

1. **DESCRIPTION**

The XD14538 is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing components, CX and RX. Output Pulse Width T = $RX \cdot CX$ (secs)

 $\mathsf{RX} = \Omega$

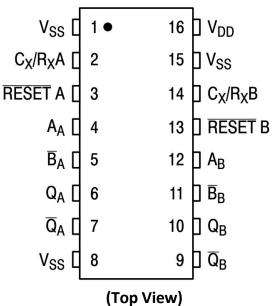
CX = Farads

2. FEATURES

- Unlimited Rise and Fall Time Allowed on the A Trigger Input
- Pulse Width Range = 10 µs to 10 s
- Latched Trigger Inputs
- Separate Latched Reset Inputs
- 3.0 Vdc to 18 Vdc Operational Limits
- Triggerable from Positive (A Input) or Negative–Going Edge (B–Input)
- Capable of Driving Two Low–Power TTL Loads or One Low–Power
 Schottky TTL Load Over the Rated Temperature Range

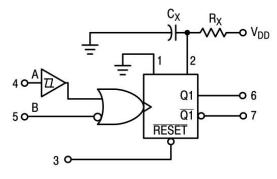
3. MAXIMUMRATINGS

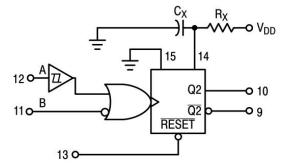
Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	– 0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	– 0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
PD	Power Dissipation, per Package (Note 1)	500	mW
TA	Operating Temperature Range	- 4 0 to +85	°C
T _{stg}	Storage Temperature Range	65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. guard

against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS \leq (Vin or Vout) \leq VDD.


Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.


4. PIN ASSIGNMENT

5. BLOCK DIAGRAM

 R_X AND C_X ARE EXTERNAL COMPONENTS. V_{DD} = PIN 16 V_{SS} = PIN 8, PIN 1, PIN 15

6. ELECTRICAL CHARACTERISTICS

		V	-	- 4 0 °C 25 °C			85°C			
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0	V _{OL}	5.0 10		0.05 0.05		0	0.05 0.05	-	0.05 0.05	Vdc
" Level $V_{in} = V_{DD}$ or 0		15	-	0.05	-	0	0.05	-	0.05	
"1" Level	V _{OH}	5.0 10	4.95 9.95	-	4.95 9.95	5.0 10	-	4.95 9.95		Vdc
V _{in} = 0 or V _{DD}		15	14.95	-	14.95	15	-	14.95	-	
Input Voltage	VIL									Vdc
"0 " Level (V ₀ = 4.5 or 0.5 Vdc)		5.0	-	1.5	-	2.25	1.5 3.0	-	1.5	
(V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)		10 15	-	3.0 4.0	-	4.50 6.75	3.0 4.0	-	3.0 4.0	
"1" Lev	V _{IH}	5.0	3.5	_	3.5	2.75	_	3.5	_	Vdc
el (V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	_	
(V _O = 1.5 or 13.5 Vdc)		15	11	-	11	8.25	-	11	-	
Output Drive Current (V _{OH} = 2.5 Vdc) S	I _{ОН}	5.0	-3.0	-	-2.4	-4.2	-	-1.7	_	mAdc
ource (V _{OH} = 4.6 Vdc)		5.0	_ 0.64	-	_ 0.51	-0.88	-	_ 0.36	-	
(V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)		10 15	-1.6 -4.2	-	-1.3 -3.4	-2.25 -8.8	-	-0.9 -2.4	-	
(V _{OL} = 0.4 Vdc)	I _{OL}	5.0 10	0.64 1.6	-	0.51 1.3	0.88 2.25	-	0.36 0.9	-	mAdc
(V _{OL} = 1.5 Vdc)		15	4.2	-	3.4	8.8	-	2.4	-	
Input Current, Pin 2 or 14	l _{in}	15	-	±0.0 5	-	±0.0000 1	±0.0 5	-	±0.5	µAdc
Input Current, Other Inputs	l _{in}	15	-	±0.1	-	±0.0000 1	±0.1	-	±1.0	µAdc
Input Capacitance, Pin 2 or 14	C _{in}	-	-	-	-	25	-	-	-	pF
Input Capacitance, Other Inputs (V _{in} = 0)	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) Q = Low, Q = High	I _{DD}	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20	- -	150 300 600	µAdc
Quiescent Current, Active State	I _{DD}	5.0	-	2.0	-	0.04	0.20	-	2.0	mAdc
(Both) (Per Package)		10 15	-	2.0 2.0	-	0.08 0.13	0.45 0.70	-	2.0 2.0	
Q = High, Q = Low Total Supply Current at an external	Г	5.0		I _T = (3.		 R _X C _X f + 4C _X f	+ 1 x 10 ⁻		2.0	µAdc
load capacitance (C_L) and at external timing network (R_X, C_X) (Note 3)		10		I _T = (1.	25 x 10 ⁻¹	$R_X C_X f + 9 C_X$) $R_X C_X f + 12$ A (one mono	C _X f + 3 x 2	10 ^{–5} C _L f	nly),	
					C _X in and f frequ	µF, C _L in pF, I in Hz is the i	R _X in k ohi input	ms,		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25°C.

