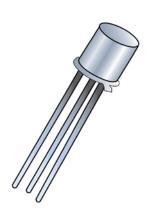


P-CHANNEL J-FET

Screening in reference to MIL-PRF-19500 available


DESCRIPTION

This leaded device is available in high-reliability equivalents for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5114 thru 2N5116 series.
- Up-screening in reference to MIL-PRF-19500 is available. (See part nomenclature.)
- RoHS compliant versions available (commercial grade only).

TO-18 (TO-206AA) **Package**

Also available in:

UB package

(surface mount)
2N5114UB – 2N5116UB

APPLICATIONS / BENEFITS

- Leaded TO-18 package.
- Lightweight.

MAXIMUM RATINGS @ $T_C = +25$ °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J and T _{STG}	-65 to +200	°C
Gate-Source Voltage (1)	V_{GS}	30	V
Drain-Source Voltage	V_{DS}	30	V
Drain-Gate Voltage (1)	V_{DG}	30	V
Gate Current	I _G	50	mA
Steady-State Power Dissipation @ T _A = +25 °C (2)	P _D	0.500	W

Notes: 1. Symmetrical geometry allows operation of those units with source / drain leads interchanged.

2. Derate linearly 3.0 mW/°C for T_A > +25 °C.

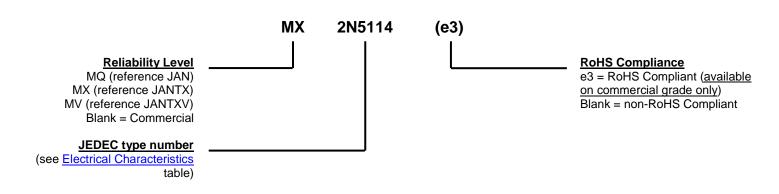
MSC – Lawrence

6 Lake Street. Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, nickel plated kovar base, nickel cap.
- TERMINALS: Gold plate over nickel, kovar, solder dipped. RoHS compliant matte/tin plating available on commercial grade only.
- MARKING: Part number, data code, manufacturer's ID.
- WEIGHT: Approximately 0.3 grams.
- See Package Dimensions on last page.

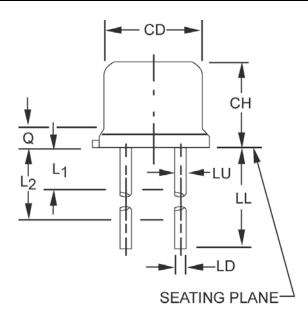
PART NOMENCLATURE

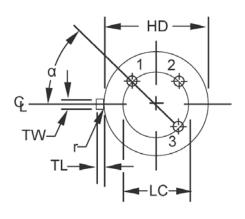
ELECTRICAL CHARACTERISTICS @ $T_A = +25$ $^{\circ}$ C unless otherwise noted.

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate-Source Breakdown Voltage $V_{DS} = 0$, $I_{G} = 1.0 \mu A$		$V_{(BR)GSS}$	30		V
Drain-Source "On" State Voltage $V_{GS} = 0 \text{ V}, I_D = -15 \text{ mA}$ $V_{GS} = 0 \text{ V}, I_D = -7.0 \text{ mA}$ $V_{GS} = 0 \text{ V}, I_D = -3.0 \text{ mA}$	2N5114 2N5115 2N5116	V _{DS(on)}		-1.3 -0.8 -0.6	>
Gate Reverse Current V _{DS} = 0, V _{GS} = 20 V		I _{GSS}		500	pA
Drain Current Cutoff $V_{GS} = 12 \text{ V}, V_{DS} = -15 \text{ V}$ $V_{GS} = 7.0 \text{ V}, V_{DS} = -15 \text{ V}$ $V_{GS} = 5.0 \text{ V}, V_{DS} = -15 \text{ V}$	2N5114 2N5115 2N5116	I _{D(off)}		-500 -500 -500	pА
Zero Gate Voltage Drain Current $V_{GS} = 0$, $V_{DS} = -18V$ $V_{GS} = 0$, $V_{DS} = -15V$ $V_{GS} = 0$, $V_{DS} = -15V$	2N5114 2N5115 2N5116	I _{DSS}	-30 -15 -5.0	-90 -60 -25	mA
Gate-Source Cutoff $V_{DS} = -15$, $I_D = -1.0$ nA $V_{DS} = -15$, $I_D = -1.0$ nA $V_{DS} = -15$, $I_D = -1.0$ nA	2N5114 2N5115 2N5116	$V_{GS(off)}$	5.0 3.0 1.0	10 6.0 4.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Small-Signal Drain-Source "On" State Resistan	ice				
$V_{GS} = 0$, $I_D = -1.0 \text{ mA}$	2N5114 2N5115 2N5116	r _{ds(on)1}		75 100 175	Ω
Small-Signal Drain-Source "On" State Resistan	ice				
$V_{GS} = 0$, $I_D = 0$; $f = 1 \text{ kHz}$	2N5114 2N5115 2N5116	r _{ds(on)2}		75 100 175	Ω
Small-Signal, Common-Source Short-Circuit Reverse Transfer Capacitance					
$V_{GS} = 12 \text{ V}, V_{DS} = 0$ $V_{GS} = 7.0 \text{ V}, V_{DS} = 0$ $V_{GS} = 5.0 \text{ V}, V_{DS} = 0$	2N5114 2N5115 2N5116	C _{rss}		7.0	pF
Small-Signal, Common-Source Short-Circuit In					
$V_{GS} = 0$, $V_{DS} = -15 \text{ V}$, $f = 1.0 \text{ MHz}$	2N5114, 2N5115 2N5116	C _{iss}		25 27	pF


ELECTRICAL CHARACTERISTICS @ $T_A = +25$ $^{\circ}$ C unless otherwise noted. (continued)


SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-On Delay Time	2N5114			6	
	2N5115	T _{d(on)}		10	ηs
	2N5116	, ,		25	
Rise Time	2N5114			10	
	2N5115	tr		20	ηs
	2N5116			35	
Turn-Off Delay Time	2N5114			6	
	2N5115	T _{d(off)}		8	ηs
	2N5116	=(0.1)		20	•

PACKAGE DIMENSIONS

	Dimensions					
Symbol	Ind	Inch		Millimeters		
	Min	Max	Min	Max		
CD	.178	.195	4.52	4.95		
CH	.170	.210	4.32	5.33		
HD	.209	.230	5.31	5.84		
LC	.100	.100 TP		2.54 TP		
LD	.016	.021	0.41	0.53	7,8	
LL	.500	.750	12.70	19.05	7,8	
LU	.016	.019	0.41	0.48	7,8	
L1		.050		1.27	7,8	
L2	.250		6.35		7,8	
Q		.030		0.76	5	
TL	.028	.048	0.71	1.22	3,4	
TW	.036	.046	0.91	1.17		
r		.010		0.25	10	
α	45°	TP	45° TP		6	
1, 2, 9, 11, 12						

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TH shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by the gauge and gauging procedure shown in the lower figure.
- 7. Dimension LU applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 = source, lead 2 = gate, lead 3 = drain.