

SANYO Semiconductors DATA SHEET

LC7930N, 7930NW — CMOS IC LCD Drivers

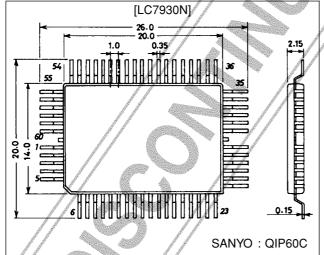
Overview

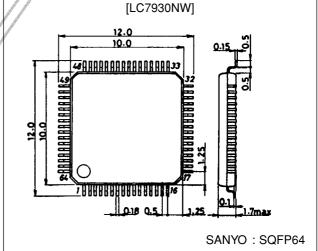
The LC7930N, 7930NW are CMOS LSIs which incorporate 20-bit shift register, latch, and two sets of 20 LCD drivers. They also have two switching pins: one of them (channel 2) can be used as a scan-line driver (back plate) and the other (channel 1) as a segment driver. They are optimal for LCD interface with microcontroller (4 or 8 bits) or dot matrix controller circuit incorporating character generator.

Features

- Two channels of 20 output segment drivers
- The configuration of 20 output segment drivers + 20 scanning terminal drivers available
- · A series data to connect with the microcontroller and three control signals
- Able to be connected in series for large display
- · Built-in bidirectional shift register can be shifted in the direction that makes wiring easy
- Operating supply voltage/ Operating temperature: $V_{DD} = 4.5$ to 5.5 V / Topr = -20 to +75°C
- Operating current drain : $I_{DD} = 1.0 \text{ mA} \text{ max} (\text{Logic} = 400 \text{ kHz}, \text{LCD} = 1 \text{ kHz})$
- Package: Pin 60 Flat LC7930N: QIP60
 Pin 64 Flat LC7930NW: SQFP64

Package Dimensions


unit : mm


3055A-QFP60C

Package Dimensions

unit : mm

3190-SQFP64

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before usingany SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd.

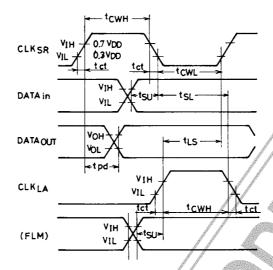
Specifications

Absolute Maximum Ratings at $Ta = 25 \pm 2^{\circ}C$

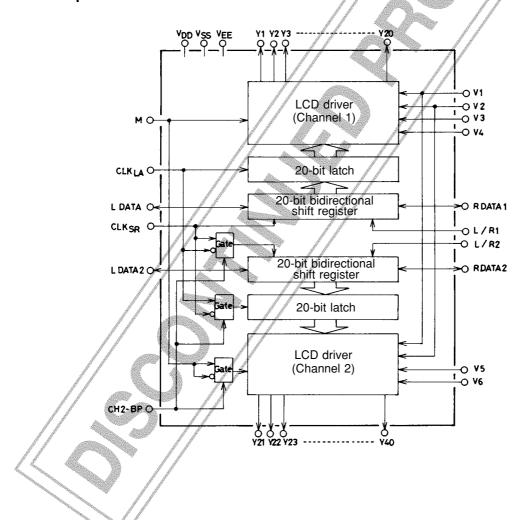
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		=0.3 to +7.0	V
Maximum supply voltage	V _{EE} max		V _{DD} -13.5 to V _{DD} +0.3	V
Maximum input voltage	V. may		−0.3 to V _{DD} +0.3	V
waxiinum input voitage	V _I max	V1, V2, V3, V4, V5, V6	V _{EE} to V _{DD} +0.3	V
Maximum output voltage	\/ may	11	-0.3 to V _{DD} +0.3	/ / V
Maximum output voltage	V _O max	Output transistor OFF, Y1 to Y40	V _{EE} to V _{DD} +0.3	V
Allowable power dissipation	Pd max		100	mW
Operating temperature	Topr		−20 to +75	°C
Storage temperature	Tstg		-55 to +125	°C