7. OPERATING CONDITIONS

External Timing Resistance	R _X	-	5.0	-	(Note 4)	kΩ
External Timing Capacitance	C _X	-	0	_	No Limit (Note 5)	μF

 The maximum usable resistance RX is a function of the leakage of the capacitor CX, leakage of the XD14538, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for RX > 1 MΩ..

5. If CX > 15 μ F, use discharge protection diode per Fig. 11.

8. SWITCHING CHARACTERISTICS

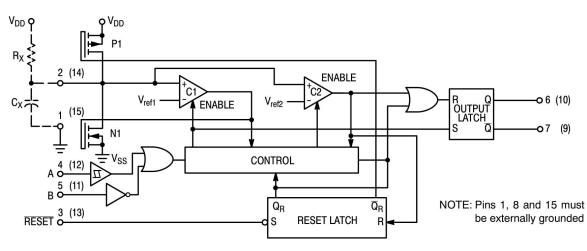
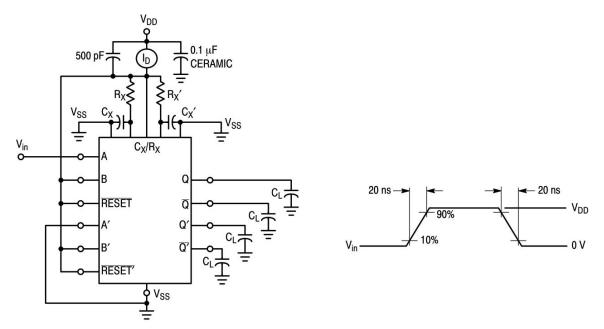
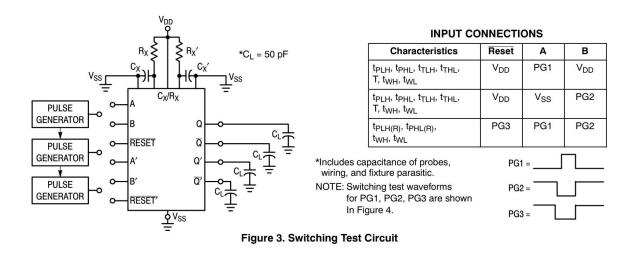
Chorrestovistic	Sumhal	V _{DD}	All Types			Unit
Characteristic	Symbol	Vdc	Min	Typ (Note 7)	Max	
Output Rise Time	t _{TLH}					ns
$t_{TLH} = (1.35 \text{ ns/pF}) C_L +$		5.0	-	100	200	
33 ns t _{TLH} = (0.60 ns/pF)		10	-	50	100	
C_L + 20 ns t_{TLH} = (0.40		15	-	40	80	
ns/pF) C _L + 20 ns						
Output Fall Time	t _{THL}					ns
t _{THL} = (1.35 ns/pF) C _L +		5.0	-	100	200	
33 ns t _{THL} = (0.60 ns/pF)		10	-	50	100	
C_L + 20 ns t_{THL} = (0.40		15	-	40	80	
ns/pF) C _L + 20 ns						
Propagation	t _{PLH}					ns
Delay Time A	,					
or B to Q or Q	t _{PHL}	5.0	_	300	600	
t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 255		10	_	150	300	
ns t _{PLH} , t _{PHL} = (0.36 ns/pF) C _L +		15	_	100	220	
132 ns t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF})$				100		
C _L + 87 ns						ns
		5.0	-	250	500	
Reset to Q or Q		10	-	125	250	
t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 205		15	-	95	190	
ns t _{PLH} , t _{PHL} = (0.36 ns/pF) C _L +						
107 ns t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF})$						
C _L + 82 ns						
Input Rise and Fall Times	t _r , t _f	5	-	-	15	μs
Reset		10	-	-	5	
		15	-	-	4	
B Input		5	_	300	1.0	ms
Binput		10	-	1.2	0.1	
		15	-	0.4	0.0	
				-	5	
A Input		5		•		-
		10		No		
		15		Limit		
				-		
Input Pulse	t _{WH} ,	5.0	170	85	-	ns
Width A,	t _{WL}	10	90	45	-	
B, or		15	80	40	-	
Reset						
Retrigger Time	t _{rr}	5.0	0	-	-	ns
		10	0	-	-	
		15	0	-	-	
Output Pulse Width — Q	т			1		μs
or Q Refer to Figures 8						^{P13}
and 9						
$C_X = 0.002 \mu\text{F}, \text{R}_X = 100 \text{k}\Omega$		5.0	198	210	230	
		10	200	212	232	
		15	202	214	234	

