& HARRIS | 80C286

High Performance Microprocessor

January 1992 With Memory Management and Protection
Features Pin Configurations
° Compatible with NMOS 80286 Component Pad View — As viewed from underside of

. the component when mounted on the board.
* Wide Range of Clock Rates:

-DC to 25MHz (80C286-25) A EREERE 8
-DC to 20MHz (80C286-20) s sszzszssl
-DC to 16MHz (80C286-16) , N
-DC to 12.5MHz (80C286-12) POOOOOOO®® |
-DC to 10MHz (80C286-10) : : %@ ::Rvﬂ ::T
e Static CMOS Design for Low Power Operation vee ok | 6@ INTR NG
» ICCSB = 5mA Maximum as messT | B @ N NG
» ICCOP = 185mA Maximum (80C286-10) s o | O@ PaA FEREQ Vs
220mA Maximum (80C286-12) vonlee P vee
260mA Maximum (80C286-16) a oan | @@ WiB coo/ITR
310mA Maximum (80C286-20) s a2 | @OOOOO®EEO® N TOEK
410mA Maximum (80C286-25) elclelelolelo; ®(®‘
® High Performance Processor (Up to 19 Times the 8086 Throughput) e r ooy ,;\g PIN 1 INDICATOR

® Large Address Space:
> 16 Megabytes Physical/1 Gigabyte Virtual per Task

® Integrated Memory Management, Four-Level Memory Protection
and Support for Virtual Memory and Operating Systems

* Two 80C86 Upward Compatible Operating Modes:

A
A6
A8
A20
Vss
Az3

NC
BHE

P.C. Board Vlew — As viewed from the component side
of the P C board.

° T RN -2 5 0 8
> 80C286 Real Address Mode » PVAM 2 eaeeReR”
® Compatible with 80287 Numeric Data Co-Processor E_z £ 83285 8
¢ High Bandwidth Bus Interface (25 Megabyte/Sec) (PO ePO®O®)
® Available in: e ER | OOOEEOROOO® | »
» 68 Pin PGA (Commercial, Industrial, and Military) wow (@6 @@| ~ =
> 68 Pin PLCC (Commercial and Industrial) v wte | 69) @G| ok vee
. . N N | 68 (69 RESET A3
DBSCI‘IptIOH vss PEREQ PGA @@ | ae As
The Harris 80C286 Is a static CMOS version of the NMOS 80286 e T .o
microprocessor. The 80C286 is an advanced, high-performance micro- cooriNTE WD @@ | an an
processor with specially optimized capabilities for multiple user and WK ne OEPOO@D@@®@D®| ar an
multi-tasking systems. The 80C286 has built-in memory protection that DOOEE®)
supports operating system and task isolation as well as program and PIN 1 INDICATOR

data privacy within tasks. A 25MHz 80C286 provides up to nineteen
times the throughput of a standard 5SMHz 8086. The 80C286 includes
memory management capabilities that map 230 (one gigabyte) of virtual

address space per task into 224 bytes (16 megabytes) of physical Pé?r; B:a(':"’b‘”e‘(’;’“"‘s viewed from the component side
O e . boar:
memory.

=~
81
5o PEack | (@ (@
a22
a21
a1
av
A5
A1z

aH
NC

A23

Vss

°
&
<

A8
A6
A4

The 80C286 is upwardly compatible with 80C86 and 80C88 sofware (the
80C286 instruction set is a superset of the 80C86/80C88 instruction
set). Using the 80C286 real address mode, the 80C286 is object code

compatible with existing 80C86 and 80C88 software. In protected virtual ﬁE
address mode, the 80C286 is source code compatible with 80C86 and NC s
80C88 software but may require upgrading to use virtual address as %‘;E!
supported by the 80C286's integrated memory management and PERCKL:
protection mechanism. Both modes operate at full 80C286 performance C::Ei
and execute a superset of the 80C86 and 80C88 instructions. Aol
The 80C286 provides special operations to support the efficient EEE
implementation and execution of operating systems. For example, one ::gE:
instruction can end execution of one task, save its state, switch to a new Alal]

task, load its state, and start execution of the new task. The 80C286 also L AT 0 o) g g
supports virtual memory systems by providing a segment-not-present
exception and restartable instructions.

CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper IC handling procedures should be followed

File Number 2947
Copyrnight © Harris Corporation 1991

3-50

80C286

Ordering Information

TEMPERATURE
PACKAGE RANGE 10MHz 12.5MHz 16MHz 20MHz 25MHz
PGA 0°C to +70°C - CcG80C286-12 CcG80C286-16 | CGBOC286-20 -
~-400C to +859C | CG80C286-10 1G80C286-12 - - -
* -550C to +1250C | MG80C286-10/883 | MG80C286-12/883 - - -
PLCC 00C to +70°C - CcS80C286-12 CS80C286-16 CS80C286-201 CS80C286-25
-40°C to +85°C - IS80C286-12 1S80C286-16 1S80C286-20 -
*Respective /883 specifications are included at the end of this data sheet.
Functional Diagram
___________________________ hl Lo . |
| | |
> | ﬁ ADDRESS Az3 - Ag,
I LATCHES AND DRIVERS BHE, WG
PHYsicaL]__! | :
ADDRESS PROCESSOR PEACK
ADDER |~ T | |erefFetcHeEr|] EXTENSION ! :i:E:
SEGMENT [! INTERFACE [
BASES | i t READY, HOLD
_____ 1 | BUS CONTROL 4 57, 50, CODANTA
ssg:ﬁm SEGMENT | i [OCR, HLDA
CHECKER SIZES]] !
|) DATA TRANSCEIVERS Dys - Do
| !]
-z yx---z===31 [’ b [eavre |
| | | PREFETCH I
! ALY \ I 1 QUEUE BUS UNIT (BU) !
[QG — —— — —— — — — — 4
| | !
: REGISTERS | conTROL i t‘ - _3 DEC_OJED_ =) ~ :f:ET
T N INSTRUCTION INSTRUCTION
l < '“s;?l‘éﬁgo"l DECODER uNT Uy | > Vss
Lexectmou UNIT (EU) T T J la— Vec

3-51

CMOS MICRO-
PROCESSORS

80C286

Pin Description

The following pin function descriptions are for the 80C286 microprocessor-

TABLE 1.
PIN
SYMBOL | NUMBER TYPE DESCRIPTION
CLK 31 | SYSTEM CLOCK provides the fundamental timing for the 80C286 system It s divided
by two inside the 80C286 to genenerate the processor clock The internal divide-by-two
circuitry can be synchronized to an external clock generator by a LOW to HIGH
transition on the RESET input.

D15-Dg 36-51 1/0 DATA BUS inputs data during memory, 1/0, and interrupt acknowledge read cycles,
outputs data during memory and 1/0 write cycles. The data bus i1s active HIGH and 1s
held at high impedance to the last valid logic level during bus hold acknowledge

Ao3-Ag 7-8 (@] ADDRESS BUS. outputs physical memory and I/O port addresses. Ap3-A1g are LOW

10-28 during I/O transfers. Ag 1s LOW when data Is to be transferred on pins D7-Dg (see table
32-43 below) The address bus i1s active High and floats to three-state off during bus hold
acknowledge
BHE 1 (0] BUS HIGH ENABLE. indicates transfer of data on the upper byte of the data bus,
D15-Dg Eight-bit oriented devices assigned to the upper byte of the data bus would
normally use BHE to condition chip select functions BHE 1s active LOW and floats to
three-state OFF during bus hold acknowledge.
BHE and Ag Encodings
BHE Value Ag Value Function
0 0 Word transfer
0 1 Byte transfer on upper half of data bus (D45-Dg)
1 0 Byte transfer on lower half of data bus (D7-Dg)
1 1 Reserved

51. S0 4,5 o} BUS CYCLE STATUS: indicates initiation of a bus cycle and along with M/IO and
COD/INTA, defines the type of bus cycle. The bus is in a Tg state whenever one or both
are LOW S4 and Sg are active LOW and are held at a high impedance logic one during
bus hold acknowledge.

80C286 Bus Cycle Status Definition
COD/INTA M/1O 8_1 S_o Bus Cycle Initiated
0(LOW) 0 0 0 Interrupt acknowledge
0 0 0 1 Reserved
0 0 1 0 Reserved
0 0 1 1 None; not a status cycle
0 1 0 0 If Aq=1 then halt, else shutdown
0 1 0 1 Memory data read
0 1 1 0 Memory data write
0 1 1 1 None, not a status cycle
1(HIGH) 0 0 0 Reserved
1 0 0] 1 1/0 read
1 0 1 0 1/0 write
1 0 1 1 None; not a status cycle
1 1 0 0 Reserved
1 1 0 1 Memory instruction read
1 1 1 0 Reserved
1 1 1 1 None, not a status cycle
M/IO 67 (0] MEMORY |/O SELECT: distinguishes memory access from 1/0 access. If HIGH during
Ts, @ memory cycle or a halt/shutdown cycle 1s in progress. If LOW, an 1/0 cycle or an
interrupt acknowledge cycle is in progress M/IO 1s held at high impedance to the last
vald logic state during bus hold acknowledge

3-52

80C286

Pin Description

TABLE 1. CONTINUED

SYMBOL

PIN
NUMBER

TYPE

DESCRIPTION

COD/INTA

66

CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from
memory data read cycles Also distinguishes interrupt acknowledge cycles from I/O
cycles COD/INTA s held at high impedance to the last valid logic state during bus hold
acknowledge Its timing 1s the same as M/IO

LOCK

68

BUS LOCK ndicates that other system bus masters are not to gain control of the system
bus for the current and following bus cycles The LOCK signal may be activated
explicitly by the “lLOCK" instruction prefix or automatically by 80C286 hardware during
memory XCHG instructions, interrupt acknowiedge, or descriptor table access. LOCK
1s active LOW and is held at a high impedance logic one during bus hoid acknowledge

READY

63

BUS READY terminates a bus cycle Bus cycles are extended without Itmit until
terminated by READY LOW READY 1s an active LOW synchronous input requiring
setup and hold times relative to the system clock be met for correctoperation READY Is
ignored during bus hold acknowledge (Note 1)

HOLD
HLDA

64
65

BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of the 80C286
local bus The HOLD input allows another local bus master to request control of the
local bus When control is granted, the 80C286 will float its bus drivers and then activate
HLDA, thus entering the bus hold acknowledge condition The local bus will remain
granted to the requesting master until HOLD becomes inactive which results 1n the
80C286 deactivating HLDA and regaining control of the local bus This terminates the
bus hold acknowledge condition HOLD may be asynchronous to the system clock.
These signals are active HIGH Note that HLDA never floats.

INTR

57

INTERRUPT REQUEST requires the 80C286 to suspend its current program execution
and service a pending external request Interrupt requests are masked whenever the
interrupt enable bit in the flag word is cleared When the 80C286 responds to an interrupt
request, 1t performs two interrupt acknowledge bus cycles to read an 8-bit interrupt
vector that identifies the source of the interrupt To ensure program interruption, INTR
must reman active until an interrupt acknowledge bus cycle 1s initiated. INTR 1s
sampled at the beginning of each processor cycle and must be active HIGH at least two
processor cycles before the current instruction ends 1n order to interrupt before the next
instruction INTR 1s level sensitive, active HIGH, and may be asynchronous to the
system clock

NMI

59

NON-MASKABLE INTERRUPT REQUEST interrupts the 80C286 with an internally
supplied vector value of two No interrupt acknowledge cycles are performed. The
interrupt enable bit in the 80C286 flag word does not affect this input The NMiinputis
active HIGH, may be asynchronous to the system clock, and is edge triggered after
internal synchronization For proper recognition, the input must have been previously
LOW for at least four system clock cycles and remain HIGH for at least four system clock
cycles

PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE: extend the
memory management and protection capabilities of the 80C286 to processor
extensions. The PEREQ input requests the 80C286 to perform a data operand transfer
for a processor extension. The PEACK output signals the processor extension when the
requested operand is being transferred. PEREQ is active HIGH. PEACK is active LOW
and is held at a high impedance logic one during bus hold acknowledge. PEREQ may be
asynchronous to the system clock.

54
53

PROCESSOR EXTENSION BUSY AND ERROR: indicates the operating condition of a
processor extension to the 80C286. An active BUSY input stops 80C286 program
execution on WAIT and some ESC instructions until BUSY becomes inactive (HIGH).
The 80C286 may be interrupted while waiting for BUSY to become inactive. An active
ERROR input causes the 80C286 to perform a processor extension interrupt when
executing WAIT or some ESC instructions. These inputs are active LOW and may be
asynchronous to the system clock

3-53

H

CMOS MICRO-
PROCESSORS

80C286

Pin Description

TABLE 1. CONTINUED

PIN

SYMBOL | NUMBER TYPE

DESCRIPTION

RESET 29 |

SYSTEM RESET: clears the internai logic of the 80C286 and 1s active HIGH. The 80C286
may be reinitialized at any time with a LOW to HIGH transition on RESET which remains
active for more than 16 system clock cycles. During RESET active, the output pins of the
80C286 enter the state shown below

80C286 Pin State During Reset

Pin Value Pin Names

1 (HIGH)
0 (LOW)
HIGH IMPEDANCE

S0.51. PEACK, Ap3-Ag, BHE, LOCK
M/IO, COD/INTA, HLDA (Note 2)
D15-D0

Operation of the 80C286 begins after a HIGH to LOW transition on RESET. The HIGH to
LOW transition of RESET must be synchronous to the system clock. Approximately 50
system clock cycles are required by the 80C286 for internal initializations before the first
bus cycle to fetch code from the power-on execution address is performed A LOW to
HIGH transition of RESET synchronous to the system clock willend a processor cycle at
the second HIGH to LOW transition of the system clock The LOW to HIGH transition of
RESET may be asynchronous to the system clock; however, in this case it cannot be
predetermined which phase of the processor clock will occur during the next system
clock period. Synchronous LOW to HIGH transitions of RESET are required only for
systems where the processor clock must be phase synchronous to another clock

Vss 9, 35, 60 I

SYSTEM GROUND-" are the ground pins (all must be connected to system ground)

Vee 30, 62 |

SYSTEM POWER: +5 volt power supply pins. A 0 1uF capacitor between pins 60 and 62
is recommended

NOTES: 1. READY is an open-collector signal and should be pulled inactive with an appropriate resistor
(62002 at 1I0MHz and 12.5 MHz, 47002 at 16MHz, 3900} at 20MHz, 2700 at 25MHz).
2. HLDA is only Low if HOLD is inactive (Low).
3. All unused inputs should be pulled to their inactive state with pull up/down resistors.

