115-1 4.13	±(0.5% + 0.05Ω) ±(1% + 0.05Ω) For ≤50mΩ & all high power	≤ 0.25% ≤ 0.5%	RCWV*2.5 or Max. Overload Voltage whichever is lower for 5 seconds				
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6	≥ 10G	Pass	Max. Overload voltage for 1 minute				
Endurance	JIS-C-5201-1 4.25 IEC-60115-1 4.25.1	±(1% + 0.05Ω) ±(2% + 0.05 Ω) For ≤50mΩ & all high power	Pass	70 ± 2°C, RCWV for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"				
Damp Heat with Load	JIS-C-5201-1 4.24 IEC-60115-1 4.24	±(0.5% + 0.05Ω) ±(1% + 0.05Ω) For ≤50mΩ & all high power	Pass	40 ± 2°C, 90~95% R.H., RCWV for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"				
Dry Heat	JIS-C-5201-1 4.23 IEC-60115-1 4.23.2	±(1% + 0.05Ω) ±(2% + 0.05Ω) for ≤50mΩ & all high power	Pass	at 155°C for 1000 hours				
Bending Strength	JIS-C-5201-1 4.33 IEC-60115-1 4.33	±(1% + 0.05Ω)	Pass	Bending once for 60 seconds with 3 mm Sizes 2010 and 2512: 2 mm				
Temperature Cycling	JESD22 Method JA-104	1% Tol: ±(0.5% + 0.05Ω) 2%, 5% Tol: ±(1.5% + 0.1Ω)	≤ 0.5%	1000 Cycles (-55°C to +125°C) Measurement at 24 ± 4 hours after test conclusion. 30 minutes maximum dwell time at each temperature extreme. One minute maximum transition time.				
Biased Humidity	MIL-STD-202 Method 103	1% Tol: \pm (1% + 0.1 Ω) 2%, 5% Tol: \pm (2% + 0.1 Ω)	≤ 0.5%	1000 hours 85°C / 85% RH. Note: Specified conditions: 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.				
Operational Life	MIL-STD-202 Method 108	1% Tol: ±(1% + 0.1Ω) 2%, 5% Tol: ±(2% + 0.1Ω)	≤ 0.5%	Condition D Steady State TA = 125°C at rated power. Measurement at 24 ± 4 hours after test conclusion.				
External Visual	MIL-STD 883 Method 2009	-	Pass	Electrical test not required. Inspect device construction, marking and workmanship.				
Physical Dimensions	JESD22 Method JB-100	-	Pass	Verify physical dimensions to the applicable device detail specification. Note: User(s) and supplier specification, electrical test not required.				
Resistance to Solvents	MIL-STD 202 Method 215	Marking unsmeared	Pass	Note: Aqueous wash chemical - OKEM Clean or equivalent. Do not use banned solvents.				
Mechanical Shock	MIL-STD 202 Method 213	1% Tol: ±(0.25% + 0.05Ω) 2%, 5% Tol: ±(1% + 0.05Ω)	≤ 0.5%	Figure 1 of Method 213. Condition C.				
Vibration	MIL-STD 202 Method 204	1% Tol: ±(0.5% + 0.05Ω) 2%, 5% Tol: ±(1% + 0.05Ω)	≤ 0.5%	5 g's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 - 2000 Hz.				
Resistance to Soldering Heat	MIL-STD 202 Method 210	1% Tol: ±(0.5% +0.05Ω) 2%, 5% Tol: ±(1% + 0.05Ω)	≤ 0.5%	Condition B no pre-heat of samples. Note: Single wave solder - Procedure 2 for SMD.				
ESD	AEC-Q200-002		Pass	With the electrometer in direct contact with the discharge tip, verify the voltage setting at levels of ±500 V, ±1 kV, ±2 kV, ±4 kV, ±8 kV. The electrometer reading shall be within ±10% for voltages from 500 V to ≤ 8 kV.				
Solderability	JIS-C-5201-1 4.17 IEC-60115-1 4.17	95% min. coverage	Pass	245 ± 5°C for 3 seconds				
Resistance to Soldering Heat	JIS-C-5201-1 4.18 IEC-60115-1 4.18	±(0.5% + 0.05Ω)	Pass	260 ± 5°C for 10 seconds				
Electrical Characterization	User Spec		Pass	Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard Deviation at room as well as Min and Max operating temperatures.				


