PhotopsTM Photodiode-Amplifier Hybrids

The Photop[™] Series, combines a photodiode with an operational amplifier in the same package. Photops[™] general-purpose detectors have a spectral range from either 350 nm to 1100 nm or 200 nm to 1100nm. They have an integrated package ensuring low noise output under a variety of operating conditions. These op-amps are specifically selected by OSI Optoelectronics engineers for compatibility to our photodiodes. Among many of these specific parameters are low noise, low drift and capability of supporting a variety of gains and bandwidths determined by the external feedback components. Operation from DC level to several MHz is possible in an either unbiased configuration for low speed, low drift applications or biased for faster response time.

Any modification of the above devices is possible. The modifications can be simply adding a bandpass optical filter, integration of additional chip (hybrid) components inside the same package, utilizing a different op-amp, photodetector replacement, modified package design and / or mount on PCB or ceramic.

APPLICATIONS

- General Purpose Light Detection
- Laser Power Monitoring
- Medical Analysis
- Laser Communications
- Bar Code Readers
- Industrial Control Sensors
- Pollution Monitoring
- Guidance Systems
- Colorimeter

FEATURES

- Detector/Amplifier Combined
- Adjustable Gain/Bandwidth
- Low Noise
- Wide Bandwidth
- DIP Package
- Large Active Area

Typical Responsivity vs. Frequency

For your specific requirements, contact one of our Applications Engineers.

Pr= 10Kohm

0.1

-6

0.01

World Class Products - Together We Perform

Frequency (MHz)

10

PhotopsTM (Photodiode Specifications) Typical Electro-Optical Specifications at T_A=23°C

umber	Active Area		Responsivity (A/W)				Capacitance (pF)		Dark Current (nA)		Shunt Resistance (MΩ) (MΩ)		EP √Hz)	Reverse Voltage	Temp.* Range (°C)			
Model Number	Area (mm²)	Dimension (mm)	254 nm		970 nm		o v	-10 V	-10 V		-10 mV	0 V 254 nm	-10 V 970 nm	v	ting	age	Package Style	
			Li m	typ.	'n'n	typ.	typ.	typ.	typ.	max.	typ.	typ.	typ.	max.	Operating	Storage		
350-1100 nm	350-1100 nm Spectral Range																	
UDT-455 OSI-515*	5.1	2.54 φ				0.65	85	15	0.25	3			1.4 e -14				30 / TO-5	
UDT-020D	16	4.57 φ		- 0.6	0.60		330	60	0.5	10		1.9 e -14	30**		-	31 / TO-8		
UDT-555D	100	11.3 φ					1500	300	2	25			3.9 e -14			100	32 / Special	
200-1100 nm	Spect	ral Rar	nge												~+ 70	+ 2		
UDT-455UV	5.1	2.54 φ					300				100	9.2 e -14			0	-30	30 / TO-5	
OSI-020UV	16	4.57 ¢]				1000					1.3 e -13					31 / TO-8	
UDT-055UV	50	7.98 ¢	0.10	0.14	-		2500				20	2.1 e -13		**			32 / Special	
UDT-555UV UDT-555UV/LN**	100	11.3 ø									10	2.9 e -13					32 / Special	

Operational Amplifier Specifications Electro-Optical Specifications at T_A=23 °C

Model Number	Supply Voltage (m			scent oply rent 1A)	y Input Offset t Voltage		τ Temp. < Coefficient Input Offset Voltage		Input Bias Current pA		Gain Bandwidth Product MHz		Slew Rate V / µs		Open Loop Gain, DC V /mV		Input Noise Voltage ² H ² H ² H 00 ¹ Hz		Input Noise Current H ¥ T fA/ √Hz	
				± 15 V																
	т. Ц	typ.	max.	typ.	max.	typ.	max.	typ.	max.	typ.	max.	min.	typ.	min.	typ.	min.	typ.	typ.	typ.	typ.
UDT-455																				
UDT-455UV		±15	±18	2.8	5.0	0.5	3	4	30	±80	±400	3.0	5.4	5	9	50	200	20	15	10
UDT-020D	1																			
OSI-020UV		±15	±18	1.8	2	0.03	0.12	0.35	1	0.5	20		5.1		20	1000	2000	5.8	5.1	0.8
OSI-515*		±15	±18	6.5	7.2	1	3	10		±15	±40	23	26	125	140	3	6.3		12	10
UDT-555UV/LN		±15	±18	2.5	3.5	0.1	0.5	±2	±5	±0.8	±2		2	1	2	501	1778	15	8	0.5
UDT-055UV																				
UDT-555D		±15	±22	2.7	4.0	0.4	1	3	10	±40	±200	3.5	5.7	7.5	11	75	220	20	15	10
UDT-555UV	1																			

¶ For mechanical drawings please refer to pages 61 thru 73.
** LN – Series Devices are to be used with a 0V Bias.
* Non-Condensing temperature and Storage Range, Non-Condensing Environment.
OSI-515 replaces UDT-455HS

30

UDT-020D, OSI-020UV

UDT-555UV/LN

The output voltage is proportional to the light intensity of the light and is given by:

$$V_{OUT} = I_P \times R_F$$

= $(P \times R_{\lambda}) \times R_F$ (1)

Frequency Response (Photodiode/Amplifier Combination)

The frequency response of the photodiode / amplifier combination is determined by the characteristics of the photodetector, pre-amplifier as well as the feedback resistor (R_F) and feedback capacitor (C_F). For a known gain, (R_F), the 3dB frequency response of the detector/pre-amp combination is given by:

$$f_{3dB} = \frac{1}{2\pi C_F R_F} \tag{2}$$

However, the desired frequency response is limited by the Gain Bandwidth Product (GBP) of the op-amp. In order to have a stable output, the values of the R_F and C_F must be chosen such that the 3dB frequency response of the detector / pre-amp combination, be less than the maximum frequency of the op-amp, i.e. $f_{adB} \leq f_{max}$.

$$f_{\max} = \sqrt{\frac{GBP}{2\pi R_F (C_F + C_J + C_A)}}$$
(3)

where C_A is the amplifier input capacitance.