Functional Description

Introduction

The Harris 80C2868 microprocessor is a static CMOS
version of the NMOS 80286 microprocessor. The 80C286
is an advanced, high-performance microprocessor with
specially optimized capabilities for multiple user and
multi-tasking systems. Depending on the application, the
80C286’s performance is up to nineteen times faster than
the standard 5MHz 8086's, while providing complete
upward software compatibility with Harris 80C86 and
80C88 CPU family.

The 80C286 operates in two modes: 80C286 real address
mode and protected virtual address mode. Both modes
execute a superset of the 80C86 and 80C88 instruction set.

In 80C286 real address mode programs use real addresses
with up to one megabyte of address space. Programs use
virtual addresses in protected virtual address mode, also
called protected mode. In protected mode, the 80C286
CPU automatically maps 1 gigabyte of virtual addresses per
task into a 16 megabyte real address space. This mode also
provides memory protection to isolate the operating system
and ensure privacy of each tasks’ programs and data. Both
modes provide the same base instruction set, registers and
addressing modes.

The Functional Description describes the following: Static
operation, the base 80C286 architecture common to both
modes, 80C286 real address mode, and finally, protected
mode.

3-54

80C286

Static Operation

The 80C286 is comprised of completely static circuitry.
Internal registers, counters, and latches are static and
require no refresh as with dynamic circuit design. This
eliminates the minimum operating frequency restriction
typically placed on microprocessors. The CMOS 80C286
can operate from DC to the specified upper frequency
limit. The clock to the processor may be stopped at any
point (either phase one or phase two of the processor
clock cycle) and held there indefinitely. There s,
however, a significant decrease in power requirement If
the clock 1s stopped in phase two of the processor clock
cycle. Details on the clock relationships will be discussed
in the Bus Operation section. The ability to stop the clock
to the processor 1s especially useful for system debug or
power critical applications.

The 80C286 can be single-stepped using only the
CPU clock. This state can be maintained as long as
necessary. Single step clock information allows simple
interface circuitry to provide critical information for
system debug.

Static design also allows very low frequency operation
(down to DC). In a power critical situation, this can
provide low power operation since 80C286 power
dissipation is directly related to operating frequency. As
the system frequency is reduced, so is the operating
power until, ultimately, with the ciock stopped in phase
two of the processor clock cycle, the 80C286 power
requirement is the standby current (5SmA maximum).

80C286 Base Architecture

The 80C86, 80C88, and 80C286 CPU family all contain the
same basic set of registers, instructions, and addressing
modes The 80C286 processor Is upwardly compatible
with the 80C86 and 80C88 CPU's.

Register Set
The 80C286 base architecture has fifteen registers as

shown 1n Figure 1 These registers are grouped into the
following four categories.

GENERAL REGISTERS: Eight 16-bit general purpose
registers used to contain arithmetic and logical operands.
Four of these (AX, BX, CX and DX) can be used either in
their entirety as 16-bit words or split into pairs of separate
8-bit registers.

SEGMENT REGISTERS: Four 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code, stack
and data. (For usage, refer to Memory Organization.)

16-BIT SPECIAL
REGISTER REGISTER
NAME FUNCTIONS
7 07 0 15 0
BYTE AX AH AL MULTIPLY/DIVIDE cs CODE SEGMENT SELECTOR
ADDRESSABLE 1/O INSTRUCTION
(8-BIT DX DH oL /O INSTRUCTIONS DS DATA SEGMENT SELECTOR
REGISTER
NAMES cx CH cL) LOOP/SHIFT/REPEAT COUNT ss STACK SEGMENT SELECTOR
SHOWN
) BX BH BL ES EXTRA SEGMENT SELECTOR
BASE REGISTERS
8P SEGMENT REGISTERS
st 15 [}
INDEX REGISTERS
DI F FLAGS
sP) STACK POINTER P INSTRUCTION POINTER
15 o MSW MACHINE STATUS WORD
GENERAL
REGISTERS STATUS AND CONTROL

FIGURE 1.

REGISTERS

REGISTER SET

3-55

o}
xo
Qn
=0
Y]
go
o&

80C286

STATUS FLAGS*
CARRY

PARITY

AUXILIARY CARRY

ZERO

SIGN

OVERFLOW ——————
L 1

12
I

15 14 13
ruacs: [INY wr | om

>] l } | } EE\WENWEIN\WES

CONTROL FLAGS

TRAP FLAG

INTERRUPT ENABLE
DIRECTION FLAG

SPECIAL FIELDS

VO PRIVILEGE LEVEL

NESTED TASK FLAG

o [R T e Tor] ::]

AW

RESERVED

PROCESSOR EXTENSION EMULATED
MONITOR PROCESSOR EXTENSION

TASK SWITCH

PROTECTION ENABLE

FIGURE 2. STATUS AND CONTROL REGISTER BIT FUNCTIONS

BASE AND INDEX REGISTERS: Four of the general
purpose registers may also be used to determine offset
addresses of operands in memory. These registers may
contain base addresses or indexes to particular locations
within a segment. The addressing mode determines the
specific registers used for operand address calculations.

STATUS AND CONTROL REGISTERS: Three 16-bit
special purpose registers record or control certain
aspects of the 80C286 processor state. These include the
Flags register and Machine Status Word register shown in

Figure 2, and the Instruction Pointer, which contains the
offset address of the next sequential instruction to be
executed.

Flags Word Description

The Flags word (Flags) records specific characteristics of
the result of logical and arithmetic instrucitons (bits 0, 2,
4, 6, 7 and 11) and controls the operation of the 80C286
within a given operating mode (bits 8 and 9). Flags is a
16-bit register. The function of the flag bits is given in
Table 2.

TABLE 2. FLAGS WORD BIT FUNCTIONS

BIT POSITION NAME FUNCTION

0 CF Carry Flag — Set on high-order bit carry or borrow, cleared otherwise

2 PF Parity Flag — Set if low-order 8-bits of result contain an even number of 1-bits, cleared
otherwise

4 AF Set on carry from or borrow to the low order four bits of AL, cleared otherwise

6 ZF Zero Flag — Set if result is zero, cleared otherwise

7 SF Sign Flag — Set equal to high-order bit of result (0 if positive, 1 if negative)

11 OF Overflow Flag — Set if result 1s a too-large positive number or a too-small negative
number (excluding sign-bit) to fit in destination operand, cleared otherwise

8 TF Single Step Flag — Once set, a single step interrupt occurs after the next instruction
executes TF is cleared by the single step interrupt

9 IF Interrupt-enable Flag — When set, maskable interrupts will cause the CPU to transfer
control to an interrupt vector specified location

10 DF Direction Flag — Causes string instructions to auto decrement the appropnate index
registers when set Clearing DF causes auto increment

3-56

80C286

Instruction Set

The instruction set I1s divided into seven categories: data
transfer, anthmetic, shift/rotate/logical, string manipula-
tion, controt transfer, high level instructions, and
processor control. These categories are summarized In
Figure 3.

An 80C286 Instruction can reference zero, one, or two

Two-operand Instructions (e.g. MOV and ADD) are
usually three to six bytes long. Memory to memory
operations are provided by a speécial class of string
instructions requiring one to three bytes. For detailed
instruction formats and encodings refer to the instruction
set summary at the end of this document.

operands, where an operand may reside in a register, in ADDITION
e o ane HLT e oy s o [A0] dabyioorward
long. One-operand instructions (e.g. INC and DEC) are ADC Add byte or word with carry
usually two bytes long but some are encoded in only one INC Increment byte or word by 1
ey eston T cparans s s | 288 SOzt o st
following };ix types .of instrsctlon operations’ P DAA Decimal adjust for addition
® Register to Register * Memory to Memory SUBTRACTION
¢ Memory to Register ® Register to Memory SuB Subtract byte or word
® Immediate to Register * |mmediate to Memory SBB Subtract byte or word with borrow
GENERAL PURPOSE DEC Decrement byte or word by 1
MOV Move byte or word NEG Negate byte or word
PUSH Push word onto stack CMP Compare byte or word m
POP Pop word off stack AAS ASCII adjust for subtraction
PUSHA Push all registers on stack DAS Decimal adjust for subtraction o 2
POPA Pop all registers from stack MULTIPLICATION EJ 8
XCHG Exchange byte or word MUL Multiply byte or word unsigned = m
XLAT Transiate byte IMUL Integer multiply byte or word 8 8
INPUT/OUTPUT AAM ASCII adjust for multiply g T
IN Input byte or word DIVISION
ouT Output byte or word DIV Divide byte or word unsigned
ADDRESS OBJECT DIV Integer divide byte or word
LEA Load effective address AAD ASCII adjust for division
LDS Load pointer using DS CBW Convert byte to word
LES Load pointer using ES CwD Convert word to doubleword
FLAG TRANSFER FIGURE 3B. ARITHMETIC INSTRUCTIONS
LAHF Load AH register from flags
SAHF Store AH register in flags LOGICALS
PUSHF Push flags onto stack NOT “Not” byte or word
POPF Pop flags off stack AND “And” byte or word
FIGURE 3A. DATA TRANSFER INSTRUCTIONS OR “Inclusive or” byte or word
XOR “Exclusive or” byte or word
MOVS Move byte or word string TEST “Test” byte or word
INS Input bytes or word string SHIFTS
OuUTS Output bytes or word string SHL/SAL Shift logical/arithmetic left byte or word
CMPS Compare byte or word string SHR Shift logical nght byte or word
SCAS Scan byte or word string SAR Shift arithmetic right byte or word
LODS Load byte or word string ROTATES
STOS Store byte or word string ROL Rotate left byte or word
REP Repeat ROR Rotate right byte or word |
REPE/REPZ Repeat while equal/zero RCL Rotate through carry left byte or word
REPNE/REPNZ Repeat while not equal/not zero RCR Rotate through carry right byte or word

FIGURE 3C. STRING INSTRUCTIONS

FIGURE 3D. SHIFT/ROTATE LOGICAL INSTRUCTIONS

3-57

80C286

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/UNBE Jump If above/not below nor equal CALL Call procedure
JAE/JNB Jump If above or equal/not below RET Return from procedure
JB/INAE Jump if below/not above nor equal JMP Jump
JBE/UNA Jump if below or equal/not above
JC Jump if carry ITERATION CONTROLS
JE/JZ Jump if equal/zero
JG/INLE Jump if greater/not less nor’equal LOOP Loop
JGE/ANL Jump if greater or equal/not less LOOPE/NL.OOPZ Loop if equal/zero
JUUNGE Jump If less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/UNG Jump If less or equal/not greater JCXZ Jump if register CX = 0
JNC Jump If not carry
JINE/UNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow
JNP/JPO Jump If not panity/panty odd INT Interrupt
JINS Jump if not sign INTO interrupt if overflow
JO Jump If overflow IRET Interrupt return
JP/JPE Jump If parity/parity even
JS Jumpifsign
FIGURE 3E. PROGRAM TRANSFER INSTRUCTIONS
Memory Organization
FLAG OPERATIONS Memory is organized as sets of variable-length segments.
STC Set carry flag Each segment Is a linear contiguous sequence of up to
CLC Clear carry flag 64K (216) 8-bit bytes. Memory is addressed using a
CMC Complement carry flag two-component address (a pointer) that consists of a
STD Setd - 16-bit segment selector and a 18-bit offset. The segment
et direction flag selector indicates the desired segment in memory. The
CLD Clear direction flag offset component indicates the desired byte address
STI Set interrupt enable flag within the segment. (See Figure 4).
Cu Clear interrupt enable flag All instructions that address operands in memory must
EXTERNAL SYNCHRONIZATION specify the segment and the offset. For speed and
AT Ralt until Interrupt or reset compact instruction encoding, segment selectors are
P usually stored in the high speed segment registers. An
WAIT Wait for TEST pin active instruction need specify only the desired segment
ESC Escape to extension processor register and offset in order to address a memory operand.
LOCK Lock bus during next instruction
NO OPERATION f}_; 7’\5
NOP | No operation
POINTER
EXECUTION ENVIRONMENT CONTROL -
LMSW Load machine status word SEGMENT | OFFsET
1 16 15
SMSW Store machine status word OPERAND
T SELECTED SELECTED
FIGURE 3F. PROCESSOR CONTROL INSTRUCTIONS SEGMENT
ENTER Format stack for procedure entry
LEAVE Restore stack for procedure exit ~ X
BOUND Detects values outside prescribed range MEMORY

FIGURE 3G. HIGH LEVEL INSTRUCTIONS

FIGURE 4. TWO COMPONENT ADDRESS

3-58

80C286

TABLE 3. SEGMENT REGISTER SELECTION RULES

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule
Instructions Code (CS) Automatic with instruction prefetch
Stack Stack (SS) All stack pushes and pops Any memory reference which uses BP as a
base register
Local Data Data (DS) All data references except when relative to stack or string destination
External (Global) Data Extra (ES) Alternate data segment and destination of string operation

Most Instructions need not explicitly specify which
segment register I1s used The correct segment register 1s
automatically chosen according to the rules of Table 3. r——-1
These rules follow the way programs are written (see I |
Figure 5) as independent modules that require areas for
code and data, a stack, and access to external data areas

CODE

MODULE A
Special segment override instruction prefixes allow the DATA
implicit segment register selection rules to be overriden
for special cases. The stack, data and extra segments may '
coincide for simple programs. To access operands notre-
siding in one of the four iImmediately available segments, CODE cPy
a full 32-bit pointer or a new segment selector must be MODULE B L

loaded. DATA

CODE

Addressing Modes

DATA

The 80C286 provides a total of eight addressing modes for I |
\ instructions to specify operands. Two addressing modes STACK
are provided for instructions that operate on register or PROCESS
immediate operands: STACK

EXTRA

SEGMENT
REGISTER OPERAND MODE: The operand is located in il REGISTERS

one of the 8 or 16-bit general registers. ! !