Stackpole Electronics, Inc. Resistive Product Solutions

	Performance Characteristics (cont.)							
Test	Test Method	Test Specification	Typical	Test Condition				
Flammability	UL-94	No ignition of tissue or scorching of pine board.	Pass	V - 0 or V - 1 are acceptable. Electrical test not required.				
Board Flex	AEC-Q200-005	1% Tol: ±(1% + 0.05Ω) 2%, 5% Tol: ±(1% + 0.05Ω)	≤ 0.5%	60 second minimum holding time.				
Terminal Strength (SMD)	AEC-Q200-006	No breakage	Pass					
Flame Retardance	AEC-Q200-001	No flame	Pass					
Voltage Proof	JIS-C-5201-1 4.7 IEC-60115-1 4.7	No breakdown or flashover	Pass	1.42 times Max. Operating Voltage for 1 minute. 0201: 50 V; 0402: 100 V; 0603: 150 V; 0805: 300 V 1206/1210/2010/1225: 400 V 2512: 500 V				
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1	Individual leaching area ≤ 5% Total leaching area ≤ 10%	Pass	260 ±5°C for 30 seconds				
Rapid Change of Temperature	JIS-C-5201-1 4.19 IEC-60115-1 4.19	±(0.5% + 0.05Ω)	Pass	-55°C (30 minutes)/+125°C (30 minutes, 5 cycles)				


Operating temperature range is -55 to +155°C

RCWV (Rated Continuous Working Voltage) = $\sqrt{(P^*R)}$ or Max. Operating Voltage whichever is lower. Storage temperature is 15 to 28°C. Humidity < 80% R.H.

Power Derating Curve:

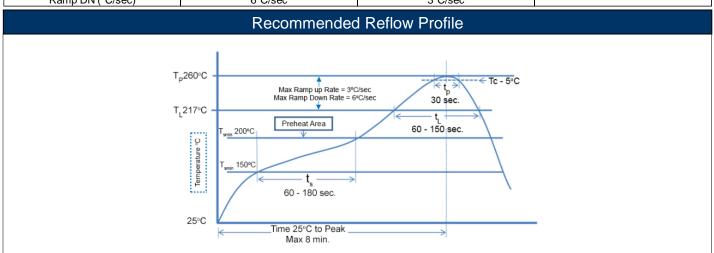
Recommended Pad Layouts

Type/Code	а	b	С	Unit
CSR0201	0.010	0.012	0.016 ± 0.008	inches
CSK0201	0.25	0.30	0.40 ± 0.20	mm
CSR0402	0.020	0.020	0.024 ± 0.008	inches
C3R0402	0.50	0.50	0.60 ± 0.20	mm
CSR0603	0.031	0.039	0.035 ± 0.008	inches
C3K0003	0.80	1.00	0.90 ± 0.20	mm
CSR0805	0.039	0.039	0.053 ± 0.008	inches
C3R0603	1.00	1.00	1.35 ± 0.20	mm
CSR1206	0.079	0.045	0.067 ± 0.008	inches
C3K1200	2.00	1.15	1.70 ± 0.20	mm
CSR1210	0.079	0.045	0.098 ± 0.008	inches
CSK1210	2.00	1.15	2.50 ± 0.20	mm

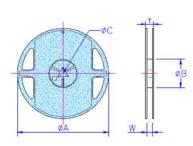
Recommended Pad Layouts (cont.)								
Type/Code	a	b	С	Unit				
CSR2010	0.055	0.094	0.110 ± 0.008	inches				
000010040	1.40 0.142	2.40 0.055	2.80 ± 0.20 0.098 ± 0.008	inches				
CSRN2010	3.60	1.40	2.50 ± 0.20	mm				
CSR2512	0.039	0.140	0.126 ± 0.008	inches				
CSINZSTZ	1.00	3.55	3.20 ± 0.20	mm				
CSRN2512	0.193	0.063	0.126 ± 0.008	inches				
CSKINZSTZ	4.90	1.60	3.20 ± 0.20	mm				
CSR1225	0.047	0.079	0.276 ± 0.008	inches				
CSK1225	1.20	2.00	7.00 ± 0.20	mm				

Recommended Solder Profile

This information is intended as a reference for solder profiles for Stackpole resistive components. These profiles should be compatible with most soldering processes. These are only recommendations. Actual numbers will depend on board density, geometry, packages used, etc., especially those cells labeled with "*".

