

PART NUMBER 55ALS194B2A-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

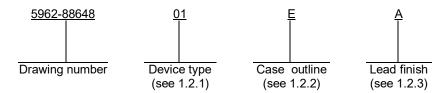
Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

	REVISIONS		
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED
А	Change footnote 1/ in 1.4. Change limits for Icc. Change conditions and limits for propagation delays and transition times. Change figures 3, 5, and 6 for load capacitance. Delete subgroups 10 and 11 from table I and table II.	92-02-10	M. A. Frye
В	Changes in accordance with NOR 5962-R039-95.	94-11-29	M. A. Frye
С	Changes in accordance with NOR 5962-R194-96.	96-08-21	Raymond Monnin
D	Incorporate revisions B and C N.O.R.'s. Update drawing to current requirements. Editorial changes throughout drw	01-08-10	Raymond Monnin
Е	Sheet 2, change generic part number drw	02-03-14	Raymond Monnin
F	Redrawn. Paragraphs updated to MIL-PRF-38535 requirementsdrw	14-02-13	Charles F. Saffle
G	Update drawing to current MIL-PRF-38535 requirements jt	19-05-01	Charles F. Saffle



THE ORIGINAL FIRST SHEET OF THIS DRAWING HAS BEEN REPLACED

REV																
SHEET																
REV																
SHEET																
REV STATUS	REV		G	G	G	G	G	G	G	G	G	G	G	G	G	
OF SHEETS	SHEET		1	2	3	4	5	6	7	8	9	10	11	12	13	
PMIC N/A PREPARED BY Larry T. Gauder DLA LAND AND MARITIM					_											
STANDARD MICROCIRCUIT DRAWING	CHECKED Ray Mor					COLUMBUS, OHIO 43218-3990 https://www.dla.mil/LandandMaritime										
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DRAWING APPROVAL DATE APPROVED BY D. A. DiCenzo MICROCIRCUIT LOW POWER S DIFFERENTIAL				R SĆI	TTOH	ΚΫ́,	QUA	DRÚ	PLE		ED					
DEPARTMENT OF DEFENSE		88-0	8-17			DIFFERENTIAL LINE DRIVER, MONOL SILICON										
AMSC N/A	REVISION LEVEL G					ZE A		GE CO 67268			5	5962-	8864	8		
						SH	IEET		1 01	F 13						

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type</u>. The device type identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01	55ALS194	Quadruple differential line driver with
		three-state outputs

1.2.2 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	<u>Descriptive designator</u>	<u>Terminals</u>	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
2	QCC1-N20	20	Square leadless chip carrier

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V dc minimum to +7.0 V dc maximum
Input voltage range	
Maximum power dissipation (P _D) 1/	1380 mW
Lead temperature (soldering, 10 seconds)	
Thermal resistance, junction-to-case (θ _{JC})	
Junction temperature (T _J)	+150°C

1.4 Recommended operating conditions.

Supply voltage range (V_{CC})	4.5 V dc minimum to 5.5 V dc maximum
Data inputs	2.0 V dc
Enable T _C = +25°C	2.0 V dc
Enable T _C = -55°C, +125°C	2.1 V dc
Maximum low level input voltage (V _{IL}):	
T _C = -55°C, +25°C	0.8 V
T _C = +125°C	0.7 V
Maximum high level output current (I _{OH})	-20.0 mA
Maximum low level output current (I _{OL}):	
T _C = +25°C	48.0 mA
T _C = -55°C, +125°C	20.0 mA
Case operating temperature range (T _c)	-55°C to +125°C

^{1/} For operation above 25°C free-air temperature, derate linearly at 11.0 mW/°C.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88648
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://quicksearch.dla.mil/)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.
 - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
 - 3.2.5 Driver V_{OD} and V_{OC} . The driver V_{OD} and V_{OC} shall be as specified on figure 4.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-88648
		REVISION LEVEL G	SHEET 3