In conclusion, an example for frequency response calculations, is given below. For a gain of 10° , an operating frequency of 100 Hz, and an op-amp with GBP of 5 MHz:

$$C_F = \frac{1}{2\pi f_{3dB}R_F} = 15.9pF$$
(4)

Thus, for $C_{\scriptscriptstyle F}$ = 15.9 pF, $C_{\scriptscriptstyle J}$ = 15 pF and $C_{\scriptscriptstyle A}$ = 7 pF, $f_{\scriptscriptstyle max}$ is about 14.5 kHz. Hence, the circuit is stable since $f_{\scriptscriptstyle 3dB}$ < $f_{\scriptscriptstyle max}.$

For more detailed application specific discussions and further reading, refer to the APPLICATION NOTES INDEX in the catalog.

Note: The shaded boxes represent the Photop[™] components and their connections. The components outside the boxes are typical

Photodiode Care and Handling Instructions

AVOID DIRECT LIGHT

Since the spectral response of silicon photodiode includes the visible light region, care must be taken to avoid photodiode exposure to high ambient light levels, particularly from tungsten sources or sunlight. During shipment from OSI Optoelectronics, your photodiodes are packaged in opaque, padded containers to avoid ambient light exposure and damage due to shock from dropping or jarring.

AVOID SHARP PHYSICAL SHOCK

Photodiodes can be rendered inoperable if dropped or sharply jarred. The wire bonds are delicate and can become separated from the photodiode's bonding pads when the detector is dropped or otherwise receives a sharp physical blow.

CLEAN WINDOWS WITH OPTICAL GRADE CLOTH / TISSUE

Most windows on OSI Optoelectronics photodiodes are either silicon or quartz. They should be cleaned with isopropyl alcohol and a soft (optical grade) pad.

OBSERVE STORAGE TEMPERATURES AND HUMIDITY LEVELS

Photodiode exposure to extreme high or low storage temperatures can affect the subsequent performance of a silicon photodiode. Storage temperature guidelines are presented in the photodiode performance specifications of this catalog. Please maintain a non-condensing environment for optimum performance and lifetime.

OBSERVE ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS

OSI Optoelectronics photodiodes, especially with IC devices (e.g. Photops) are considered ESD sensitive. The photodiodes are shipped in ESD protective packaging. When unpacking and using these products, anti-ESD precautions should be observed.

DO NOT EXPOSE PHOTODIODES TO HARSH CHEMICALS

Photodiode packages and/or operation may be impaired if exposed to CHLOROTHENE, THINNER, ACETONE, or TRICHLOROETHYLENE.

INSTALL WITH CARE

Most photodiodes in this catalog are provided with wire or pin leads for installation in circuit boards or sockets. Observe the soldering temperatures and conditions specified below:

Soldering Iron:	Soldering 30 W or le Temperature at tip o	ess if iron 300°C or lower.	
Dip Soldering:	Bath Temperature: Immersion Time: Soldering Time:	260±5°C. within 5 Sec. within 3 Sec.	
Vapor Phase Soldering:	DO NOT USE		
Reflow Soldering:	DO NOT USE		

Photodiodes in plastic packages should be given special care. Clear plastic packages are more sensitive to environmental stress than those of black plastic. Storing devices in high humidity can present problems when soldering. Since the rapid heating during soldering stresses the wire bonds and can cause wire to bonding pad separation, it is recommended that devices in plastic packages to be baked for 24 hours at 85°C.

The leads on the photodiode **SHOULD NOT BE FORMED**. If your application requires lead spacing modification, please contact OSI Optoelectronics Applications group at (310)978-0516 before forming a product's leads. Product warranties could be voided.

*Most of our standard catalog products are RoHS Compliant. Please contact us for details

- A = Distance from top of chip to top of glass.
- a = Photodiode Anode.
- B = Distance from top of glass to bottom of case.
- c = Photodiode Cathode
 - (Note: cathode is common to case in metal package products unless otherwise noted).
- W = Window Diameter.
- F.O.V. = Filed of View (see definition below).

2. Dimensions are in inches (1 inch = 25.4 mm).

- 3. Pin diameters are 0.018 ± 0.002 " unless otherwise specified.
- 4. Tolerances (unless otherwise noted)

General: 0.XX ±0.01" 0.XXX ±0.005" Chip Centering: ±0.010" Dimension 'A': ±0.015"

5. Windows

All **'UV'** Enhanced products are provided with QUARTZ glass windows, 0.027 ± 0.002 " thick.

All 'XUV' products are provided with removable windows.

All 'DLS' PSD products are provided with A/R coated glass windows.

All 'FIL' photoconductive and photovoltaic products are epoxy filled instead of glass windows.

For Further Assistance Please Call One of Our Experienced Sales and Applications Engineers

310-978-0516

- Or visit our website at www.osioptoelectronics.com

Mechanical Specifications

All units in inches. Pinouts are bottom view.

OSI Optoelectronics +1 310-978-0516 www.osioptoelectronics.com