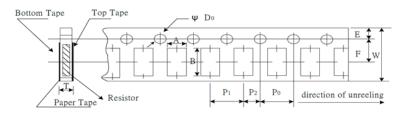

100% Matte Tin / RoHS Compliant Terminations

Soldering iron recommended temperatures: 330 to 350°C with minimum duration. Maximum number of reflow cycles: 3.


Wave Soldering							
Description	Maximum	Recommended	Minimum				
Preheat Time	80 seconds	70 seconds	60 seconds				
Temperature Diff.	140°C	120°C	100°C				
Solder Temp.	260°C	250°C	240°C				
Dwell Time at Max.	10 seconds	5 seconds	*				
Ramp DN (°C/sec)	N/A	N/A	N/A				

Temperature Diff. = Difference between final preheat stage and soldering stage.

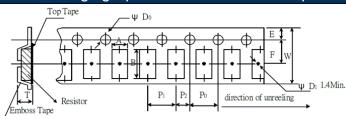
Convection IR Reflow							
Description	Maximum	Recommended	Minimum				
Ramp Up (°C/sec)	3°C/sec	2°C/sec	*				
Dwell Time > 217°C	150 seconds	90 seconds	60 seconds				
Solder Temp.	260°C	245°C	*				
Dwell Time at Max.	30 seconds	15 seconds	10 seconds				
Ramp DN (°C/sec)	6°C/sec	3°C/sec	*				



Reel Specifications

Type/Code	Α	В	С	W	Т	Unit
0201	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.374 ± 0.004	0.453 ± 0.039	inches
0201	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	9.50 ± 0.10	11.50 ± 1.00	mm
0402	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.374 ± 0.004	0.453 ± 0.039	inches
0402	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	9.50 ± 0.10	11.50 ± 1.00	mm
0603	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.374 ± 0.004	0.453 ± 0.039	inches
0003	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	9.50 ± 0.10	11.50 ± 1.00	mm
0805	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.374 ± 0.004	0.453 ± 0.039	inches
0803	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	9.50 ± 0.10	11.50 ± 1.00	mm
1206	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.374 ± 0.004	0.453 ± 0.039	inches
1200	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	9.50 ± 0.10	11.50 ± 1.00	mm
1210	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.374 ± 0.004	0.453 ± 0.039	inches
1210	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	9.50 ± 0.10	11.50 ± 1.00	mm
2010	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.531 ± 0.039	0.610 ± 0.039	inches
2010	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	13.50 ± 1.00	15.50 ± 1.00	mm
2512	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.531 ± 0.039	0.610 ± 0.039	inches
2312	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	13.50 ± 1.00	15.50 ± 1.00	mm
1225	7.008 ± 0.039	2.362 ± 0.039	0.531 ± 0.028	0.531 ± 0.039	0.610 ± 0.039	inches
1223	178.00 ± 1.00	60.00 ± 1.00	13.50 ± 0.70	13.50 ± 1.00	15.50 ± 1.00	mm

Packaging Specifications - Paper Tape



Size	А	В	W	Е	F	Unit
0201	0.015 ± 0.002	0.027 ± 0.002	0.315 ± 0.004	0.069 ± 0.002	0.138 ± 0.002	inches
0201	0.38 ± 0.05	0.68 ± 0.05	8.00 ± 0.10	1.75 ± 0.05	3.50 ± 0.05	mm
0402	0.026 ± 0.004	0.045 ± 0.004	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
0402	0.65 ± 0.10	1.15 ± 0.10	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
0603	0.043 ± 0.004	0.075 ± 0.004	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
0003	1.10 ± 0.10	1.90 ± 0.10	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
0805	0.063 ± 0.004	0.094 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
0803	1.60 ± 0.10	2.40 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
1206	0.075 ± 0.004	0.138 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
1200	1.90 ± 0.10	3.50 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
1210	0.114 ± 0.004	0.138 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
1210	2.90 ± 0.10	3.50 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm

