

PART NUMBER

74F257ASC-ROC

Rochester Electronics

Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

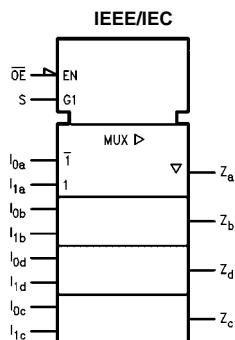
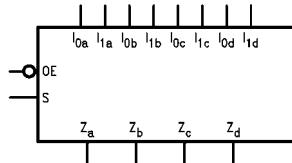
74F257A

Quad 2-Input Multiplexer with 3-STATE Outputs

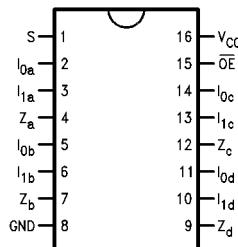
General Description

The 74F257A is a quad 2-input multiplexer with 3-STATE outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\bar{OE}) input, allowing the outputs to interface directly with bus-oriented systems.

Features



- Multiplexer expansion by tying outputs together
- Non-inverting 3-STATE outputs
- Input clamp diodes limit high-speed termination effects

Ordering Code:


Order Number	Package Number	Package Description
74F257ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F257ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F257APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

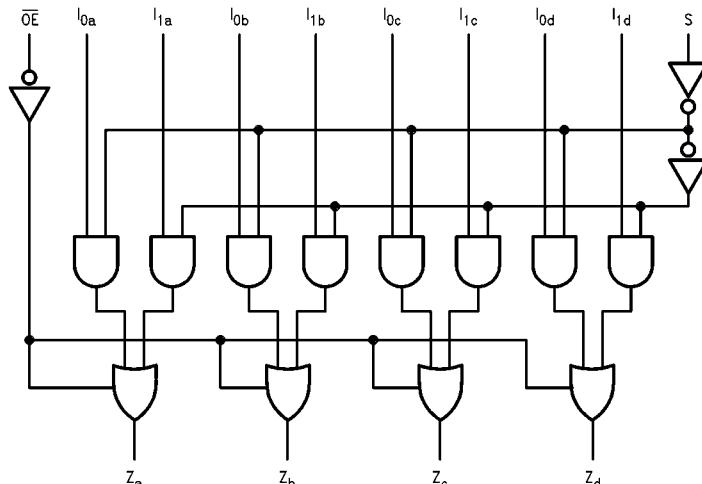
Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I_{IH}/I_{IL} Output I_{OH}/I_{OL}
S	Common Data Select Input	1.0/1.0	20 μ A/0.6 mA
\overline{OE}	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μ A/0.6 mA
I_{0a} – I_{0d}	Data Inputs from Source 0	1.0/1.0	20 μ A/0.6 mA
I_{1a} – I_{1d}	Data Inputs from Source 1	1.0/1.0	20 μ A/0.6 mA
Z_a – Z_d	3-STATE Multiplexer Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)

Truth Table

Output Enable	Select Input	Data Inputs		Output
\overline{OE}	S	I_0	I_1	Z
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immortal
Z = High Impedance


Functional Description

The 74F257A is a quad 2-input multiplexer with 3-STATE outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the I_{0x} inputs are selected and when Select is HIGH, the I_{1x} inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

$$Z_n = \overline{OE} \cdot (I_{n0} \cdot S + I_{n1} \cdot \overline{S})$$

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to 3-STATE devices whose outputs are tied together are designed so there is no overlap.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

