MITSUBISHI <CONTROL / DRIVER IC>

M51660L

SERVO MOTOR CONTROL FOR RADIO CONTROL

DESCRIPTION

The M51660L is a semiconductor integrated circuit for use in servo motor control in radio control applications.

Housed in a 14-pin molded plastic zig-zag inline package (ZIP), the M51660L contributes to the miniaturization of the set.

The built-in voltage regulating circuit, and the differential comparator used in the comparator circuit provide the M51660L with extremely stable power supply voltage fluctuation characteristics and temperature change characteristics.

FEATURES

- Small circuit current ······· 3.5mA typ.
- (When output is off) • Excellent power supply and temperature stability
- Simple setting of dead band
- Includes protection circuit for continuous "H" level input

APPLICATION

Digital proportional system for radio control, and servo motor control circuit, etc.

RECOMMENDED OPERATING CONDITIONS

Supply voltage range ····································	
Rated supply voltage 4.8V	

MITSUBISHI <CONTROL / DRIVER IC> M51660L

SERVO MOTOR CONTROL FOR RADIO CONTROL

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		7.5	V
lo sink	Output sink current		500	mA
IO SOURSE	Output source current		200	mA
Pd	Power dissipation		550	mW
Κθ	Thermal derating range	Ta ≥ 25°C	5.5	mW/°C
Topr	Operating temperature		-20 – +75	°C
Tstg	Storage temperature range		-40 – +125	°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C and Vcc = 4.8V, unless otherwise noted)

Cumbol	Parameter	Test conditions	Limits			Linit
Symbol			Min.	Тур.	Max.	Unit
lcc	Circuit current	When output is OFF		3.5	5	mA
ICC		When output is ON		20		
Vol	Output voltage "I"	Io sink = 100mA		0.1	0.2	v
VOL	Output voltage "L"	lo sink = 400mA		0.4	0.7	V V
Vон	Output voltage "H"	IO SOURCE = 100mA	3.4	3.8		V
IPNP	External PNP transistor		30			mA
	Drive current		30			mA
VReg	Internal regulated supply voltage		2.3	2.45	2.6	V
IReg	Internal regulated supply output current				3.0	mA
Трв	Minimum dead band width	$R_{DB} = 510\Omega, C_{S} = 0.1\mu F$			1.5	μs

TYPICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)

MITSUBISHI <CONTROL / DRIVER IC> M51660L

SERVO MOTOR CONTROL FOR RADIO CONTROL

Deadband width vs. deadband resistance

Deadband resistance $R_{DB}(\Omega)$

APPLICATION EXAMPLE

Servo motor control circuit for radio-controlled

Output sink current ISINK (mA)

SERVO MOTOR CONTROL FOR RADIO CONTROL

TECHNICAL APPLICATION NOTES PIN DESCRIPTION

1. Servo Position Voltage Input Pin (Pin ①)

Connect the potentiometer terminal for position detection that follows the output axis. Compare this voltage with the voltage of the triangular wave of pin (2) and drive the motor. A capacitor of approximately $0.1\mu F$ should be connected for noise prevention.

 Timing Capacitor Pin (Pin 2) Connect a capacitor that will generate a triangular wave by constant current charging. A typical value is 0.1µF. Also connect a feedback resistor from the output here.

3. Timing Resistor (Pin ③) Connect a resistor that will determine the value of the constant current of pin ②. A resistor of 18kΩ will yield a current of 1.0mA. A capacitor of approximately 0.03µF should be connected in parallel with the resistor to increase stability.

- External PNP Transistor Drive ① (Pin ④) Connect to the base of the external PNP transistor.
- 5. Input Pin (Pin (5)
- Operate with a positive pulse of peak value 3V or greater. 6. Output (1) Pin (Pin (6))
- Connect a feedback resistor between this pin and pin 2.
- 7. Ground (pins \bigcirc and \circledast)
- 8. Error Pulse Output pin (Pin (9))
- Connect a resistor between this pin and pin 1. The dead band will change according to the value of this resistor.
- 9. Output ② pin (Pin ⑩) This is the output ② pin.
- Stretcher Input Pin (Pin (1)) Connect the capacitor and resistor of the pulse stretcher section.
- 11. External PNP Transistor Drive 2 (Pin 12)
- Connect to the base of the external PNP transistor.

12. Regulated Voltage Output Pin (Pin ③) This is the output of the internal regulated supply voltage. Make connections from this pin to a potentiometer or pulse stretcher resistor. Connect a capacitor of approximately 2.2µF for stability.

13. Supply Voltage (Pin (4))

The supply voltage exhibits uniform characteristics from 3.5V to 7V. Connect a capacitor of approximately 10μ F.