Note: Don't soak the whole of IC into the tank filled with melted solder for soldering

Allowable Operating Conditions at Ta = -20 to +75°C, V_{SS} = 0 V, V_{EE} = -4 to -6 V


Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V_{DD}	4.5		5.5	V
High-level input voltage	V_{IH}	Note (1)	0.7V _{DD}		V_{DD}	V
Low-level input voltage	V_{IL}	Note (1)	V_{SS}		0.3V _{DD}	V
Shift frequency	f_{CL}	CLK _{SR}			400	kHz
High-level clock width	tcwH	CLK _{SR} , CLK _{LA}	800			ns
Low-level clock width	t _{CWL}	CLK _{SR}	800			ns
Data setup time	t _{SU}	LDATA1, LDATA2, RDATA1, RDATA2	300			ns
Clock setup time	t _{SL}	CLK _{SR} , CLK _{LA} CLK _{SR} → CLK _{LA}	500			ns
Clock setup time	t_LS	CLK _{SR} , CLK _{LA} CLK _{LA} → CLK _{SR}	500			ns
Clock transition time	t _{ct}	CLKSR, CLKLA			200	ns
Data retention time	t _{DH}	LDATA1, LDATA2, RDATA1, RDATA2	300			ns

Electifical Characteristics at Ta = -20 to +75°C, $V_{DD} = +5$ V \pm 10%, $V_{SS} = 0$ V, $V_{EE} = -4$ to -6 V


Parameter	Symbol	Conditions		min	typ	max	Unit
Input leakage current	// I _{IH} 🦠	Note (1)	$Vin = V_{DD}$			5	μΑ
input leakage current	/ I _{IL}	Note (1)	$Vin = V_{SS}$	- 5			μΑ
High-level output voltage	Vон	LDATA1, LDATA2, RDATA1, RDATA2	$I_{OH} = -0.4 \text{ mA}$	V _{DD} -0.4			V
Low-level output voltage	V _{OL}	LDATA1, LDATA2, RDATA1, RDATA2	I _{OL} = 0.4 mA			0.4	V
Vi to Yj voltage down	V_{d1}	Y1 to Y40 Note (2)	Ion = 100 μ A, single output			1.1	V
vi to 1) voltage down	V_{d2}	Y1 to Y40 Note (2)	Ion = 50 μA, all outputs			1.5	V
Vi quiescent current	Тун	V1 to V6	Open output pins $Vin = V_{DD}$			10	μA
vi quiescent current	lvL	V1 to V6	Open output pins Vin = V _{EE}	-10			μΑ
Supply current	/ _{DD}	V _{DD}	Open output pins CLK _{SR} = 400 kHz			1.0	mA
Supply current	// IEE	V _{EE}	Open output pins M = 1 kHz			10	μΑ
Output propagation delay time	t _{PD}	LDATA1, LDATA2, RDATA1, RDATA2	C _L = 15 pF			500	ns

Note (1): Applied to the pins; CLK_{SR} , CLK_{LA} , LDATA1, RDATA1, LDATA2, RDATA2, M, L/R1, L/R2, CH2-BP (2): The equivalent circuit between Vi to Yj (i = 1 to 6, j = 1 to 40)

Switching Waveforms

Internal Equivalent Circuit

LC7930N, 7930NW

Pin Assignment

[LC7930N]