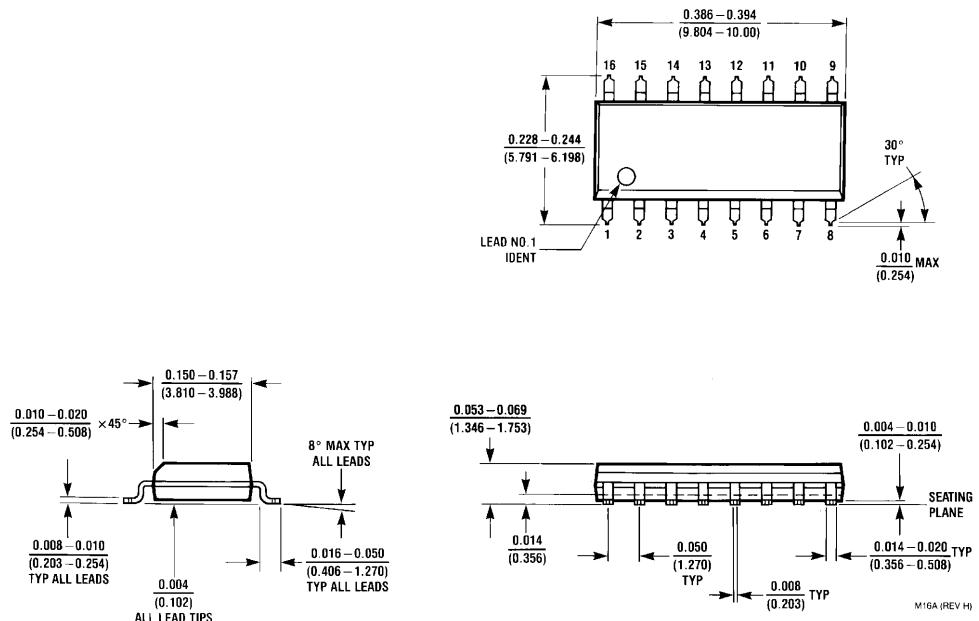
Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

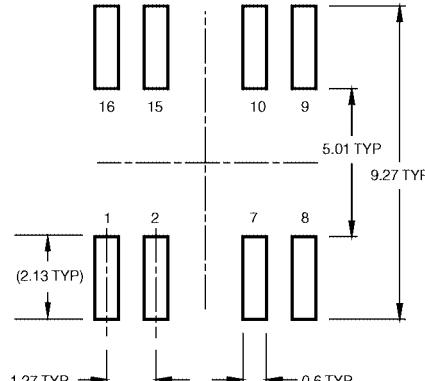
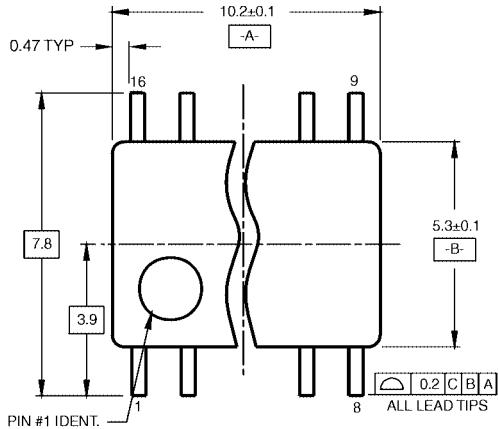
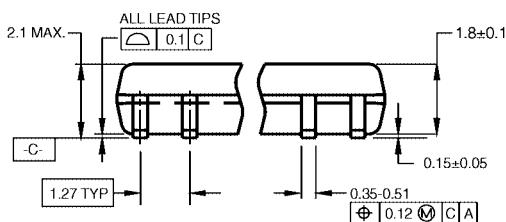
Recommended Operating Conditions

Free Air Ambient Temperature 0°C to +70°C

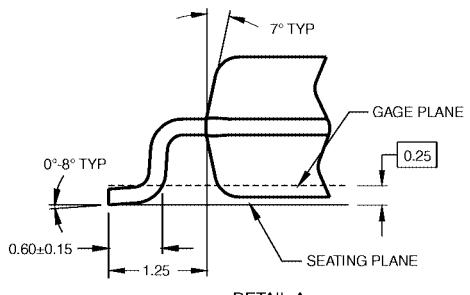
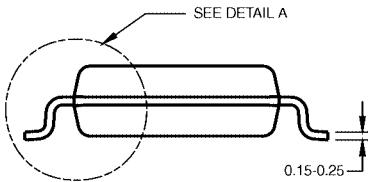
Supply Voltage +4.5V to +5.5V


Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.**Note 2:** Either voltage limit or current limit is sufficient to protect inputs.**DC Electrical Characteristics**