IMMEDIATE OPERAND MODE: The operand is included

in the instruction. PROCESS
DATA

Six modes are provided to specify the location of an oper- BLOCK 1
and 1n a memory segment. A memory operand address -
consists of two 16-bit components: segment selector and | |
offset. The segment selector 1s supplied by a segment | 1
register either implicitly chosen by the addressing mode PROCESS
or explicitly chosen by a segment override prefix. The off- DATA

set is calculated by summing any combination of the BLOCK 2
following three address elements:

| 1
the displacement (an 8 or 16-bit immediate value L J

contained in the instruction) MEMORY
the base (contents of either the BX or BP base registers)

FIGURE 5. SEGMENTED MEMORY HELPS
the index (contents of either the Sl or D! index registers) STRUCTURE SOFTWARE

3-59

CMOS MICRO-
PROCESSORS

|

80C286

Any carry out from the 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

Combinations of these three address elements define the
six memory addressing modes, described below.

DIRECT MODE. The operand’s offset is contained in the
instruction as an 8 or 16-bit displacement element.

REGISTER INDIRECT MODE: The operand’s offset is in
one of the registers Sl, DI, BX or BP.

BASED MODE: The operand’s offset is the sum of an 8 or
16-bit displacement and the contents of a base register
(BX or BP)

INDEXED MODE: The operand’s offset 1s the sum ofan 8
or 16-bit displacement and the contents of an index regis-
ter (S| or D).

BASED INDEXED MODE- The operand’s offset Is the sum
of the contents of a base register and an index register.

BASED INDEXED MODE WITH DISPLACEMENT: The
operand’s offset i1s the sum of a base register’s contents,
an index register’'s contents, and an 8 or 16-bit displace-
ment.

Data Types

The 80C286 directly supports the following data types:

Integer: A signed binary numeric value contained in an
8-bit byte or a 16-bit word. All operations assume
a 2's complement representation. Signed 32 and
64-bit integers are supported using the 80287
Numeric Data Processor.

Ordinal: An unsigned binary numeric value contained in
an 8-bit byte or 16-bit word.

Pointer: A 32-bit quantity, composed of a segment
selector component and an offset component.
Each component is a 16-bit word.

String: A contiguous sequence of bytes or words. A
string may contain from 1 byte to 64K bytes.

ASCII: A byte representation of alphanumeric and
control characters using the ASCI| standard of
character representation.

BCD: A byte (unpacked) representation of the decimal
digits 0-9.

Packed A byte (packed) representation of two decimal

BCD: digits 0-9 storing one digit in each nibble of the
byte.

Floating A signed 32, 64 or 80-bit real number

Point: representation. (Floating point operands are

supported using the 80287 Numeric Processor
extension).

Figure 6 graphically represents the data types supported
by the 80C286.

7 Q

[T

SIGN BIT -
MAGNITUDE

SIGNED
BYTE

7 0
UNSIGNED
BYTE

L. MSB i
MAGNITUDE

1s1a ¥l g7 0 o
SIGNED

WORD | l I l
|

SIGN BIT - | =MSB

MAGNITUDE
SIGNED 31 +3 +2 4545 1 0 0
DOUBLE
WORD*
SIGN BIT- | L MSB |
MAGNITUDE
+7 +6 +5 +4 +3 +2 +1 0
SIGNED 48 47 3231 1615 0
o L T T T T T 11
WORD*
SIGN BIT /= MSB)
MAGNITUDE
5 +1 1] 0
UNSIGNED
WORD
|—MsB \
MAGNITUDE
BINARY +N o, 7 1 07 0
DECIMAL
(BCcD) _BCD BCD BCD
DIGIT N DIGIT 1 DIGIT 0
7 *N A T
ASCH ASCIt ASCII
CHARACTERpN CHARACTERy CHARACTERg
7 tN 7 1 07 0 o
PACKED RANARAS ARARARS
BCD - T
—J
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
ms tN o s t1 oms O o
STRING e
BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0
3 *3 +2 16 15 +1 0 0
POINTER | | | | I | I |
l 1 J
SELECTOR OFFSET
9+9 +8 +7 +6 +5 +4 +3 +2 +1 0,
FLOATING
w1 | T T T T T 1 [1
SIGN BIT-_) |
EXPONENT MAGNITUDE

*Supported by 80C286/80287 Numeric Data Processor Configuration
FIGURE 6. 80C286 SUPPORTED DATA TYPES

3-60

80C286

TABLE 4. INTERRUPT VECTOR ASSIGNMENTS

DOES RETURN ADDRESS
INTERRUPT RELATED POINT TO INSTRUCTION
FUNCTION NUMBER INSTRUCTIONS CAUSING EXCEPTION?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 INT 2 or NMI pin
Breakpoint interrupt 3 INT 3
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not availabie exception 7 ESC of WAIT Yes
Reserved-do not use 8-15
Processor extension error interrupt 16 ESC or WAIT
Reserved 17-31
User defined 32-255

I/O Space

The I/0 space consists of 64K 8-bit ports, 32K 16-bit ports,
or a combination of the two. I/0 instructions address the
1/0 space with either an 8-bit port address, specified in the
instruction, or a 16-bit port address in the DX register.
8-bit port addresses are zero extended such that A15-Ag
are LOW. 1/0 port addresses 00F8(H) through O0FF(H)
are reserved.

Interrupts

An nterrupt transfers execution to a new program
location. The old program address (CS:IP) and machine
state (Flags) are saved on the stack to allow resumption of
the interrupted program. Interrupts fall into three classes:
hardware initiated, INT instructions, and instruction
exceptions Hardware initiated interrupts occur in
response to an external input and are classified as
non-maskable or maskable. Programs may cause an
interrupt with an INT instruction. Instruction exceptions
occur when an unusual condition which prevents further
instruction processing is detected while attempting to
execute an instruction. The return address from an
exception will always point to the instruction causing the
exception and include any leading instruction prefixes.

A tabie containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0-
31, some of which are used for instruction exceptions, are
reserved For each interrupt, an 8-bit vector must be
supphed to the 80C286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter-
nally INT instructions contain or imply the vector and
allow access to all 256 interrupts. Maskable hardware
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non-
maskable hardware interrupts use a predefined internally
supplied vector.

Maskable Interrupt (INTR)

The 80C286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by setting
the interrupt flag bit (IF) in the flag word. All 224
user-defined interrupt sources can share this input, yet
they can retain separate interrupt handlers. An 8-bit
vector read by the CPU during the interrupt acknowledge
sequence (discussed in System Interface section)
identifies the source of the interrupt.

The processor automatically disables further maskable
interrupts internally by resetting the IF as part of the
response to an interrupt or exception. The saved flag
word will reflect the enable status of the processor prior to
the interrupt. Until the flag word is restored to the flag
register, the interrupt flag will be zero unless specifically
set. The interrupt return instruction includes restoring the
flag word, thereby restoring the original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided.
NMI has higher priority than INTR. A typical use of NMi
would be to activate a power failure routine. The
activation of this input causes an interrupt with an
internally supplied vector value of 2. No external interrupt
acknowledge sequence is performed.

While executing the NM! servicing procedure, the 80C286
will service neither further NMI requests, INTR requests,
nor the processor extension segment overrun interrupt
until an interrupt return (IRET) instruction is executed or
the CPU is reset. If NMI occurs while currently servicing
an NMI, its presence will be saved for servicing after
executing the first IRET instruction. IF is cleared at the
beginning of an NMI interrupt to inhibit INTR interrupts.

3-61

w

CMOS MICRO-
PROCESSORS

80C286

Single Step Interrupt

The 80C286 has an internal interrupt thatallows programs
to execute one instruction at a time. It is called the single
step interrupt and is controlled by the single step flag bit
(TF) in the flag word. Once this bit is set, an internal single
step interrupt will occur after the next instruction has
been executed. The interrupt clears the TF bitand uses an
internally supplied vector of 1. The IRET instruction is
used to set the TF bit and transfer control to the next
instruction to be singie stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are
processed in a fixed order as shown in Table 5. Interrupt
processing involves saving the flags, return address, and
setting CS:IP to point at the first instruction of the
interrupt handler. |f another enabled interrupt should
occur, it is processed before the next instruction of the
current interrupt handler is executed. The last interrupt
processed is therefore the first one serviced.

Initialization and Processor Reset

Processor initialization or start up is accomplished by
driving the RESET input pin HIGH. RESET forces the
80C286 to terminate all execution and local bus activity.
No instruction or bus activity will occur as long as RESET
is active. After RESET becomes Inactive, and an internal
processing interval elapses, the 80C286 begins execution
in real address mode with the instruction at physical
location FFFFFO(H). RESET also sets some registers to
predefined values as shown in Table 6.

TABLE 6. 80C286 INITIAL REGISTER STATE AFTER RESET

Flag word 0002(H)
Machine status word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

TABLE 5. INTERRUPT PROCESSING ORDER
ORDER INTERRUPT

1 Instruction exception

2 Single step

3 NMI

4 Processor extension segment overrun

) INTR

6 INT instruction

HOLD must not be active during the time from the leading
edge of the initial RESET to 34 CLKs after the trailing edge
of the initial RESET of an 80C286 system.

Machine Status Word Description

The machine status word (MSW) records when a task
switch takes place and controls the operating mode ofthe
80C286. It is a 16-bit register of which the lower four bits
are used. One bit places the CPU into protected mode,
while the other three bits, as shown in Table 7, control the

TABLE 7. MSW BIT FUNCTIONS

BIT POSITION NAME FUNCTION

0 PE Protected mode enable places the 80C286 into protected mode and cannot be cleared
except by RESET.

1 MP Monitor processor extension allows WAIT instructions to cause a processor extension
not present exception (number 7)

2 EM Emulate processor extension causes a processor extension not present exception
(number 7) on ESC instructions to allow emulating a processor extension

3 TS Task switched indicates the next instruction using a processor extension will cause
exception 7, allowing software to test whether the current processor extension context
belongs to the current task.

3-62

80C286

TABLE 8. RECOMMENDED MSW ENCODINGS FOR PROCESSOR EXTENSION CONTROL

INSTRUCTIONS
CAUSING
TS MP EM RECOMMENDED USE EXCEPTION 7
0 0 0 Inttial encoding after RESET 80C286 operation is identical to None
80C86/88
0 0 1 No processor extension s avatlable Software will emulate its ESC
function
1 0 1 No processor extension is available Software will emulate its ESC
function The current processor extension context may belong to
another task
0 1 0 A processor extension exists None
1 1 0 A processor extension exists The current processor extension ESC or WAIT
context may belong to another task The exception 7 on WAIT allows
software to test for an error pending from a previous processor
extension operation

processor extension interface After RESET, this register
contains FFFO(H) which piaces the 80C286 in 80C286 real
address mode

The LMSW and SMSW instructions can load and store the
MSW n real address mode The recommended use of TS,
EM, and MP 1s shown in Table 8.

Halt

The HLT instruction stops program execution and
prevents the CPU from using the local bus until restarted.
Either NMI, INTR with IF = 1, or RESET will force the
80C286 out of halt. If interrupted, the saved CS:IP wili
point to the next instruction after the HLT.

80C286 Real Address Mode

The 80C286 executes a fully upward-compatible superset
of the 80C86 instruction set In real address mode. In real
address mode the 80C286 I1s object code compatible with
80C86 and 80C88 software. The real address mode
architecture (registers and addressing modes) I1s exactly
as described 1n the 80C286 Base Architecture section of
this Functional Description.

Memory Size

Physical memory 1s a contiguous array of up to 1,048,576
bytes (one megabyte) addressed by pins Ag through A1g
and BHE Agg through A23 should be ignored.

Memory Addressing

In real address mode physical memory is a contiguous
array of up to 1,048,576 bytes (one megabyte) addressed
by pin Ag through A{g and BHE. Address bits Aog-Ao3
may not always be zero in real mode. Aog-A23 should not
be used by the system while the 80C286 is operating in
Real Mode.

The selector portion of a pointer is interpreted as the
upper 16-bits of a 20-bit segment address. The lower four
bits of the 20-bit segment address are always zero.
Segment addresses, therefore, begin on multiples of 16
bytes See Figure 7 for a graphic representation of
address information.

All segments In real address mode are 64K bytes in size
and may be read, written, or executed. An exceptionorin-
terrupt can occur if data operands or instructions attempt

to wrap around the end of a segment (e.g. a word with its
low order byte at offset FFFF(H) and its high order byte at
offset 0000(H). If, in real address mode, the information
contained in a segment does not use the full 64K bytes,
the unused end of the segment may be overlayed by
another segment to reduce physical memory require-
ments.