Number	Name	Input/Output	Number	Name	Input/Output	Number	Name	Input/Output
1	Y30	Output	21	Y14	Output	41	RDATA1	Input/Output
2	Y31	Output	22	Y13	Output	42	LDATA2	Input/Output
3	Y32	Output	23	Y12	Output	43 🖊	RDATA2	Input/Output
4	Y33	Output	24	Y9	Output	44	N.C.	
5	Y34	Output	25	Y10	Output	45	M	Input
6	Y29	Output	26	Y11	Output	46	L/R1	Input
7	Y28	Output	27	Y8	Output	47	L/R2	// Input
8	Y27	Output	28	Y 7	Output	48	CH2-BP	Input
9	Y26	Output	29	V_{DD}	-//	49	V1 //	Input
10	Y25	Output	30	Y6	Output	50	V2 /	Input
11	Y24	Output	31	Y5	Øutput	51	V3	Input
12	Y23	Output	32	Y4	Output	52	/ V4	Input
13	Y22	Output	33	Y3	Output	53	// V5	Input
14	Y21	Output	34	Y2 🧪	Output	54	√ V6	Input
15	Y20	Output	35	Y1 //	Output	55	Y40	Output
16	Y19	Output	36	VEE	7(0)+	/56	Y39	Output
17	Y18	Output	37	CLK _{LA}	Input	/ 57	Y38	Output
18	Y17	Output	38	CLK _{SR}	Input	58	Y37	Output
19	Y16	Output	39	V _{SS}	-1/	59	Y36	Output
20	Y15	Output	40//	LDATA1	Input/Output	60	Y35	Output
[LC7930N	[LC7930NW]							
NI I			V		l .// //	l., ,		

[LC7930NW]

Number	Name	Input/Output /	Number	Name	Input/Output	Number	Name	Input/Output
1	V5	Input 🍂	23	Y6	Output	45	Y26	Output
2	V4	Input	24	V _{DD}	<i>_</i>	46	Y27	Output
3	V3	Input	25	Y7//	Output	47	Y28	Output
4	V2	Input	26	Y8/	Output	48	Y29	Output
5	V1	Input (27	Y11	Output	49	N.C.	_
6	CH2-BP	Input	28	/Y10	Output	50	Y34	Output
7	L/R2	Input	29 /	/ Y9	Output	51	Y33	Output
8	L/R1	Input	30//	Y12	Output	52	Y32	Output
9	M//	Input	31	Y13	Output	53	Y31	Output
10	RDATA2	Input/Output	3 2	N.C.	_	54	Y30	Output
11	LDATA2	Input/OUtput	/ 33	Y14	Output	55	N.C.	_
12	RDATA1	Input/Output	34	Y15	Output	56	N.C.	_
13	/ LDATA1	Input/Output	35	Y16	Output	57	Y35	Output
14	V _{SS}	S = +/	36	Y17	Output	58	Y36	Output
15	CLK _{SR}	Input	37	Y18	Output	59	Y37	Output
16	CLK _{LA}	Input	38	Y19	Output	60	Y38	Output
17	V _{EE}	M = M - M	39	Y20	Output	61	Y39	Output
18	Y1 /	Output	40	Y21	Output	62	Y40	Output
19	Y2	Output	41	Y22	Output	63	V6	Input
20	Y3	Output	42	Y23	Output	64	N.C.	_
21	Y4	Output	43	Y24	Output		<u> </u>	
22	Y5	Output	44	Y25	Output			

Pin Descriptions

Pin Name	Function								
V _{DD}	Logic circuitry power supply (+5 V ±10%)								
V_{SS}	0 V								
V_{EE}	LCD driver power supply (-4 to -6 V)								
Y1 to Y20	Channel 1 LCD driver output pins								
Y21 to Y40	Channel 2 LCD driver output pins								
V1, V2	Reference voltage for selected driver outputs								
V3, V4	Reference voltage for non-selected driver outputs (channel 1)								
V5, V6	Reference voltage for non-selected driver outputs (channel 2)								
L/R1	Shift direction for channel 1 shift register								
	L/R1 LDATA1 RDATA1								
	High-level Output Input								
	Low-level Input Output								
L/R2	Shift direction for channel 2 shift register								
	L/R2 LDATA2 RDATA2								
	High-level Output Input								
	Low-level Input Output								
LDATA1 RDATA1	Serial data input/output pins for channel 1 shift register								
LDATA2 RDATA2	Serial data input/output pins for channel 2 shift register								
М	Switching clock signal for LCD driver.								
CLK _{LA}	Latches channael 1 data on the falling edge. This also will latch channel 2 data on the falling edge if CH2-BP is low.								
CLK _{SR}	Shift channel 1 data on the falling edge. This also will shift channel 2 data on the falling edge if CH2-BP is low.								
CH2-BP	Switches the mode of channel 2. Exchanges the latch signal for the shift signal of channel 2 and invert the M signal. Channel 2, then, can be used as a scan-line driver.								
	CH2-BP Channel 2 M Latch Shift M								
	High CLK _{SR} CLK _{LA} M For scan-line driver								
	Low CLK _{LA} CLK _{SR} M For signal line driver								