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	-55°C ≤ T _C ≤ +	Conditions $-55^{\circ}C \le T_C \le +125^{\circ}C$ unless otherwise specified		$-55^{\circ}C \le T_C \le +125^{\circ}C$		Device type	Lin Min	nits Max	Unit
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IL} = $ herein, $I_{OH} = -20 \text{ I}$ $V_{IH} = \text{see } 1.4$	1, 2, 3	All	2.4	IVIAX	V			
Low level output voltage	V _{OL}	I_{OL} = maximum, s V_{CC} = 4.5 V, V_{IL} = herein, V_{IH} = see	see 1.4	1, 2, 3	All		0.5	V		
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V, I _{IN} =	-18 mA	1, 2, 3	All		-1.5	V		
Output voltage	V _{оит}	$V_{CC} = 4.5 \text{ V to } 5.5$ $I_{OUT} = 0.0 \text{ mA}$	5 V,	1, 2, 3	All	0	6	V		
Differential output voltage (absolute magnitude)	V _{OD1}	$V_{CC} = 4.5 \text{ V to } 5.5$ $I_{OUT} = 0.0 \text{ mA}$	V _{CC} = 4.5 V to 5.5 V, I _{OUT} = 0.0 mA		All	2	6	V		
	V _{OD2}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ R}_{L} = 100\Omega, I_{OUT} = 100\Omega$		1, 2, 3	All	2		V		
Change in magnitude of differential output voltage (absolute magnitude)	Δ V _{OD}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \qquad 2/$ $R_L = 100\Omega, I_{OUT} = 0.0 \text{ mA},$		1, 2, 3	All		±0.4	V		
Common-mode output voltage	V _{oc}			1, 2, 3	All		±3.0	V		
Change in magnitude of common-mode output voltage (absolute magnitude)	Δ V _{OC}	See figure 4		1, 2, 3	All		±0.4	V		
Output current with power off	Io	$V_{OUT} = 6.0 \text{ V}, V_{CC}$	c = 0.0 V	1, 2, 3	All		100	μΑ		
		V _{OUT} = -0.25 V, V	_{CC} = 0.0 V				-100			
Output current, high impedance state	l _{OZ}	V _{CC} = 5.0 V, Output enables	V _{OUT} = 2.7 V	1, 2, 3	All		100	μΑ		
		= 0.8 V	V _{OUT} = 0.5 V				-100			
High level input current	I _{IH1}	V _{IN} = 5.5 V, V _{CC} =	= 5.5 V	1, 2, 3	All		100	μА		
	I _{IH2}	V _{IN} = 2.7 V, V _{CC} =	= 5.5 V				50			
Low level input current	I _{IL}	V _{IN} = 0.5 V, V _{CC} =	V _{IN} = 0.5 V, V _{CC} = 5.5 V		All		-200	μА		
Short circuit output current	los	$V_{IN} = 2.0 \text{ V}, V_{CC} = 5.5 \text{ V}, V_{OUT} = 0.0 \text{ V} \underline{3}/$		1, 2, 3	All	-40	-140	mA		
Supply current (all drivers)	Icc	All outputs disable V _{CC} = 5.5 V	ed	1, 2, 3	All		45	mA		
Functional tests		See 4.3.1c		7, 8	All					

See footnotes at end of table.

STANDARD					
MICROCIRCUIT DRAWING					
DLA LAND AND MARITIME					
COLUMBUS, OHIO 43218-3990					

SIZE A		5962-88648
	REVISION LEVEL G	SHEET 4

TABLE I. <u>Electrical performance characteristics</u> - continued.