OFFSET

0000 OFFSET ADDRESS

SEGMENT SEGMENT
SELECTOR 0000} ApDRESS

20-BIT PHYSICAL
MEMORY ADDRESS

FIGURE 7. 80C286 REAL ADDRESS MODE ADDRESS
CALCULATION

3-63

CMOS MICRO-
PROCESSORS

80C286

TABLE 9. REAL ADDRESS MODE ADDRESSING INTERRUPTS

INTERRUPT RELATED RETURN ADDRESS
FUNCTION NUMBER INSTRUCTIONS BEFORE INSTRUCTION

Interrupt table hmit too small exception 8 INT vector 1s not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extending No
interrupt beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with offset = Yes

FFFF(H) or an attempt to execute past

the end of a segment

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory inreal ad-
dress mode (see Figure 8), system initialization area and
Iinterrupt table area. Locations from addresses FFFFO(H)
through FFFFF(H) are reserved for system initialization.
Initial execution begins at location FFFFQO(H) Locations
00000(H) through O03FF(H) are reserved for interrupt
vectors.

FFFFFH
RESET BOOTSTRAP
PROGRAM JUMP FFEFOH
A .
- . Y
IFFH
INTERRUPT POINTER
FOR VECTOR 255
3FCH
~ . "L
qv . W
7H
INTERRUPT POINTER
FOR VECTOR 1 aH
INTERRUPT POINTER 3H
FOR VECTOR 0 oH

INITIAL CS:IP VALUE IS FO00:FFFO.

FIGURE 8. 80C286 REAL ADDRESS MODE INITIALLY
RESERVED MEMORY LOCATIONS

Interrupts

Table 9 shows the Interrupt vectors reserved for excep-
tions and interrupts which indicate an addressing error.
The exceptions leave the CPU in the state existing before
attempting to execute the failing instruction (except for

PUSH, POP, PUSHA, or POPA). Refer to the next section
on protected mode initialization for a discussion on
exception 8.

Protected Mode Initialization

To prepare the 80C286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and himit for the
interrupt vector table in real address mode. After reset, the
interrupt table base is initialized to 000000(H) and its size
set to 03FF(H). These values are compatible with 80C86
and 80C88 software. LIDT should only be executed in
preparation for protected mode.

Shutdown

Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and halt are externaliy sighalled via a halt bus
operation. They can be distinguished by A1 HIGH for halt
and A4 LOW for shutdown. In real address mode,
shutdown can occur under two conditions:

e Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

e A CALL INT or PUSH nstruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the
IDT limit is at least 0O00F(H) and SP is greater than
0005(H), otherwise shutdown can only be exited via the
RESET input.

Protected Virtual Address Mode

The 80C286 executes a fully upward-compatible superset
of the 80C86 instruction set In protected virtual address
mode (protected mode). Protected mode also provides
memory management and protection mechanisms and
associated instructions.

The 80C286 enters protected virtual address mode from
real address mode by setting the PE (Protection Enable)
bit of the machine status word with the Load Machine
Status Word (LMSW) instruction. Protected mode offers

extended physical and virtual memory address space,
memory protection mechanisms, and new operations to
support operating systems and virtual memory.

All registers, Instructions, and addressing modes de-
scribed in the 80C286 Base Architecture section of this
Functional Description remain the same. Programs for
the 80C86, 80C88, and real address mode 80C286 can be
run in protected mode; however, embedded constants for
segment selectors are different.

3-64

80C286

Memory Size

The protected mode 80C286 provides a 1 gigabyte virtual
address space per task mapped Into a 16 megabyte
physical address space defined by the address pins
Ao3-Ag and BHE The virtual address space may be larger
than the physical address space since any use of an
address that does not map to a physical memory location
will cause a restartable exception

CPU
kil 16 15 0
POINTER |SELECTOR| OFFSET
PHYSICAL MEMORY
~ ¥
PHYSICAL ngMR?&B } SEGMENT
ADDRESS
ADDER
SEGMENT
SEGMENT BASE SEGMENT DESCRIPTOR
ADDRESS DESCRIPTOR TABLE
23 0 [}
~ A

Y ~
FIGURE 9. PROTECTED MODE MEMORY ADDRESSING

Memory Addressing

As tn real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset
components The selector, however, specifies an index
into a memory resident table rather than the upper 16-bits
of a real memory address. The 24-bit base address of the
desired segment is obtained from the tables in memory.
The 16-bit offset is added to the segment base address to
form the physical address as shown in Figure @ Thetables

are automatically referenced by the CPU whenever a
segment register is loaded with a selector. All 80C286
instructions which load a segment register will reference
the memory based tables without additional software. The
memory based tables contain 8 byte values called
descriptors

Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of
control and task switching. The 80C286 has segment
descriptors for code, stack and data segments, and
system control descriptors for special system data
segments and control transfer operations. Descriptor
accesses are performed as locked bus operations to
assure descriptor integrity in multi-processor systems.

Code and Data Segment Descriptors (S = 1)

Besides segment base addresses, code and data descrip-
tors contain other segment attributes including segment
size (1 to 64K bytes), access rights (read only, read/write,
execute only, and execute/read), and presence in
memory (for virtual memory systems) (See Figure 10).
Any segment usage violating a segment attribute
indicated by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

CODE OR DATA SEGMENT DESCRIPTOR

7 o 7 0
+7 IRESERVED' +6
:fgji: ayre '8 P| Dle sl TYPE | A BASE 23.16 +4
+3 BAS? 15-0 +2
+1 LIMI;I' 15-0]
15 8 7 V]

*Must be set to 0 for compatability with future upgrades

ACCESS RIGHTS BYTE DEFINITION

P osBlIt‘I on Name Function
7 Present (P) P=1 Segment 1s mapped into physical memory
P=0 No mapping to physical memory exits, base and limit are
not used
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor
tor (S) S=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Data segment descriptor type is If
2 Expansion Direc- ED O Expand up segment, offsets must be < limit Data
tion (ED) ED =1 Expand down segment, offsets must be > imit. ¢ Segment
1 Writeable (W) W=20 Data segment may not be written into S =1,
T W=1 Data segment may be written into. E=0)
FY;Z 3 Executable (E) E=1 Code Segment Descriptor type is: If
Definttion 2 Conforming (C) C=1 Code segment may only be executed Code
when CPL >DPL and CPL | Segment
remains unchanged.
1 Readable (R) R=0 Code segment may not be read S=1,
R=1 Code segment may be read.) E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

FIGURE 10. CODE AND DATA SEGMENT DESCRIPTOR FORMATS

3-65

CMOS MICRO-
PROCESSORS

80C286

Code and data (including stack data) are stored in two
types of segments: code segments and data segments.
Both types are identified and defined by segment
descriptors (S = 1). Code segments are identified by the
executable (E) bit set to 1 in the descriptor access rights
byte. The access rights byte of both code and data
segment descriptor types have three fields in common:
present (P) bit, Descriptor Privilege Level (DPL), and
accessed (A) bit. If P = 0, any attempted use of this
segment will cause a not-present exception. DPL
specifies the privilege level of the segment descriptor.
DPL controls when the descriptor may be used by a task
(refer to privilege discussion below). The A bit shows
whether the segment has been previously accessed for
usage profiling, a necessity for virtual memory systems.
The CPU will always set this bit when accessing the
descriptor.

Data segments (S = 1, E = 0) may be either read-only or
read-write as controlied by the W bit of the access rights
byte. Read-only (W =0) data segments may not be written
into. Data segments may grow in two directions, as
determined by the Expansion Direction (ED) bit: upwards
(ED = 0) for data segments, and downwards (ED =1) fora
segment containing a stack. The limit field for a data
segment descriptor is interpreted differently depending
on the ED bit (see Figure 10).

A code segment (S = 1, E = 1) may be execute-only or
execute/read as determined by the Readable (R) bit. Code
segments may never be written into and execute-only
code segments (R = 0) may not be read. A code segment
may also have an attribute called conforming (C). A
conforming code segment may be shared by programs
that execute at different privilege levels. The DPL of a
conforming code segment defines the range of privilege
levels at which the segment may be executed (refer to
privilege discussion below). The limit field tdentifies the
last byte of a code segment.

System Segment Descriptors (S = 0, Type = 1-3)

In addition to code and data segment descriptors, the
protected mode 80C286 defines System Segment
Descriptors. These descriptors define special system data
segments which contain a table of descriptors (Local
Descriptor Table Descriptor) or segments which contain
the execution state of a task (Task State Segment
Descriptor).

Figure 11 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit
base address of the segment and a 16-bit limit. The access
byte defines the type of descriptor, its state and privilege
level. The descriptor contents are valid and the segment is
in physical memory if P = 1. If P = 0, the segment is not
valid. The DPL field is only used in Task State Segment
descriptors and indicates the privilege level at which the
descriptor may be used (see Privilege). Since the Local
Descriptor Table descriptor may only be used by a special
privileged instruction, the DPL field is not used. Bit 4 of
the access byte is 0 to indicate that it is a system control
descriptor. The type field specifies the descriptor type as
indicated in Figure 11.

SYSTEM SEGMENT DESCRIPTOR

7 07 0
T
+7 RESERVED* +6
+5 4 lDPL | 0 I TYPE I BASE 23-16 +4
A -] i
+3 BASE 15-0 +2
1
+1 LIMIT 15-0 0
1
16 8 7 (]

*Must be set to 0 for compatability with future upgrades
SYSTEM SEGMENT DESCRIPTOR FIELDS

Name | Value Description
TYPE 1 Avallable Task State Segment (TSS)
2 Local Descriptor Table
3 Busy Task State Segment (TSS)
P 0 Descrnptor contents are not vald
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
BASE | 24-bit | Base Address of special system data
number | segmentn real memory
LIMIT 16-bit | Offset of last byte in segment
number
FIGURE 11. SYSTEM SEGMENT DESCRIPTOR FORMAT

Gate Descriptors (S = 0, Type = 4-7)

Gates are used to control access to entry points within the
target code segment. The gate descriptors are call gates,
task gates, interrupt gates and trap gates. Gates provide a
level of indirection between the source and destination of
the control transfer. This indirection aliows the CPU to
automatically perform protection checks and control
entry point of the destination. Call gates are used to
change privilege levels (see Privilege), task gatesare used
to perform a task switch, and interrupt and trap gates are
used to specify interrupt service routines. The interrupt
gate disables interrupts (resets IF) while the trap gate
does not.

Figure 12 shows the format of the gate descriptors. The
descriptor contains a destination pointer that pointstothe
descriptor of the target segment and the entry point
offset. The destination selector in an interrupt gate, trap
gate, and call gate must refer to a code segment
descriptor. These gate descriptors contain the entry point
to prevent a program from constructing and using an
illegal entry point. Task gates may only refer to a task state
segment. Since task gates invoke a task switch, the
destination offset is not used in the task gate.

Exception 13 is generated when the gate i1s used if a
destination selector does not refer to the correct
descriptor type. The word count field 1s used in the call
gate descriptor to indicate the number of parameters
(0-31 words) to be automatically copied from the caller’s
stack to the stack of the called routine when a control
transfer changes privilege levels. The word count field is
not used by any other gate descriptor.

The access byte format is the same for all descriptors. P =
1 indicates that th gate contents are valid. P =0 indicates
the contents are not valid and causes exception 11 if
referenced. DPL is the descriptor privilege level and
specifies when this descriptor may be used by a task (refer

3-66

80C286

to privilege discussion below). Bit 4 must equal 0O to
indicate a system control descriptor. The type field
specifies the descriptor type as indicated in Figure 12.

GATE DESCRIPTOR

7 07 0
+7 RESERVED* +6
WORD
+# |P[DPL|0| TYPE |X X X| COUNT4g +4
+3 DESTINATION SELECTOR 159 X X[+2
+1 DESTINATION OFFSET 15_¢ ()}
15 8 7 0

*Must be set to 0 for compatibihity with future upgrades

GATE DESCRIPTOR FIELDS

Description

-Call Gate
-Task Gate
~Interrupt Gate
~Trap Gate

~Descriptor Contents are not
vahd

1 -Descriptor Contents are
vald

Name Value

TYPE

O INO O

DPL 0-3 Descriptor Privilege Level

WORD Number of words to copy
COUNT from callers stack to ca'led
procedures stack Only used
with call gate

Selector to the target code
segment (Call, interrupt or

Trap Gate)

Selector to the target task

state segment (Task Gate)

Entry point within the target
code segment

DESTINATION | 16-bit
SELECTOR selector

DESTINATION | 16-bit
OFFSET offset

FIGURE 12. GATE DESCRIPTOR FORMAT

Segment Descriptor Cache Registers

A segment descriptor cache register 1s assigned to each
of the four segment registers (CS, SS, DS, ES). Segment
descriptors are automatically loaded (cached) into a
segment descriptor cache register (Figure 13) whenever
the associated segment register i1s loaded with a selector.

PROGRAM VISIBLE

SEGMENT SELECTORS

cs

bs
SS
ES

15 0

SEGMENT REGISTERS
(LOADED BY PROGRAM)

PROGRAMINVISIBLE 1

ACCESS

RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE

L1 403 1815 L]

SEGMENT DESCRIPTOR CACHE REGISTERS
L_ (AUTOMATICALLY LOADED BY CPU) J

FIGURE 13. DESCRIPTOR CACHE REGISTERS

Only segment descriptors may be loaded into segment
descriptor cache registers. Once loaded, all references to
that segment of memory use the cached descriptor
information instead of reaccessing the descriptor. The
descriptor cache registers are not visible to programs. No
instructions exist to store their contents. They only
change when a segment register i1s loaded.

Selector Fields

A protected mode selector has three fields: descriptor
entry index, local or global descriptor table indicator (T1),
and selector privilege (RPL) as shown in Figure 14. These
fields select one of two memory based tables of
descriptors, select the appropriate table entry and allow
high-speed testing of the selector’s privilege attribute
(refer to privilege discussion below).