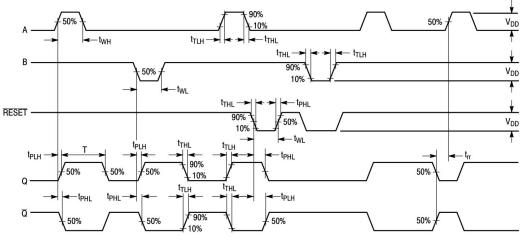
XD14538 Dual Precision Retriggerable/Resettable Monostable Multivibrator

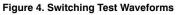
C _X = 0.1 μF, R _X = 100 kΩ		5.0 10 15	9.3 9.4 9.5	9.86 10 10.14	10.5 10.6 10.7	ms
C _X = 10 μF, R _X = 100 kΩ		5.0 10 15	0.91 0.92 0.93	0.965 0.98 0.99	1.03 1.04 1.06	S
Pulse Width Match between circuits in the same package. C _X = 0.1 μF, R _X = 100 kΩ	100 [(T ₁ – T ₂)/T ₁]	5.0 10 15	- - -	±1.0 ±1.0 ±1.0	±5.0 ±5.0 ±5.0	%

6. The formulas given are for the typical characteristics only at 25°C.

7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Logic Diagram (1/2 of Devlce Shown)



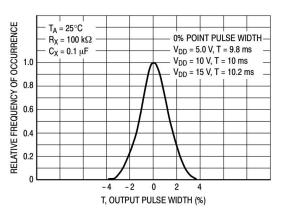


Figure 5. Typical Normalized Distribution of Units for Output Pulse Width

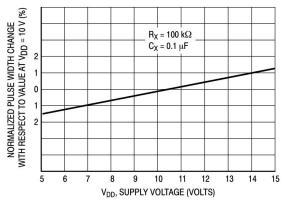


Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage VDD

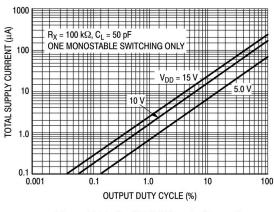
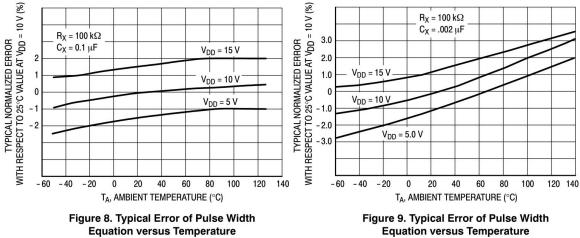
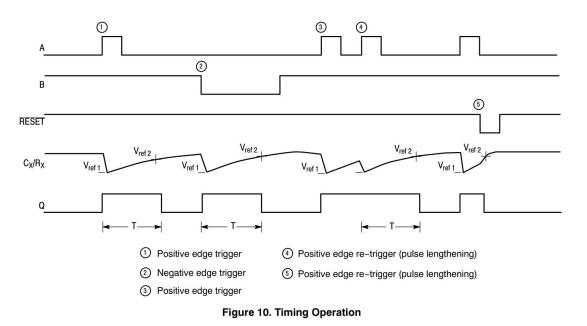



Figure 7. Typical Total Supply Current versus Output Duty Cycle


FUNCTION TABLE								
	Inputs	Outputs						
Reset	Α	В	Q	Q				
Н	7	Н	Г	T				
н	L	~	Л	~ [
Н	$\sim \sim$	L	Not Triggered					
Н	н	ノヘ	Not Triggered					
H	L, H, 🔨	H	Not Triggered					
Н	L	L, H, 🖌	Not Triggered					
L	Х	Х	L	Н				
$\sim \checkmark$	Х	Х	Not Triggered					