Test	Symbol		Group A subgroups	Device type	Lin	Unit	
					Min	Max	
Propagation delay time, Input to output	t _{PLH}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF} \frac{4}{}$	9	All		14	ns
	t _{PHL}	$R_L = 200\Omega$, $T_C = +25^{\circ}C$, See figure 6	9	All		22	ns
Output-to-output skew	t _{SK}	- Coo ngare o	9	All		6	ns
Differential output transition time	t _{TD}	V_{CC} = 5.0 V, C_L = 50 pF <u>4</u> / R_L = 100 Ω , T_C = +25°C, See figure 5	9	All		22	ns
Output enable time,	t _{PZH}		9	All		15	ns
Input to output	t _{PZL}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF} \frac{4}{}$ $R_L = 200\Omega, T_C = +25^{\circ}\text{C},$	9	All		21	ns
Output disable time,	t _{PHZ}	See figure 6	9	All		17	ns
Input to output	t _{PLZ}		9	All		19	ns

- 1/ $|V_{OD2}| = \frac{1}{2} |V_{OD1}|$, but cannot be < 2 V.
- $2/\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.
- 3/ Not more than one output should be shorted at one time, and the duration of the short circuit condition shall not exceed one second.
- $\underline{4}$ / Propagation delay time testing may be performed using either C_L = 15 pF or C_L = 50 pF. However, the manufacturers must certify and guarantee that the microcircuit meets the switching test limits specified for 50 pF load.

STANDARD	
MICROCIRCUIT DRAWING	
DLA LAND AND MARITIME	

COLUMBUS, OHIO 43218-3990

SIZE A		5962-88648
	REVISION LEVEL G	SHEET 5

Device type	01	1
Case outlines	E and F	2
Terminal number	Terminal	symbol
1	1A	NC
2	1Y	1A
3	1Z	1Y
4	1, 2EN	1Z
5	2Z	1, 2EN
6	2Y	NC
7	2A	2Z
8	GND	2Y
9	3A	2A
10	3Y	GND
11	3Z	NC
12	3, 4EN	3A
13	4Z	3Y
14	4Y	3Z
15	4A	3, 4EN
16	V_{CC}	NC
17		4Z
18		4Y
19		4A
20		V _{CC}

NC = No connection

FIGURE 1. Terminal connections.

Innut	Output enable	Outp	outs
Input	enable	Υ	Z
Н	Н	Н	L
L	Н	L	Н
Х	L	High impedance	High impedance

H = TTL high level, L = TTL low level, X = irrelevant

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88648
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 6

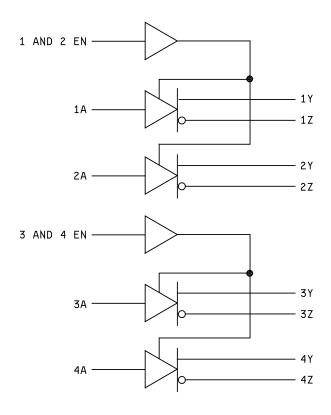


FIGURE 3. Logic diagram.

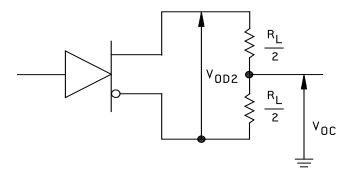
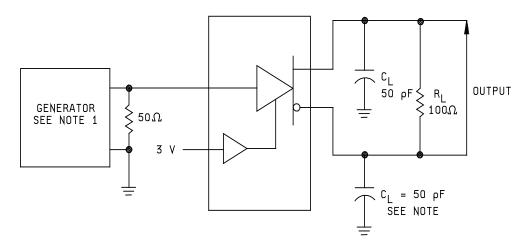



FIGURE 4. Driver V_{OD} and V_{OC}.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88648
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 7

Test circuit

NOTE: C_L includes probe and stray capacitance.