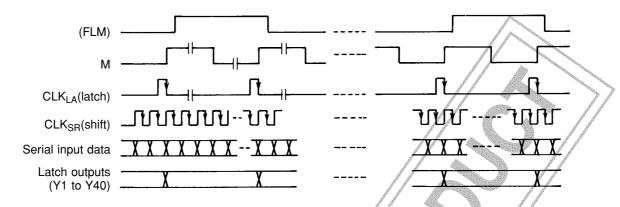
Functional Description

LC7930N, LC7930NW are serial data transfer type LCD drivers.

Data inputted serially from the data pin is shifted successively by the synchronizing clock (CLK_{SR}) and latched by the latch clock (CLK_{LA}) when the all data are shifted.

Segment terminal

When CH2-BP goes to low, the data of channel 1 and channel 2 are shifted at the falling edge of CLK_{SR} , and then latched at the falling edge of the CLK_{LA} . The reference pulse will be switched to selected or unselected due to the latched data.


· Scan terminal

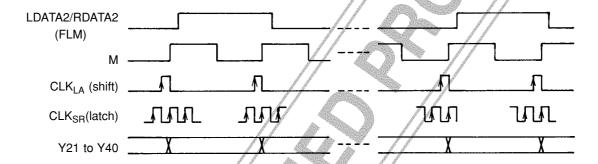
When CH2-BP goes to high, the data of channel 2 is shifted at the rising edge of CLK_{LA} , and then latched at the rising edge of the CLK_{SR} . When FLM signal, as a data, is inputted, the output will be scan terminal drive mode.

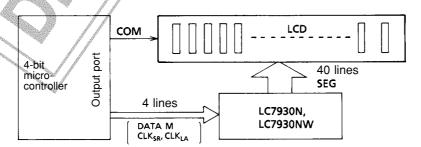
Continued on next page.

Continued from preceding page.

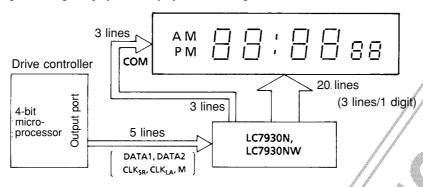
(1) Waveform Diagrams for Segment Drive Mode (CH2 – BP = "L")

(2) Waveform Diagrams for Scan-Line/Segment Drive Mode (CH2–BP = "H")

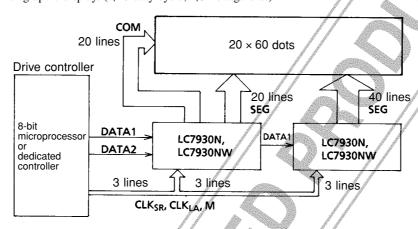



Table 1. LCD Driver Output Voltages (V1 to V6) for Y1 to Y40

CH2-BP	Serial Input Data	М	Output		
OHZ-BF	Senai input Data	IVI	Y1 to Y20	Y21 to Y40	
	1 1	Н	V1	V2	
High level	(selected)	L	V2	V1	
(1)	0	Н	V3	V6	
	(un-selected)	L	V4	V5	
		Н	V1	V1	
Low level		L	V2	V2	
(2)		Н	V3	V5	
			V4	V6	


LCD Interface Examples

(Although the LCD divided voltage generator circuit is not shown here.)


(1) 40-segment bar-graph display (static)

(2) 6-digit, 7-segment + sign display. (1/3 duty cycle, 1/3 voltage bias)

(3) 20×60 pixel graphic display. (1/20 duty cycle, 1/5 voltage bias)

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 1997. Specifications and information herein are subject to change without notice.