Equation versus Temperature

THEORY OF OPERATION

www.xinluda.com

TRIGGER OPERATION

The block diagram of the XD14538 is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_X completely charged to V_{DD} . When the trigger input A goes from V_{SS} to V_{DD} (while inputs B and Reset are held to V_{DD}) a valid trigger is recognized, which turns on comparator C1 and N-channel transistor N1 ①. At the same time the output latch is set. With transistor N1 on, the capacitor C_X rapidly discharges toward V_{SS} until V_{ref1} is reached. At this point the output of comparator C1 changes state and transistor N1 off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor C_X begins to charge through the timing resistor, R_X , toward V_{DD} . When the voltage across C_X equals $V_{ref 2}$, comparator C2 changes state, causing the output latch to reset (Q goes low) while at the same time disabling comparator C2 ②. This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, CX is fully charged to VDD causing the current through resistor RX to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the XD14538 is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of CX, RX, or the duty cycle of the input waveform.

RETRIGGER OPERATION

The XD14538 is retriggered if a valid trigger occurs (3) followed by another valid trigger (4) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $V_{ref 1}$, but has not yet reached $V_{ref 2}$, will cause an increase in output pulse width T. When a valid retrigger is initiated

(4), the voltage at C_X/R_X will again drop to $V_{ref 1}$ before progressing along the RC charging curve toward V_{DD} . The Q output will remain high until time T, after the last valid retrigger.

RESET OPERATION

The XD14538 may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on Reset sets the reset latch and causes the capacitor to be fast charged to V_{DD} by turning on transistor P1 (5). When the voltage on the capacitor reaches $V_{ref 2}$, the reset latch will clear, and will then be ready to accept another pulse. It the Reset input is held low, any trigger inputs that occur will be inhibited and the Q and Q outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Reset input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the XD14538 is powered down, the capacitor voltage may discharge from VDD through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the VDD supply must not be faster than (VDD). (C) / (10 mA). For example, if VDD = 10 V and CX = 10 μ F, the VDD supply should discharge no faster than (10 V) x (10 μ F) / (10 mA) = 10 ms. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate. When a more rapid decrease of VDD to zero volts occurs, the XD14538 can sustain damage. To avoid this possibility use an external clamping diode, DX, connected as shown in Fig. 11.

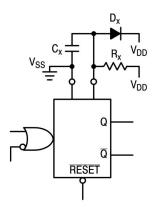
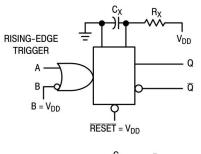
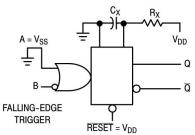




Figure 11. Use of a Diode to Limit Power Down Current Surge

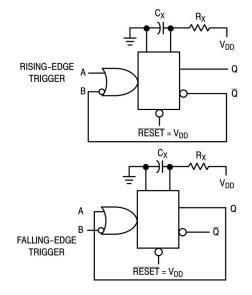


Figure 12. Retriggerable Monostables Circuitry

Figure 13. Non–Retriggerable Monostables Circuitry

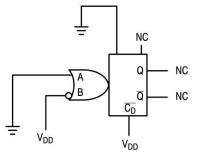
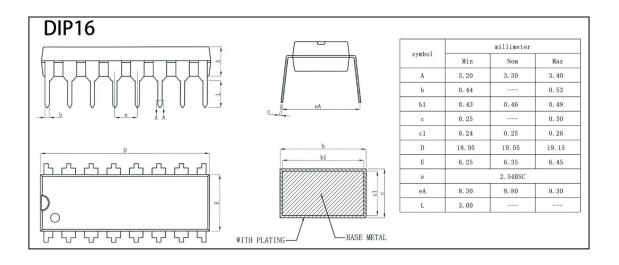


Figure 14. Connection of Unused Sections



9. ORDERING INFORMATION

Part	Device	Package	Body size	Temperature	MSL	Transport	Package
Number	Marking	Type	(mm)	(°C)		Media	Quantity
XD14538	XD14538	DIP16	19.05 * 6.35	- 40 to 85	MSL3	Tube 25	1000

Ordering Information

10. DIMENSIONAL DRAWINGS

[if you need help contact us. Xinluda reserves the right to change the above information without prior notice]