SELECTOR
T
INDEX \ RPL
) Y D O T T T T T [| -
15 8 7 2 1 0
BITS NAME FUNCTION
1-0 REQUESTED INDICATES SELECTOR PRIVILEGE
PRIVILEGE LEVEL DESIRED
LEVEL
(RPL)
2 TABLE TI = 0 USE GLOBAL DESCRIPTOR TABLE
INDICATOR (GDT)
()} TI = 1 USE LOCAL DESCRIPTOR TABLE
(LDT)
15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE

FIGURE 14. SELECTOR FIELDS

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables,
contain all descriptors accessible by a task at any given
time A descriptor table is a linear array of up to 8192
descriptors The upper 13 bits of the selector value are an
index into a descriptor table. Each table has a 24-bit base
register to locate the descriptor table in physical memory
and a 16-bit limit register that confine descriptor access to
the defined imits of the table as shown in Figure 15. A
restartable exception (13) will occur if an attempt is made
to reference a descriptor outside the table limits.

MEMORY
crPU ~ i~

GDT

GDT BASE
24-BIT PHYS AD

LT - —
DESCR
SELECTOR LDT;

M T

2

CURRENT
LoT

23 LDT LIMIT

LDT BASE
24-BIT PHYS AD

I
|
|
|
|

—— g ——

PROGRAM INVISIBLE LDT,
| (AUTOMATICALLY g g
LOADED 7]
| Fnom?.‘:n oescr | . 5 E =
| WITHIN GDT}] 6§29
e 1 Z2=3q
P! ~
FIGURE 15. LOCAL AND GLOBAL DESCRIPTOR TABLE
DEFINITION

3-67

CMOS MICRO-
PROCESSORS

80C286

One table, called the Global Descriptor table (GDT),
contains descriptors available to all tasks. The othertable,
called the Local Descriptor Table (LDT), contains
descriptors that can be private to a task. Each task may
have its own private LDT. The GDT may contain all
descriptor types except interrupt and trap descriptors.
The LDT may contain only segment, task gate, and call
gate descriptors. A segment cannot be accessed by atask
if its segment descriptor does not exist in either descriptor
table at the time of access.

The LGDT and LLDT instructions load the base and limit
of the global and local descriptor tables. LGDT and LLDT
are privileged, 1.e. they may only be executed by trusted
programs operating at level 0. The LGDT instruction
loads a six byte field containing the 16-bit table limit and
24-bit physical base address of the Global Descriptor
Table as shown in Figure 16. The LDT instruction loads a
selector which refers to a Local Descriptor Table
descriptor containing the base address and limit for an
LDT, as shown in Figure 11.

7 0 7 0
+5 RESERVED* BASE 23.16 +4
+3 EASEl 15-0 +2
+1 LIMl'|; 15-0 0
15 8 7 o

*Must be set to 0 for compatability with future upgrades

FIGURE 16. GLOBAL DESCRIPTOR TABLE AND
INTERRUPT DESCRIPTOR TABLE DATA TYPE

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure
17), used to define up to 256 interrupts. It may contain
only task gates, interrupt gates and trap gates. The IDT
(Interrupt Descriptor Table) has a 24-bit physical base
and 16-bit limit register in the CPU. The priviledged LIDT
instruction loads these registers with a six byte value of
identical form to that of the LGDT instruction (see Figure
16 and Protected Mode Initialization).

T wemony T

(GATE FOR
INTERRUPT #£n
GATE FOR
INTERRUPT #n-1
0 INTERRUPT
cPU : DESCRIPTOR
TABLE
GATE FOR (o™
15 0 INTERRUPT#1
Q w
10T LIMIT GATE FOR 1 5 ﬁ
L| iNnTERRUPT#O | | 3 W
IDT BASE ox
] Suao
23 [} :L L 2z«

FIGURE 17. INTERRUPT DESCRIPTOR TABLE DEFINITION

References to IDT entries are made via INT instructions,
external interrupt vectors, or exceptions. The IDT must be
at least 256 bytes in size to allocate space for all reserved
interrupts.

Privilege

The 80C286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and
access to descriptors (and their associated segments)

within a task. Four-level privilege, as shown in Figure 18,
is an extension of the userssupervisor mode commonly
found in minicomputers. The privilege levels are
numbered 0 through 3. Level 0 is the most privileged level.
Privilege levels provide protection within a task. (Tasks
are isolated by providing private LDT's for each task.)
Operating system routines, interrupt handlers, and other
system software can be included and protected within the
virtual address space of each task using the four levels of
priviltege. Each task in the system has a separate stack for
each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege affects the use of instructions and
descriptors. Descriptor and selector privilege only affect
access to the descriptor.

APPLICATIONS
cPU

ENFORCED
SOFTWARE

0S EXTENSION!
INTERFACES SIoNS

PkERNEL
PL=0
MOST

HIGH SPEED PRIVILEGED,

OPERATING
SYSTEM
INTERFACE

NOTE PL becomes numerically lower as privilege level increases
FIGURE 18. HIERARCHICAL PRIVILEGE LEVELS

Task Privilege

A task always executes at one of the four privilege levels.
The task privilege level at any specific instant is called the
Current Privilege Level (CPL) and is defined by the lower
two bits of the CS register. CPL cannot change during
execution in a single code segment. A task's CPL may
only be changed by control transfers through gate
descriptors to a new code segment (See Control
Transfer). Tasks begin executing at the CPL value
specified by the code segment selector within TSS when
the task is initiated via a task switch operation (See Figure
19). A task executing at Level 0 can access all data
segments defined in the GDT and the task’s LDT and is
considered the most trusted level. A task executing a
Level 3 has the most restricted access to data and is
considered the least trusted level.

Descriptor Privilege

Descriptor privilege 1s specified by the Descriptor
Privilege Level (DPL) field of the descriptor access byte.
DPL specifies the least trusted task privilege level (CPL) at
which a task may access the descriptor. Descriptors with
DPL = 0 are the most protected Only tasks executing at
privilege level 0 (CPL = 0) may access them. Descriptors
with DPL = 3 are the least protected (1.e. have the least
restricted access) since tasks can access them when
CPL =0, 1, 2, or 3). This rule applies to all descriptors,
except LDT descriptors.

3-68

80C286

TABLE 10. DESCRIPTOR TYPES USED FOR CONTROL TRANSFER

DESCRIPTOR DESCRIPTOR
CONTROL TRANSFER TYPES OPERATION TYPES REFERENCED TABLE
Intersegment within the same privilege levels JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege CALL Call Gate GDT/LDT
level Interrupt within task may change CPL.
Interrupt Instruction, Exception Trap or Interrupt IDT
External Interrupt Gate
Intersegment to a lower privilege level RET, IRET” Code Segment GDT/LDT
(changes task CPL)
CALL, JMP Task State Segment GDT
Task Switch CALL, JMP Task Gate GDT/LDT
IRET**
Interrupt Instruction, Exception Task Gate IDT
External Interrupt

*NT (Nested Task bit of flag word) =0

Selector Privilege

Selector privilege is specified by the Requested Privilege
Level (RPL) field in the least significant two bits of a
selector. Selector RPL may establish a less trusted
privilege level than the current privilege level for the use of
a selector. This level is called the task’s effective privilege
level (EPL). RPL can only reduce the scope of a task’s
access to data with this selector. A task’s effective
privilege is the numeric maximum of RPL and CPL. A
selector with RPL = 0 imposes no additional restriction on
its use while a selector with RPL = 3 can only refer to
segments at privilege Level 3 regardless of the task’s CPL.
RPL is generally used to verify that painter parameters
passed to a more trusted procedure are notallowed to use
data at a more privileged level than the caller (refer to
pointer testing instructions).

Descriptor Access and Privilege Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the
instruction used, the type of descriptor used and CPL,
RPL, and DPL. The two basic types of segment accesses
are control transfer (selectors loaded into CS) and data
(selectors loaded into DS, ES or SS).

Data Segment Access

Instructions that load selectors into DS and ES must refer
to a data segment descriptor or readable code segment
descriptor. The CPL of the task and the RPL of the
selector must be the same as or more privileged
(numerically equal to or lower than) than the descriptor
DPL. In general, a task can only access data segments at
the same or less privileged levels than the CPL or RPL
(whichever is numerically higher) to prevent a program
from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read fromany
privilege level.

**NT (Nested Task bt of flag word) = 1

If the privilege checks fail (e.g. DPL is numerically less
than the maximum of CPL and RPL) or an incorrect type
of descriptor is referenced (e.g. gate descriptor or
execute only code segment) exception 13 occurs. If the
segment is not present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types or a privilege level violation will
cause exception 13. A not present fault causes exception
12.

Control Transfer

Four types of control transfer can occur when a selector is
loaded into CS by a control transfer operation (see Table
10). Each transfer type can only nccur if the operation
which loaded the selector references the correct
descriptor type. Any violation of these descriptor usage
rules (e.g. JMP through a call gate or RET to a Task State
Segment) will cause exception 13

The ability to reference a descriptor for control transfer is
also subject to rules of privilege. A CALL or JUMP
instruction may only reference a code segmentdescriptor
with DPL equal to the task CPL or a conforming segment
with DPL of equal or greater privilege than CPL. The RPL
of the selector used to reference the code descriptor must
have as much privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal to or
less privileged than the task CPL. The selector loaded into
CS is the return address from the stack. After the return,
the selector RPL is the task’'s new CPL. If CPL changes,
the old stack pointer is popped after the return address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task's CPL. Reference to a valid Task

3-69

CMOS MICRO-
PROCESSORS

80C286

State Segment descriptor causes a task switch (see Task
Switch Operation). Reference to a Task State Segment
descriptor at a more privileged level than the task’s CPL
generates exception 13.

When an instruction or interrupt references a gate
descriptor, the gate DPL must have the same or less
privilege than the task CPL. If DPL is at a more privileged
level than CPL, exception 13 occurs If the destination
selector contained in the gate references a code segment
descriptor, the code segment descriptor DPL must be the
same or more privileged than the task CPL. If not,
Exception 13 is issued. After the control transfer, the code
segment descriptors DPL 1s the task’s new CPL. If the
destination selector in the gate references a task state
segment, a task switch 1s automatically performed (see
Task Switch Operation).

The privilege rules on control transfer require:

» JMP or CALL direct to a code segment (code segment
descriptor) can only be a conforming segment with
DPL of equal or greater privilege than CPL or a non-
conforming segment at the same privilege level.

» interrupts within the task, or calls that may change
privilege levels, can only transfer control through a
gate at the same or a less privileged level than CPL to a
code segment at the same or more privileged level than
CPL.

» return instructions that don’t switch tasks can only
return control to a code segment at the same or less
privileged level.

» task switch can be performed by a call, jump or
interrupt which references either a task gate or task
state segment at the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task,
causes a change of stacks as part of the operation. Initial
values of SS:SP for privilege levels 0, 1, and 2 are kept in
the task state segment (refer to Task Switch Operation).
Durning a JMP or CALL control transfer, the new stack
pointer is loaded into the SS and SP registers and the
previous stack pointer is pushed onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction operation.
For subroutine calls that pass parameters on the stack

and cross privilege levels, a fixed number of words, as
specified in the gate, are copied from the previous stack to
the current stack. The inter-segment RET instruction with
a stack adjustment value will correctly restore the
previous stack pointer upon return.

Protection

The 80C286 includes mechanisms to protect critical
instructions that effect the CPU execution state (e g HLT)
and code or data segments from improper usage. These
protection mechanisms are grouped into three forms:

» Restricted usage of segments (e.g. no wnite allowed to
read-only data segments). The only segmentsavailable
for use are defined by descriptors in the Local
Descriptor Table (LDT) and Global Descriptor Table
(GDT)

» Restricted access to segments via the rules of privilege
and descriptor usage.

» Privileged instructions or operations that may only be
executed at certain privilege levels as determined by
the CPL and I/0O Privilege Level (IOPL). The IOPL is
defined by bits 14 and 13 of the flag word

These checks are performed for all instructions and can
be split into three categories: segment load checks (Table
11), operand reference checks (Table 12), and privileged
instruction checks (Table 13). Any violation of the rules
shown will result in an exception A not-presentexception
related to the stack segment causes exception 12.

The IRET and POPF instructions do not perform some of
their defined functions iIf CPL s not of sufficient privilege
(numerically small enough). Precisely these are:

» The IF bit 1s not changed If CPL is greater than IOPL.

» The IOPL field of the flag word is not changed if CPL is
greater than 0.

No exceptions or other indication are given when these
conditions occur.

TABLE 12. OPERAND REFERENCE CHECKS

EXCEPTION
ERROR DESCRIPTION NUMBER
Write into code segment 13
Read from execute-only code segment 13
Write to read-only data segment 13
Segment mit exceeded (Note1) 12 or 13

TABLE 11. SEGMENT REGISTER LOAD CHECKS
EXCEPTION
ERROR DESCRIPTION NUMBER
Descriptor table imit exceeded 13
Segment descriptor not-present 11 or 12
Privilege rules violated 13

invalid descriptor/segment type segment
register load

—Read only data segment load to SS
—Special control descriptor load to DS, ES, SS 13
—Execute only segment load to DS, ES, SS
—Data segment load to CS
—Read/Execute code segment load SS

NOTE 1 Carry out in offset calculations 1s ignored

TABLE 13. PRIVILEGED INSTRUCTION CHECKS

EXCEPTION

ERROR DESCRIPTION NUMBER

CPL # 0 when executing the following
instructions 13
LIDT, LLDT, LGDT, LTR, LMSW, CTS, HLT

CPT > IOPL when executing the following
instructions 13
INS, IN, OUTS, OUT, STI, CLI, LOCK

3-70

80C286

TABLE 14. PROTECTED MODE EXCEPTIONS
RETURN ADDRESS
INTERRUPT AT FALLING ALWAYS ERROR CODE
VECTOR FUNCTION INSTRUCTION? | RESTARTABLE? ON STACK?
8 Double exception detected Yes No (Note 2) Yes
9 Processor extension segment overrun No No (Note 2) No
10 Invahd task state segment Yes Yes Yes
11 Segment not present Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yes (Note 1) Yes
13 General protection Yes No (Note 2) Yes

NOTES 1 WhenaPUSHA or POPA instruction attempts to wrap around the stack segment, the machtne state after the exception will not be restartable
because stack segment wrap around 1s not permitted This condition is identified by the value of the saved SP being either 0000(H), 0001(H),

FFFE(H), or FFFF(H)

2 These exceptions indicate a violation to privilege rules or usage rules has occurred Restart is generally not attempted under those

conditions

Exceptions

The 80C286 detects several types of exceptions and
interrupts in protected mode (see Table 14). Most are
restartable after the exceptional condition is removed.
Interrupt handlers for most exceptions can read an error
code, pushed on the stack after the return address, that
identifies the selector involved (0 if none). The return
address normally points to the failing instruction,
including all leading prefixes. For a processor extension
segment overrun exception, the return address will not
point at the ESC instruction that caused the exception;
however, the processor extension registers may contain
the address of the failing instruction.