Resistive Product Solutions

Packaging Specifications – Paper Tape (cont.)								
Size	P0	P1	P2	D0	Т	Unit		
0201	0.157 ± 0.004	0.079 ± 0.002	0.079 ± 0.004	0.059 + 0.004/-0	0.017 ± 0.008	inches		
0201	4.00 ± 0.10	2.00 ± 0.05	2.00 ± 0.10	1.50 + 0.10/-0	0.42 ± 0.20	mm		
0402	0.157 ± 0.004	0.079 ± 0.002	0.079 ± 0.002	0.059 + 0.004/-0	0.018 ± 0.004	inches		
0402	4.00 ± 0.10	2.00 ± 0.05	2.00 ± 0.05	1.50 + 0.10/-0	0.45 ± 0.10	mm		
0603	0.157 ± 0.004	0.157 ± 0.002	0.079 ± 0.002	0.059 + 0.004/-0	0.028 ± 0.004	inches		
0603	4.00 ± 0.10	4.00 ± 0.05	2.00 ± 0.05	1.50 + 0.10/-0	0.70 ± 0.10	mm		
0805	0.157 ± 0.004	0.157 ± 0.002	0.079 ± 0.002	0.059 + 0.004/-0	0.033 ± 0.004	inches		
0805	4.00 ± 0.10	4.00 ± 0.05	2.00 ± 0.05	1.50 + 0.10/-0	0.85 ± 0.10	mm		
1206	0.157 ± 0.004	0.157 ± 0.002	0.079 ± 0.002	0.059 + 0.004/-0	0.033 ± 0.004	inches		
1206	4.00 ± 0.10	4.00 ± 0.05	2.00 ± 0.05	1.50 + 0.10/-0	0.85 ± 0.10	mm		
1210	0.157 ± 0.004	0.157 ± 0.002	0.079 ± 0.002	0.059 + 0.004/-0	0.033 ± 0.004	inches		
1210	4.00 ± 0.10	4.00 ± 0.05	2.00 ± 0.05	1.50 + 0.10/-0	0.85 ± 0.10	mm		

Packaging Specifications - Plastic Tape

Size	Α	В	W	E	F	Unit
2010	0.110 ± 0.004	0.217 ± 0.004	0.472 ± 0.012	0.069 ± 0.004	0.217 ± 0.002	inches
	2.80 ± 0.10	5.50 ± 0.10	12.00 ± 0.30	1.75 ± 0.10	5.50 ± 0.05	mm
2512	0.133 ± 0.004	0.263 ± 0.004	0.472 ± 0.012	0.069 ± 0.004	0.217 ± 0.004	inches
	3.38 ± 0.10	6.68 ± 0.10	12.00 ± 0.30	1.75 ± 0.10	5.50 ± 0.10	mm
1225	0.133 ± 0.004	0.263 ± 0.004	0.472 ± 0.012	0.069 ± 0.004	0.217 ± 0.004	inches
	3.38 ± 0.10	6.68 ± 0.10	12.00 ± 0.30	1.75 ± 0.10	5.50 ± 0.10	mm
Size	P0	P1	P2	D0	Т	Unit
2010	0.157 ± 0.002	0.157 ± 0.004	0.079 ± 0.002	0.059 + 0.004/-0	0.039 ± 0.008	inches
	4.00 ± 0.05	4.00 ± 0.10	2.00 ± 0.05	1.50 + 0.10, -0	1.00 ± 0.20	mm
2512	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	0.061 + 0.002/-0	0.057 ± 0.008	inches
	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	1.55 + 0.05, -0	1.45 ± 0.20	mm
1225	0.157 ± 0.004	0.157 ± 0.004	0.079 ± 0.002	0.061 + 0.002/-0	0.057 ± 0.008	inches
	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	1.55 + 0.05, -0	1.45 ± 0.20	mm

Marking Instructions

0201 and 0402 sizes are not marked.

0603 size has three-character marking with examples shown in the table below.