Voltage waveforms

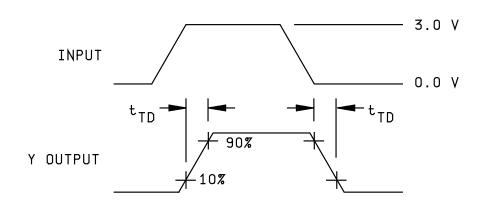
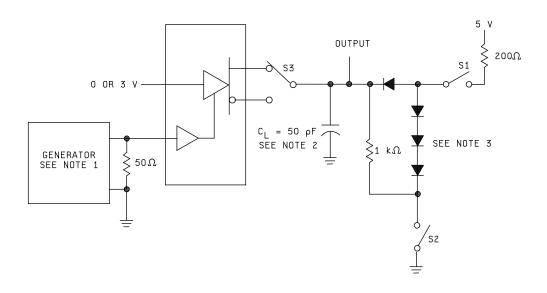
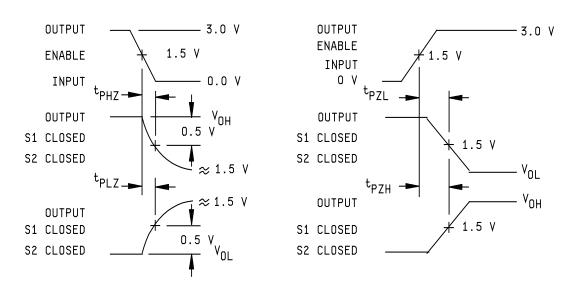
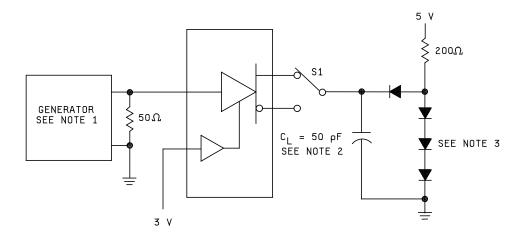



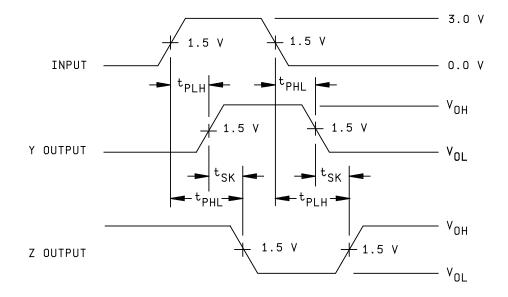
FIGURE 5. <u>Differential output transition times</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88648
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 8

Test circuit

Switching waveforms


FIGURE 6. Test circuits and switching waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88648
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 9

Test circuit

Propagation delay times

NOTES:

- The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle ≤ 50 percent, Z = 50 ohms.
 2. C_L includes probe and stray capacitance.
 3. All diodes are 1N3064 or 1N916.

FIGURE 6. Test circuits and switching waveforms - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88648
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL G	SHEET 10

- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.
- 3.5.1 <u>Certification/compliance mark.</u> A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime -VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition B or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MICROCIRCUIT DRAWING	STANDARD
	MICROCIRCUIT DRAWING

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-88648
	REVISION LEVEL G	SHEET 11

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, 6, 10 and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroups 7 and 8 shall include verification of the truth table.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition B or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-88648
		REVISION LEVEL G	SHEET 12

- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime -VA, telephone (614) 692-8108.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime -VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime -VA.

STANDARD				
MICROCIRCUIT DRAWING				
DLA LAND AND MARITIME				
COLUMBUS, OHIO 43218-3990				

SIZE A		5962-88648
	REVISION LEVEL G	SHEET 13

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 19-05-01

Approved sources of supply for SMD 5962-88648 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-8864801EA	3V146	55ALS194/BEA
	<u>3</u> /	SNJ55ALS194J
5962-8864801FA	3V146	55ALS194/BFA
	<u>3</u> /	SNJ55ALS194W
5962-88648012A	3V146	55ALS194/B2A
	<u>3</u> /	SNJ55ALS194FK

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

 Vendor CAGE
 Vendor name and address

 3V146
 Rochester Electron

Rochester Electronics Inc. 16 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.