These exceptions indicate a violation to privilege rules or
usage rules has occurred. Restart is generally not
attempted under those conditions.

All these checks are performed for all instructions and can
be split into three categories: segment load checks (Table
11), operand reference checks (Table 12), and privileged
instruction checks (Table 13) Any violation of the rules
shown will result in an exception. A not-presentexception
causes exception 11 or 12 and is restartable.

Special Operations
Task Switch Operation

The 80C286 provides a built-in task switch operation
which saves the entire 80C286 execution state (registers,
address space, and a link to the previous task), loads a
new execution state, and commences execution in the
new task. Like gates, the task switch operation is invoked
by executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS) or task gate
descriptor in the GDT or LDT. An INT instruction,
exception, or external interrupt may also invoke the task
switch operation by selecting a task gate descriptorin the
associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 19)
containing the entire 80C286 execution state while a task
gate descriptor contains a TSS selector. The limit field of
the descriptor must be greater than 002B(H).

Each task must have a TSS associated with it. The current
TSS is identified by a special register in the 80C286 called

the Task Register (TR). This register contains a selector
referring to the task state segment descriptor that defines
the current TSS. A hidden base and limit register
associated with TR are loaded whenever TR is loaded with
a new selector. The IRET instruction is used to return
control to the task that called the current task or was
interrupted. Bit 14 in the flag register is called the Nested
Task (NT) bit. It controls the function of the IRET
instruction. If NT = 0, the IRET instruction performs the
regular current task by popping values off the stack; when
NT =1, IRET performs a task switch operation back to the
previous task.

When a CALL, JMP, or INT instruction initiates a task
switch, the old (except for case of JMP) and new TSS will
be marked busy and the back link field of the new TSS set
to the old TSS selector. The NT bitof the new task is setby
CALL or INT initiated task switches. An interrupt that
does not cause a task switch will clear NT. NT may also be
set or cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a
selector that references a busy task state segment causes
Exception 13.

Processor Extension Context Switching

The context of a processor extension is not changed by
the task switch operation. A processor extension context
need only be changed when a different task attempts to
use the processor extension (which still contains the con-
text of a previous task). The 80C286 detects the first use of
a processor extension after a task switch by causing the
processor extension not present exception (7). The inter-
rupt handler may then decide whether a contextchange is
necessary.

Whenever the 80C286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proces-
sor extension context may belong to a different task than
the current one. The processor extension not present ex-
ception (7) will occur when attempting to execute an ESC
or WAIT instruction if TS =1 and a processor extension is
present (MP =1 in MSW).

3-71

CMOS MICRO-
PROCESSORS

80C286

A
A ~
Py "ElSERVED TYPE | DESCRIPTION
TASK REGISTER
SYSTEM P|P|O|TYPE| BASEz.1e 1 AN AVAILABLE TASK STATE
™ e —) o secment 3 SEGMENT MAY BE USED AS
SESCRIPTOR THE DESTINATION OF A TASK
rs . BASE15-0 h! SWITCH OPERATION
r—— - el | |
| | 3 A BUSY TASK STATE SEGMENT
| PROGRAMINVSIBLE LMITs 0 t CANNOT BE USED AS THE
S 2 ' \ | DESTINATION OF A TASK
! umt - | SWITCH
! : R S -J
: l BASE |
A A
| ® ? | ~ Y
[S S BYTE
15 o| oFFser
TASK LDT SELECTOR 42
DS SELECTOR 40 P_|DESCRIPTION
s SELECTOR ss| [7|BASE AND LIMIT FiELDS ARE vALID
SEGMENT IS NOT PRESENT IN
CS SELECTOR 36 MEMORY, BASE AND LIMIT ARE NOT
DEFINED
ES SELECTOR 3
oI 32
sl 30
8p 28 | CURRENT
TASK
s 26 [STATE
BX 2
TASK DX 2
L STATE {
SEGMENT cx 20
AX 18
FLAG WORD 16
IP (ENTRY POINT) 14
SS FOR CPL 2 12
SP FORCPL 2 10
SS FOR CPL 1 8| INmAL
STACKS
SP FOR CPL 1 6 [FORCPLO,1,2
SS FOR CPL 0 4
SP FORCPL 0 2
BACK LINK SELECTORTOTSS | 0
~ ~
~ ~

FIGURE 19. TASK STATE SEGMENT AND TSS REGISTERS

Pointer Testing Instructions

The 80C286 provides several instructions to speed selector value refers to an appropriate segment without
pointer testing and consistency checks for maintaining risking an exception. A condition flag (ZF) indicates
system integrity (see Table 15). These instructions whether use of the selector or segment will cause an
use the memory management hardware to verify that a exception.

TABLE 15. 80C286 POINTER TEST INSTRUCTIONS

INSTRUCTION | OPERANDS FUNCTION
ARPL Selector, Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric maximum
Register of current selector RPL value and the RPL value in the register. Set zero flag if selector RPL
was changed by ARPL.
VERR Selector VERIfy for Read: sets the zero flag If the segment referred to by the selector can be read
VERW Selector VERify for Write: sets the zero flag if the segment referred to by the selector can be written.
LSL Register, Load Segment Limit: reads the segment imit into the register if privilege rules and descrip-
Selector tor type allow. Set zero flag if successful
LAR Register, Load Access Rights. reads the descriptor access rights byte into the register if privilege
Selector rules allow. Set zero flag if successful

3-72

80C286

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80C286 performs the double
fault exception (8). If an exception occurs during
processing of the double fault exception, the 80C286 will
enter shutdown. During shutdown no further instructions
or exceptions are processed. Either NMI (CPU remains in
protected mode) or RESET (CPU exits protected mode)
can force the 80C286 out of shutdown. Shutdown s
externally signalled via a HALT bus operation with A4
LOW.

Protected Mode Initialization

The 80C286 initially executes in real address mode after
RESET To allow initialization code to be placed at the top
of physical memory, A23-og will be HIGH when the
80C286 performs memory references relative to the CS
register until CS 1s changed. A23.2q will be zero for refer-
ences to the DS, ES, or SS segments. Changing CSinreal
address mode will force A23.290 LOW whenever CS is

used again. The initial CS:IP value of FOO0:FFFO provides
64K bytes of code space for initialization code without
changing CS.

Protected mode operation requires several registers to be
initiahzed. The GDT and IDT base registers must refertoa
valid GDT and IDT. After executing the LMSW instruction
to set PE, the 80C286 must immediately execute anintra-
segment JMP instruction to clear the instruction queue of
instructions decoded in real address mode.

To force the 80C286 CPU registers to match the initial
protected mode state assumed by software, execute a
JMP instruction with a selector referring to the initial TSS
used in the system. This will load the task register, local
descriptor table register, segment registers and initial
general register state. The TR should point ata valid TSS
since any task switch operation involves saving the
current task state.

System Interface

The 80C286 system interface appears intwo forms. a local
bus and a system bus. The local bus consists of address,
data, status, and control signals at the pins of the CPU. A
system bus ts any buffered version of the local bus. A
system bus may also differ from the local bus in terms of
coding of status and control lines and/or timing and
loading of signals

Bus Interface Signals and Timing

The 80C286 microsystems local bus interfaces the
80C286 to local memory and 1/0 components. The inter-
face has 24 address lines, 16 data lines, and 8 status and
control signals.

The 80C286 CPU, 82C284 clock generator, 82C288 bus
controller, 82289 bus arbiter, 82C86H/87H tranceivers,
and 82C82/83H latches provide a buffered and decoded
system bus interface. The 82C284 generates the system
clock and synchromzes READY and RESET. The 82C288
converts bus operation status encoded by the 80C286 into
command and bus control signals. The 82289 bus arbiter

I\ - . BOND EXTERNAL
PAD PIN
‘/ r
|
|
|
|
!

=
ouTPUT :
|

[

|

]

DRIVER

INPUT

FFER

/‘ L INPUT
PROTECTION

\l CIRCUITRY

FIGURE 20A. BUS HOLD CIRCUITRY — PINS 36-51, 66, 67

generates Multibus™ bus arbitration signals. These com-
ponents can provide the critical timing required for most
system bus interfaces including the Multibus.

Bus Hold Circuitry

To avoid high current conditions caused by floating
inputs to CMOS devices, and to eliminate the need for
pull-up/down resistors, “bus-hold” circuitry has been
used on the 80C286 pins 4-6, 36-51 and 66-68 (See Figure
20A and 20B). The circuit shown in Figure 20A will
maintain 'the last valid logic state if no driving source is
present (i.e. an unconnected pin oradriving source which
goes to a high impedance state). The circuit shown in
Figure 20B will maintain a high impedance logic one state
if no driving source is present. To overdrive the
“bus-hold” circuits, an external driver must be capable of
sinking or sourcing approximately 400 microamps at valid
input voltage levels. Since this “bus-hold” circuitry is
active and not a “resistive” type element, the associated
power supply current is negligible, and power dissipation
is significantly reduced when compared to the use of
passive pull-up resistors.

I\ ‘ i BOND | EXTERNAL
PAD PIN

-

outeur VCC

DRIVER

INPUT

BUFFER

/‘ - INPUT
PROTECTION

\’ CIRCUITRY

FIGURE 20B. BUS HOLD CIRCUITRY — PINS 4-6, 68

L_.___

Multibus™ 1s a Registered Trademark of Intel

3-73

CMOS MICRO-
PROCESSORS

80C286

Physical Memory and I/O Interface

A maximum of 16 megabytes of physical memory can be
addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible as
bytes or words. Words consist of any two consecutive
bytes addressed with the least significant byte stored in
the lowest address. Byte transfers occur on either half of
the 16-bit local data bus. Even bytes are accessed over
D7-0 while odd bytes are transferred over D15-g8. Even
addressed words are transferred over D15-¢ in one bus
cycle, while odd addressed word require two bus
operations. The first transfers data on D15.8, and the
second transfers data on D7.¢. Both byte data transfers
occur automatically, transparent to software.

Two bus signals, Ag and BHE, control transfers over the
lower and upper halves of the data bus. Even address byte
transfers are indicated by Ag LOW and BHE HIGH. Odd
address byte transfers are indicated by Ag HIGH and BHE
LOW. Both Ag and BHE are LOW for even address word
transfers.

The 1/O address space contains 64K addresses in both
modes. The I/O space is accessible as either bytes or
words, as is memory. Byte wide peripheral devices may be
attached to either the upper or iower byte of the data bus.
Byte-wide I/O devices attached to the upper data byte
(D15-8) are accessed with odd I/O addresses. Devices on
the lower data byte are accessed with even I/O addresses.
An interrupt controller such as Harris’'s 82C59A must be
connected to the lower data byte (D7.-g) for proper return
of the interrupt vector.

Bus Operation

The 80C286 uses a double frequency system clock (CLK
input) to control bus timing. All signals on the local bus
are measured relative to the system CLK input. The CPU
divides the system clock by 2 to produce the internal
processor clock, which determines bus state. Each
processor clock is composed of two system clock cycles
named phase 1 and phase 2. The 82C284 clock generator
output (PCLK) identifies the next phase of the processor
clock. (See Figure 21.)

[<¢—— ONE PROCESSOR CLOCK CYCLE ~———]

|————————— ONE BUS T STATE e g}
PHASE 1

PHASE 2
OF PROCESSOR—»Id——-OF PROCESSOR —
CLOCK CYCLE CLOCK CYCLE

N/ N/ o
ONE SYSTEM

CLK CYCLE
SYSTEM AND PROCESSOR CLOCK

PCLK / \
RELATIONSHIPS

FIGURE 21.

Six types of bus operations are supported; memory read,
memory write, I/0 read, I/0 write, interrupt acknowledge,
and halt/shutdown. Data can be transferred ata maximum
rate of one word per two processor clock cycles.

The 80C286 bus has three basic states: idle (T)), send
status (Tg), and perform command (Tc). The 80C286
CPU also has a fourth local bus state called hold (TH). TH
indicates that the 80C286 has surrendered control of the
local bus to another bus master in response to a HOLD
request.

Each bus state is one processor clock fong. Figure 22
shows the four 80C286 local bus states and allowed
transitions.

READY e NEW CYCLE
FIGURE 22. 80C286 BUS STATES

Bus States

The idle (T}) state indicates that no data transfers are in
progress or requested. The first active state Tg is signaled
by status line §1 or 5g going LOW and identifying phase 1
of the processor clock. During Tg, the command
encoding, the address, and data (for a write operation) are
available on the 80C286 output pins. The 82C288 bus
controller decodes the status signals and generates
Multibus compatible read/write command and local
transceiver control signals.

After Tg, the perform command (Tc) state is entered.
Memory or I/O devices respond to the bus operation
during Tg, either transferring read data to the CPU or
accepting write data. T states may be repeated as often
as necessary to ensure sufficient time for the memory or
I/0 device to respond. The READY signal determines
whether TG is repeated. A repeated T state is called a
wait state.