Symbol	Parameter	Min	Typ	Max	Units	V_{CC}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage		0.8		V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage		-1.2		V	Min	$I_{IN} = -18$ mA
V_{OH}	Output HIGH Voltage	10% V_{CC}	2.5				$I_{OH} = -1$ mA
		10% V_{CC}	2.4			Min	$I_{OH} = -3$ mA
		5% V_{CC}	2.7				$I_{OH} = -1$ mA
		5% V_{CC}	2.7				$I_{OH} = -3$ mA
V_{OL}	Output LOW Voltage	10% V_{CC}		0.5	V	Min	$I_{OL} = 24$ mA
I_{IH}	Input HIGH Current			5.0	μ A	Max	$V_{IN} = 2.7V$
I_{BVI}	Input HIGH Current Breakdown Test			7.0	μ A	Max	$V_{IN} = 7.0V$
I_{CEX}	Output HIGH Leakage Current			50	μ A	Max	$V_{OUT} = V_{CC}$
V_{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9$ μ A All Other Pins Grounded
I_{OD}	Output Leakage Circuit Current			3.75	μ A	0.0	$V_{IOD} = 150$ mV All Other Pins Grounded
I_{IL}	Input LOW Current		-0.6		mA	Max	$V_{IN} = 0.5V$
I_{OZH}	Output Leakage Current		50		μ A	Max	$V_{OUT} = 2.7V$
I_{OZL}	Output Leakage Current		-50		μ A	Max	$V_{OUT} = 0.5V$
I_{OS}	Output Short-Circuit Current	-60	-150		mA	Max	$V_{OUT} = 0V$
I_{ZZ}	Bus Drainage Test		500		μ A	0.0V	$V_{OUT} = 5.25V$
I_{CCH}	Power Supply Current	9.0	15		mA	Max	$V_O = HIGH$
I_{CCL}	Power Supply Current	14.5	22		mA	Max	$V_O = LOW$
I_{CCZ}	Power Supply Current	15	23		mA	Max	$V_O = HIGH Z$




AC Electrical Characteristics

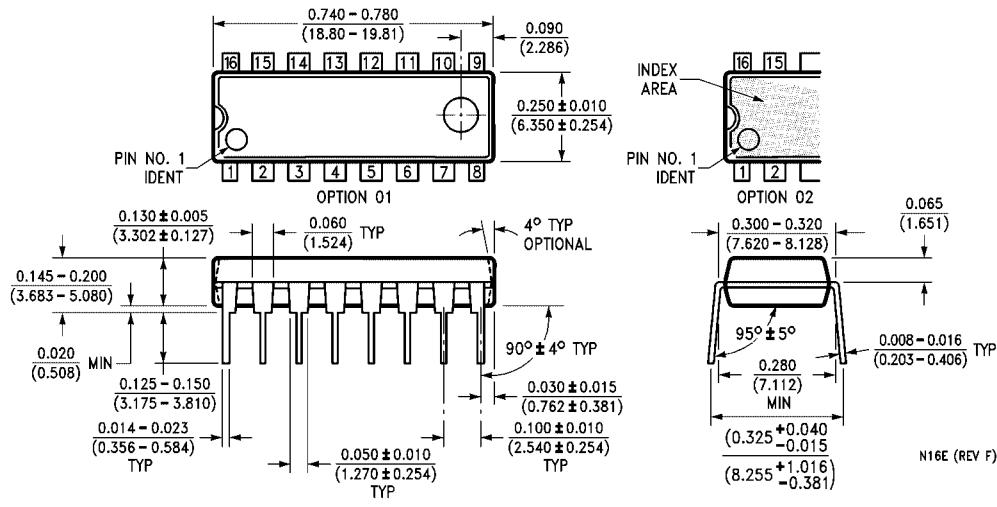
Symbol	Parameter	$T_A = +25^\circ C$ $V_{CC} = 5.0V$ $C_L = 50 pF$			$T_A = -55^\circ C$ to $+125^\circ C$ $V_{CC} = 5.0V$ $C_L = 50 pF$			$T_A = 0^\circ C$ to $+70^\circ C$ $V_{CC} = 5.0V$ $C_L = 50 pF$			Units
		Min	Typ	Max	Min	Max	Min	Max	Min	Max	
t_{PLH}	Propagation Delay I_n to Z_n	2.5	4.5	5.5	2.0	7.0	2.0	6.0	2.0	6.0	ns
t_{PHL}	Propagation Delay S to Z_n	4.0	5.0	9.5	3.5	11.5	3.5	10.5	2.5	8.0	ns
t_{PZH}	Output Enable Time	2.0	5.9	6.0	2.0	8.0	2.0	7.0	2.5	8.0	ns
t_{PZL}		2.5	5.5	7.0	2.5	9.0	2.5	8.0	2.0	7.0	
t_{PHZ}	Output Disable Time	2.0	4.3	6.0	2.0	7.0	2.0	7.0	2.0	7.0	ns
t_{PLZ}		2.0	4.5	6.0	2.0	8.5	2.0	7.0			



Physical Dimensions inches (millimeters) unless otherwise noted

**16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
Package Number M16A**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS


NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M16DRevB1

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M16D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com