- 1% and 5% marking is the same
- E96 values are only available in 1% tolerance
- If the value has two significant digits, the marking is "R" plus the two significant digits (e.g. R10 = 100 mΩ)
- If the value has three significant digits, the marking is the three significant digits underlined (e.g. $\underline{047} = 47 \text{ m}\Omega$)

0805 and larger sizes have four-character marking for both 1% and 5% tolerances.

Q:	Ohmic Value						
Size	5 mΩ	20 mΩ	25 mΩ	100 mΩ	221 mΩ	250 mΩ	
0201/0402	No marking						
0603 1%	NA	R02	<u>025</u>	R10	<u>221</u>	R25	
0603 5%	NA	R02	<u>025</u>	R10	NA	R25	
0805 and larger 1%	R005	R020	R025	R100	R221	R250	
0805 and larger 5%	R005	R020	R025	R100	NA	R250	

Stackpole Electronics, Inc.

Resistive Product Solutions

High Power Chip Resistors and Thermal Management

Stackpole has developed several surface mount resistor series in addition to our current sense resistors, which have had higher power ratings than standard resistor chips. This has caused some uncertainty and even confusion by users as to how to reliably use these resistors at the higher power ratings in their designs.

The data sheets for the RHC, RMCP, RNCP, CSR, CSRN, CSRF, CSS, and CSSH state that the rated power assumes an ambient temperature of no more than 100°C for the CSS / CSSH series and 70°C for all other high power resistor series. In addition, IPC and UL best practices dictate that the combined temperature on any resistor due to power dissipated and ambient air shall be no more than 105°C. At first glance this wouldn't seem too difficult, however the graph below shows typical heat rise for the CSR1206 100 milliohms at full rated power. The heat rise for the RMCP and RNCP would be similar. The RHC with its unique materials, design, and processes would have less heat rise and therefore would be easier to implement for any given customer.

120 102 100 TEMPERATURE (ºC) 72 80 50 60 41 36 36 40 20 0 0.17 0.6 0.1 0.13 0.26 0.76 POWER RATING (W)

CSR1206 100mΩ Surface Temperature Rise

The 102°C heat rise shown here would indicate there will be additional thermal reduction techniques needed to keep this part under 105°C total hot spot temperature if this part is to be used at 0.75 watts of power. However, this same part at the usual power rating for this size would have a heat rise of around 72°C. This additional heat rise may be dealt with using wider conductor traces, larger solder pads and land patterns under the solder mask, heavier copper in the conductors, via through PCB, air movement, and heat sinks, among many other techniques. Because of the variety of methods customers can use to lower the effective heat rise of the circuit, resistor manufacturers simply specify power ratings with the limitations on ambient air temperature and total hot spot temperatures and leave the details of how to best accomplish this to the design engineers. Design guidelines for products in various market segments can vary widely so it would be unnecessarily constraining for a resistor manufacturer to recommend the use of any of these methods over another.

Note: The final resistance value can be affected by the board layout and assembly process, especially the size of the mounting pads and the amount of solder used. This is especially notable for resistance values $\leq 50~\text{m}\Omega$. This should be taken into account when designing.

Stackpole Electronics, Inc.

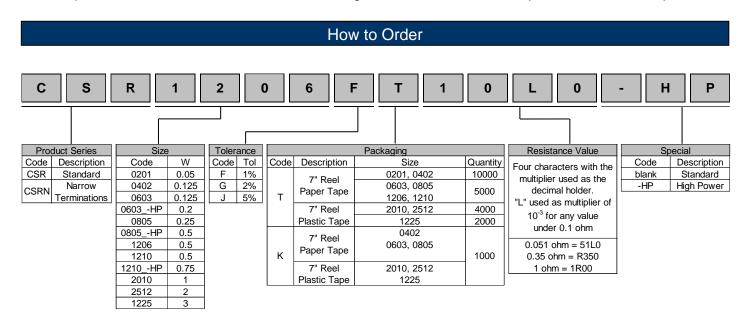
Resistive Product Solutions

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)		
CSR	Thick Film Current Sensing Surface Mount Chip Resistor	SMD	YES	100% Matte Sn over Ni	May-04	04/18		
CSRN	Thick Film Current Sensing Surface Mount Chip Resistor, Narrow	SMD	YES	100% Matte Sn over Ni	May-04	04/18		

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