During hold (TH), the 80C286 will float all address, data,
and status output drivers enabling another bus master to
use the local bus. The 80C286 HOLD input signal is used
to place the 80C286 into the T state. The 80C286 HLDA
output signal indicates that the CPU has entered TH.

Pipelined Addressing

The 80C286 uses a local bus interface with pipelined
timing to allow as much time as possible for data access.
Pipelined timing allows a new bus operation to be initiated
every two processor cycles, while allowing each
individual bus operation to last for three processor cycles.

3-74

80C286

NEADMCVCLEN.‘——-———-—.

\] |

cu _]

Wbﬁj—

PROC CLK
|<#———— 2 PCLK CYCLE TRANSFER —} | 2 PCIK CYCLE TRANSFER
/ ‘ 2 sl cn.ocx CYCLE Anonsss 70 OATA w\uo
Az - Ag J{({(| VALID ADOR (N)] XS (€ | VAUID ADDR N+ 1) [X((({
B.% \— kA/ D — \J
READY T

VALID READ
DATA (N)

VALID READ
DATA (N+ 1)

Pipeling vahid address (N + 1) available in last phase of bus cycle (N)

FIGURE 23. BASIC BUS CYCLE

The timing of the address outputs 1s pipelined such that
the address of the next bus operation becomes available
during the current bus operation. Or, In other words, the
first clock of the next bus operation 1s overlapped with the
last clock of the current bus operation. Therefore, address
decode and routing logic can operate in advance of the
next bus operation.

External address latches may hold the address stable for
the entire bus operation, and provide additional AC and
DC buffering.

The 80C286 does not maintain the address of the current
bus operation during all Tc states. Instead, the address
for the next bus operation may be emitted during phase 2
of any T¢. The address remains valid during phase 1 of
the first TG to guarantee hold time, relative to ALE, for the
address latch inputs.

Bus Control Signals

The 82C288 bus controller provides control signals;
address latch enable (ALE), Read/Write commands, data
transmit/receive (DT/R), and data enable (DEN) that
control the address latches, data transceivers, write
enable, and output enable for memory and 1/0O systems.

The Address Latch Enable (ALE) output determines when
the address may be latched. ALE provides at least one
system CLK period of address hold time from the end of
the previous bus operation until the address for the next
bus operation appears at the latch outputs. This address
hold time s required to support Multibus and common
memory systems.

The data bus transceivers are controlled by 82C288
outputs Data Enable (DEN) and Data Transmit/Receive
(DT/R). DEN enables the data transceivers, while DT/R
controls tranceiver direction. DEN and DT/R are timed to
prevent bus contention between the bus master, data bus
transceivers, and system data bus transceivers

Command Timing Controls

Two system timing customization options, command
extension and command delay, are provided on the
80C286 local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states on the 80C86. External logic can
control the duration of any bus opération such that the
operation is only as long as necessary The READY input
signal can extend any bus operation for as long as
necessary.

Command delay allows an increase of address or write
data setup time to system bus command active for any bus
operation by delaying when the system bus command
becomes active. Command delay i1s controlled by the
82C288 CMDLY input. After Tg, the bus controller
samples CMDLY at each failing edge of CLK. If CMDLY is
HIGH, the 82C288 will not activate the command signal.
When CMDLY is LOW, the 82C288 will activate the
command signal. After the command becomes active, the
CMDLY input is not sampled.

When a command is delayed, the available response time
from command active to return read data or accept write
data is less. To customize system bus timing, an address
decoder can determine which bus operations require
delaying the command. The CMDLY input does not affect
the timing of ALE, DEN or DT/R.

Figure 24 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system CLKs for
cycle N-1 and no delay for cycle N, and example 2 shows
delaying the read command one system CLK forcycle N-1
and one system CLK delay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the 80C286 bus alternates
between the status and command states. The bus status
signals become inactive after Tg so that they may cor-

3-75

CMOS MICRO-
PROCESSORS

80C286

I READ CYCLE N-1

l READ CYCLE N
1

Ags- Ao \/;\770 ADDR (N 1 7)«(((/ VALID ADDR N /)(((((
/ ///
son T\ | /j — A
,’ // \ '/
ALE ’A\ / \ ;I Ij

/
| | |
READY . \T\
i

,A \\\ /

, |
| ‘l l

y %\7_&

) N\
| ® (L r
ooy / N
o) © [*
iMDLV \U

\\/

FIGURE 24. CMDLY CONTROLS THE LEADING EDGE OF COMMAND SIGNAL

rectly signal the start of the next bus operation after the
completion of the current cycle. No external indication of
Tc exists on the 80C286 local bus. The bus master and
bus controtler enter T directly after Tg and continue
executing Tc cycles until terminated by the assertion of
READY.

READY Operation

The current bus master and 82C288 bus controller
terminate each bus operation simultaneously to achieve
maximum bus operation bandwidth. Both are informed in
advance by READY active (open-collector output from
82C284) which 1dentifies the last T¢ cycle of the current
bus operation. The bus master and bus controller must
see the same sense of the READY signal, thereby
requiring READY to be synchronous to the system clock.

Synchronous Ready

The 82C284 clock generator provides READY synchroni-
zation from both synchronous and asynchronous sources
(see Figure 25). The synchronous ready input (SRDY) of
the clock generator is sampled with the falling edge of
CLK at the end of phase 1 of each T¢. The state of SRDY is
then broadcast to the bus master and bus controller via
the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their ready
outputs cannot be guaranteed to meet the 82C284 SRDY
setup and hold time requirements. But the 82C284
asynchronous ready input (ARDY) is designed to accept
such signals. The ARDY input is sampled at the beginning
of each T cycle by 82C284 synchronization logic. This
provides one system CLK cycle time to resolve its value
before broadcasting it to the bus master and bus
controller.

ARDY or ARDYEN must be HIGH at the end of Tg. ARDY
cannot be used to terminate the bus cycle with no wait
states.

Each ready input of the 82C284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current
bus operation will be terminated by the synchronous or
asynchronous ready. Either of the ready inputs may
terminate a bus operation. These enable inputs are active
low and have the same timing as their respective ready
inputs. Address decode logic usually selects whether the
current bus operation should be terminated by ARDY or
SRDY.

3-76

80C286

Data Bus Control

Figures 26, 27, and 28 show how the DT/R, DEN, data bus,
and address signals operate for different combinations of
read, write, and idle bus operations. DT/R goes active
(LOW) for a read operation. DT/R remains HIGH before,
during, and between write operations.

The data bus is driven with write data during the second
phase of Ts. The delay in write data timing allows the read
data drivers, from a previous read cycle, sufficient time to
enter three-state OFF before the 80C286 CPU begins driv-
Ing the local data bus for write operations Write data will
always remain valid for one system clock past the last Tg
to provide sufficient hold time for Multibus or other similar
memory or |I/O systems. During write-read or write-idle
sequences the data bus enters a high impedance state
during the second phase of the processor cycle after the
last Tc. In a write-write sequence the data bus does not
enter a high impedance state between Tc and Ts.

Bus Usage

The 80C286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus
masters, instruction fetching, processor extension data
transfers, interrupt acknowledge, and halt/shutdown
This section describes local bus activities which have
special signals or requirements Note that I/O transfers
take place in exactly the same manner as memory
transfers (i.e. to the 80C286 the timing, etc. of an I/O
transfer is i1dentical to a memory transfer).

HOLD and HLDA

HOLD and HLDA allow another bus master to gain control
of the local bus by placing the 80C286 bus into the TH
state. The sequence of events required to pass control
between the 80C286 and another local bus master are
shown in Figure 29.

In this example, the 80C286 is initially in the TH state as
signaled by HLDA being active. Upon leaving TH, as
signaled by HLDA going inactive, a write operation Is
started. During the write operation another local bus
master requests the local bus from the 80C286 as shown
by the HOLD signal. After completing the write operation,
the 80C286 performs one T| bus cycle, to guarantee write
data hold time, then enters Tq as sighaled by HLDA going
active.

The CMDLY signal and ARDY ready are used to start and
stop the write bus command, respectively. Note that
SRDY must be inactive or disabled by SRDYEN to
guarantee ARDY will terminate the cycle.

HOLD must not be active during the time from the leading
edge of RESET until 34 CLKs following the trailing edge of
RESET unless the 80C286 is in the Halt condition. To
ensure that the 80C286 remains in the Halt condition until

the processor Reset operation i1s complete, no interrupts
should occur after the execution of HLT until 34 CLKs
after the trailing edge of the RESET pulse.

LOCK

The CPU asserts an active lock signal during Interrupt-
Acknowledge cycles, the XCHG instruction, and during
some descriptor accesses. Lock is also asserted when the
LOCK prefix ts used. The LOCK prefix may be used with
the following ASM-286 assembly instructions; MOVS, INS
and OUTS For bus cycles other than Interrupt-
Acknowledge cycles, Lock will be active for the first and
subsequent cycles of a series of cycles to be locked. Lock
will not be shown active during the last cycle to be locked.
For the next-to-last cycle, Lock will become inactive atthe
end of the first T¢ regardless of the number of wait states
inserted. For Interrupt-Acknowledge cycles, Lock will be
active for each cycle, and will become inactive at the end
of the first T¢ for each cycle regardless of the number of
walt-states inserted.

Instruction Fetching

The 80C286 Bus Unit (BU) will fetch instructions ahead of
the current instruction being executed. This activity I1s
called prefetching. It occurs when the local bus would
otherwise be idie and obeys the following rules.

A prefetch bus operation starts when at least two bytes of
the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches
independent of the byte alignment of the code segment
base In physical memory.

The prefetcher will perform only a byte code fetch
operation for control transfers to an instruction beginning
on a numerically odd physical address

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the
instruction queue.

In real address mode, the prefetcher may fetch up to 6
bytes beyond the last control transfer or HLT instruction
in a code segment.

In protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops at the
last physical memory word of the code segment.
Exception 13 will occur if the program attempts to execute
beyond the last full instruction in the code segment.

If the last byte of a code segment appears on an even
physical memory address, the prefetcher will read the
next physical byte of memory (perform a word code
fetch). The value of this byte is ignored and any attempt to
execute it causes exception 13.

3-77

CMOS MICRO-
PROCESSORS

80C286

MEMORY CYCLE N-1 MEMORY CYCLE N

§
Ts ah Tc Ts Te
\ w2 |) * | | "2

PR e
CE S I T I N I S N N S T N N NS D N B A

PROC CLK

Az23 ~ Ao VALID ADDR [X((((((/ VALID ADDR / X((((((VéLID ADDR
55 o 57 \ / /
o7 LAY

L

WA N ANV

READY (SEE NOTE 1.) \\§\ / (SEENOTE 2 \,\
Arov. ATV T TRV ANV WANNNWWWNNNNNWNNWWNN /77777777177

(SEE NOTE3)

NOTES:

1. SRDYEN is active low

2. If SRDYEN is high, the state of SRDY will not effect READY
3. ARDYEN s active low

FIGURE 25. SYNCHRONOUS AND ASYNCHRONOUS READY

l READ CYCLE I WRITE CYCLE |

7 Ts - Te Ts |- Te T.———>1
] 2 ‘ @ i r] ral | R | w1 | 2 l al |] | i | "2

|
VALID ADDR

XK X

A2y ~ Ag VALID ADDR /

Dis~Dg = — = = = = — m e — - — - — - ({(« [VALID WRITE DA["rA (\>>>>>- -—-

VALID \
READ DATA

s

)
e

FIGURE 26. BACK TO BACK READ-WRITE CYCLE

3-78

80C286

_L WRITE CYCLE I READ lCVCLE |

FIGURE 27. BACK TO BACK WRITE-READ CYCLE

| WRITE CYCLE N-1 WRITE CYCLEN I

T Ts } Tc | Ts - Tc T |
[I " | 2 1 | 2] 1 | 2 ' | 2 I 1 | 2 |
S R O NG [O
\
\
\ 1
} VALID ADDR N /

T
Az3-Ag W VALID ADDR N-1 1)@(
7 !

V4
WBoran 990>

DEN k/ \.s

DR (HIGH)

FIGURE 28. BACK TO BACK WRITE-WRITE CYCLE

3-79

CMOS MICRO-
PROCESSORS

80C286

“ BUS HOLD
|—BYUS HOLD ACKNOWLEDGE __, WRITE CYCLE ACKNOWLEDGE
> E—
BUS CYCLE TYPE I ™ | ™ Ts Te Tc Te I T ™ |
| 82 | o1 | 02|61 | 62)01 | 62 | ¢1 | 62| o1 | ¢2 | ¢1 | 2| ¢1 | 62| ¢1 | 62

CLK

(SEE NOTE 5)

HOLD \\ (SEE NOTE 4) (SEE NOTE 6) (

HLDA] [/ [
P (SEE NOTE 1) (SEE NOTE 1)
g sies0 T TTTENTT
(=]
® A2z -Ag (SEE NOTE 2)

vy \SARNAN \\\\\\\\\\\\\\\\\\\\\\\\\\\
S — T) -~ =———=
COD/INTA

(SEE NOTE 3)
BHE,LOCK — = e e e e { VALID DP9)9) ———— e e =

i Dig-Dg ~——=———— < VALID - ———————
[R <<

NOT READY NOT READY (SEE NOTE 7)
iz ey NN\ @l LT iz

NOT READY NOT READY READY

emoLY LT T T NN UL 1T 2 L Tl

DELAY ENABLE (SEE NOTE 7)

/

82C284

ARDY +
| ARDYEN

MWTC \

VOH
DT/R

DEN \._____.._
ALE J—\

TS -STATUS CYCLE
TC - COMMAND CYCLE

82C288

NOTES:

1. Status lines are held at a high impedance logic one by the 80C286 during a HOLD state.

2. Address, M/IO and COD/INTA may start floating during any T depending on when internal 80C286 bus arbiter decides to release bus to external HOLD.
The float starts in 92 of T¢.

3. BHE and LOCK may start floating after the end of any T depending on when internal 80C286 bus arbiter decides to release bus to external HOLD. The
float starts in g1 of Tc.

4. The minimum HOLD to HLDA time is shown. Maximum is one Ty longer.

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other machine state (i.e., Interrupts, Waits,
Lock, etc.).

7. Asynchronous ready allows termination of the cycie. Synchronous ready does not signal ready in this example. Synchronous ready state is ignored after
ready is signaled via the asynchronous input.

FIGURE 29. MULTIBUS WRITE TERMINATED BY ASYNCHRONOUS READY WITH BUS HOLD

3-80

80C286

Processor Extension Transfers

The processor extension interface uses /0O port
addresses 00F8(H), and 00FC(H) which are part of the I/0O
port address range reserved by Harris. An ESC instruction
with Machine Status Word bits EM = 0 and Tg = 0 will
perform 1/O bus operations to one or more of these 1/0
port addresses independent of the value of IOPL and CPL.

ESC instructions with memory references enable the CPU
to accept PEREQ inputs for processor extension operand
transfers. The CPU will determine the operand starting
address and read/write status of the instruction. For each
operand transfer, two or three bus operations are per-
formed, one word transfer with 1/0 port address 00FA(H)
and one or two bus operations with memory. Three bus
operations are required for each word operand aligned on
an odd byte address.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge sequence
performed by the 80C286 in response to an INTR input.
An interrupt acknowledge sequence consists of two INTA
bus operations. The first allows a master 82C59A Pro-
grammable Interrupt Controller (PIC) to determine which
if any of its slaves should return the interrupt vector. An
eight bit vector is read on Dg-D7 of the 80C286 during the
second INTA bus operation to select an interrupt handler
routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the 82C288 is
used to enable the cascade address drivers during INTA
bus operations (See Figure 30) onto the local adress bus
for distribution to slave interrupt controllers via the
system address bus. The 80C286 emits the LOCK signal
(active LOW) during Tg of the first INTA bus operation. A
local bus “hold” request will not be honored until the end
of the second INTA bus operation.

Three idle processor clocks are provided by the 80C286
between INTA bus operations to allow for the minimum
INTA to INTA time and CAS (cascade address) out delay
of the 82C59A. The second INTA bus operation must
always have at least one extra T¢ state added via logic
controlling READY Ap3-Ag are in three-state OFF until
after the first T state of the second INTA bus operation.
This prevents bus contention between the cascade
address drivers and CPU address drivers. The extra T¢
state allows time for the 80C286 to resume driving the
address lines for subsequent bus operations.

Local Bus Usage Priorities

The 80C286 local bus is shared among several internal
units and external HOLD requests. In case of simulta-
neous requests, their relative priorities are:

(Highest) Any transfers which assert LOCK either
explicitly (via the LOCK instruction prefix) or
implicitly (i.e. some segment descriptor
accesses, an interrupt acknowledge se-
quence, or an XCHG with memory).

The second of the two byte bus operations
required for an odd aligned word operand.

|

|

|

|

|

|

|

|

| The second or third cycle of a processor
| extension data transfer.
|

|

|

|

I

!

I

|

|

Local bus request via HOLD input.

Processor extension data operand transfer via
PEREQ input.

Data transfer performed by EU as part of an
instruction.
(Lowest) An instruction prefetch request from BU. The
EU will inhibit prefetching two processor
clocks in advance of any data transfers to
minimize waiting by the EU for a prefetch to
finish.

Halt or Shutdown Cycles

The 80C286 externally indicates halt or shutdown
conditions as a bus operation. These conditions occur
due to a HLT instruction or multiple protection exceptions
while attempting to execute one instruction. A hait or
shutdown bus operation is signalled when S, Sg, and
COD/INTA are LOW and M/IO is HIGH. A1 HIGH
indicates halt, and A1 LOW indicates shutdown. The
82C288 bus controller does not issue ALE, nor is READY
required to terminate a halt or shutdown bus operation.

During halt or shutdown, the 80C286 may service PEREQ
or HOLD requests. A processor extension segment
overrun during shutdown will inhibit further service of
PEREQ. Either NM!I or RESET will force the 80C286 out of
either halt or shutdown. An INTR, if interrupts are
enabled, or a processor extension segment overrun
exception will also force the 80C286 out of halt.

3-81

CMOS MICRO-
PROCESSORS

80C286

€—————INTA CYCLE { ————>] <¢—————INTA CYCLE 2 ————2>|
BUS CYCLE TYPE | Tc Ts Tc Tc T l T I T Ts Tc Tc Ts I
w2 R w2 o2 et b2 Lo bw2 b oo 1w w1 boe2 bowt o2 R I T S T]
CLK
57 e S0
M/i0, CODANTA \55}5!5!!55
TR \S_seenores) (‘////////////////////////////////)x-/ AU7ANNRRARANAAAY
©
o«
N
13)
5] A2z — Ag m —_————— - —(?E—E thT—ES—) { DON'T CARE)— —_———— —(S—EE—N(EE—E')%
BHE m —————————— -(DON'T CARE }- —————————— ~
—_— (SEE NOTE 1)
I (O --
(SEE NOTE 2) (SEE NOTE 3)
— NOT READY READY NOT READY READY
INTA \ / -/
MCE / \ / \
3
S ALE [\ / \
]
o \ / \ [
DEN / \ / \
NOTES

1
2
3

Data I1s ignored

First INTA cycle should have at least one wait state inserted to meet 82C59A minimum INTA pulse width -

Second INTA cycle must have at least one wart state inserted since the CPU will not drive Ap3-Aq, EF!TE, and LOCK until after the first T state
The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by MCE | and address outputs

Without the wait state, the 80C286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The 82C59A also
requires one wait state for minimum INTA pulse width

LOCK 1s active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in amulti-master system. LOCK s also active
far the second INTA cycle

Ag3-Ag exits three-state OFF during ¢2 of the second T In the INTA cycle

FIGURE 30. INTERRUPT ACKNOWLEDGE SEQUENCE

3-82

80C286

Vee
Vee
| REN MRDC > MEMORY READ
a vB MWTC MEMORY WRITE
I—* "_‘ - iORE 1/O READ
< CMOLY Bwe 110 WRITE
X2 Xy = NTA # INTERRUPT ACKNOWLEDGE
J— S0 S0 ALE
RESET RE - = WCE Fe— =1
eLK READY READY DEN F—tTtr———l = —* ADVANCED MEMORY
l * CcLK ' g CLK DR | -4+ — — —»! DECODE | —» ANDIO CHIP SELECTS
= — EFI 82C288 BUS F—44444- r — 1 (OPTIONAL) |
FE | CONTROLLER 14 1 ")
| wo | TTTTTT™ Iy
- ' i l | r—#riy—"l b — 4
SYNC READY ——| SRDV RESET 4T L“ a1 | | r T 14
ENABLE ———| SROYEN Iy ‘ | [
ASYNC READY ARDY 1o
s CENiB[L)E ———| ARDY o RESET LOICK : ; : st
OVE | il 13 ADDRESS BUS
82C284 ! | Lefcik copANTA| — — 1| £
GE%LE%%OR (I READY L1 _ 82caz
3 Apy—Ag > or 82C83H
[= LATCH
I s AN
e —{ nmi BHE
r 3 —» HoLD
| p——= y
--— HLDA
[CASp 2 Ao
| re——77= — ERROR TE |e— CHIP SELECT
| : | f———-— —| BUSY INTR INT
| Il p—=———1 PEACK INTA
| ‘ {1 | r——— —=|PEREQ WR
P bl 80C286 R
* o * | cPu L SPEN
Dys =D IRy IR
AR 5= p— e
| | 82C59A
PROCESSOR I INTERRUPT
| |
EXTENSION K CONTROLLER
: (OPTIONAL) i N T T
b o = - —— J4 —
OF
82C86H o
ATA
> or 82C87H el
TRANS
CEIVER
T

FIGURE 31. BASIC 80C286 SYSTEM CONFIGURATION

System Configurations

The versatile bus structure of the 80C286 micro-system,
with a full complement of support chips, allows flexible
configuration of a wide range of systems. The basic
configuration, shown in Figure 31, is similar to an 80C86
maximum mode system. It includes the CPU plus an
82C59A interrupt controller, 82C284 clock generator, and
the 82C288 Bus Controller. The 80C86 latches (82C82
and 82C83H) and transceivers (82C86H and 82C87H)
may be used in an 80C286 microsystem.

As indicated by the dashed lines in Figure 31, the ability to
add processor extensions is an integral feature of 80C286
based microsystems. The processor extension interface
allows external hardware to perform special functions
and transfer data concurrent with CPU execution of other
instructions. Full system integrity is maintained because
the 80C286 supervises all data transfers and instruction
execution for the processor extension.

An 80C286 system which includes the 80287 numeric
processor extension (NPX) uses this interface. The
80C286/80287 system has all the instructions and data
types of an 80C86 or 80C88 with 8087 numeric processor
extension. The 80287 NPX can perform numeric calcula-

tions and data transfers concurrently with CPU program
execution. Numerics code and data have the same
integrity as all other information protected by the 80C286
protection mechanism.

The 80C286 can overlap chip select decoding and
address propagation during the data transfer for the
previous bus operation. This information is latched into
the 82C82/83H's by ALE during the middle of a Tg cycle.
The latched chip select and address information remains
stable during the bus operation while the next cycle’s
address is being decoded and propagated into the
system. Decode logic can be implemented with a high
speed PROM or PAL.

The optional decode logic shown in Figure 31 takes
advantage of the overlap between address and data of the
80C286 bus cycle to generate advanced memory and I/0-
select signals. This minimizes system performance
degradation caused by address propagation and decode
delays. In addition to selecting memory and /O, the
advanced selects may be used with configurations
supporting local and system buses to enable the appro-
priate bus interface for each bus cycle. The COD/INTA

3-83

CMOS MICRO-
PROCESSORS

80C286

g S Y
Vee SYSBAESE .
»{ RESET INNT f————
Vce CBRQ BREQ p—>
ALWAYS MULTIBUS
> CEQLCK BPRO ™ | sus ARBITRATION
+155 BPAN fe+—
—»1 §7 BUSY je——>
READY CBRO [&—
] CLK OCK |
AEN W0 [
82289
BUS ARBITER
Vee
AEN MRDC > MEMORY READ
J—m’—‘ MWTC & MEMORY WRITE
iGRC > 1/0 READ
CMoLY i5we » /O WRITE
X2 Xt INTA » INTERRUPT ACKNOWLEDGE
50 | 50 ALE
WESET AES 5 > 5 MCE
READY »{ READY DEN
l PCLK CLK \ g CLK DTR
= —E&n 82C288BUS
_E—> FIT ! CONTROLLER
— | MAO
- | [
SYNC READY —————~| SRDY RESET T
ENABLE ——»-| SROYEN I ‘
ASYNC READY ~———-| ARDY 0 RESET MO L[sre
ENABLE ——— IﬁBaitzﬁcz g4 [. otk —»{ OF ADDRESS BUS
cLOCK : ! | reapy CODNTA—
GENERATOR I i & Az- Ao > 82C83H
| : e yaN LATCH
———d —o{ NMI BHE
:' J —»{ HOLD
P
L : HLDA CASo_s Ao
yF-" T~ ERROR TS = CHIP SELECT
| |l rFr———— - —»{ BUSY INTR INT
: Il p——=—=—1 PEACK »| INTA
! 1| — — — —»{PEREQ WR
I . AD
by 80C286 >
Py cpU SPEN
AR T RRE A D - 0y o -
|) 82C59A
PROCESSOR I, INTERRUPT
: EXTENSION k o CONTROLLER
I (OPTIONAL) N
b e om oo - o - 4 oF
)| 82C87H DATA BUS
CEIVER
T

FIGURE 32. MULTIBUS SYSTEM BUS INTERFACE

and M/IO signals are applied to the decode logic to address and write data setup times. This arrangement will
distinguish between interrupt, 1/0, code, and data bus add at least one extra TC state to each bus operation
cycles. which uses the Multibus.

By adding the 82289 bus arbiter chip the 80C286 provides A second 82C288 bus controller and additional latches
a Multibus system bus interface as shown in Figure 32. and transceivers could be added to the local bus of Figure
The ALE output of the 82C288 for the Multibus bus is 32. This configuration allows the 80C286 to support an
connected to its CMDLY input to delay the start of on-board bus for local memory and peripherais, and the
commands one system CLK as required to meet Multibus Multibus for system bus interfacing.

3-84

Specifications 80C286

Absolute Maximum Ratings

SupplyVoltage . ..o i i i e e e e e +8.0V
Input, Output or I/O Voltage Applied ...GND -~ 1.0VtoVCC + 1.0V
Storage Temperature Range -659C to +150°C
Junction Temperaturecoviiiniiiiin i iiiannnnn +175°C
L ead Temperature (Soldering, Ten Seconds) +300°C

Reliability Information

Bjc oveernnnn 170C/W (PGA Package), 9°C/W (PLCC Package)
Big..-nena ;... 410C/W (PGA Package), 33°C/W (PLCC Package)
Maximum Package Power Dissipation
PLCCPackageovvviiin ittt ittt iiiieninneanes 2.2W
PGAPACKAgE .t vt tie it ieiie i et ia e 1.22W
Gate Countot i i e 22,500

CAUTION Stresses above those listed in the Absolute Maximum Ratings may cause permanent damage to the device. This 1s a stress only
rating and operation of the device at these or any other conditions above those indicated in the operations sections of this specification 1s not implied

Operating Conditions

Operating Voltage Range
(B0C286-10,=12) . .ovii it iiiiiiniiinannees +4.5V to +5.5V
(80C286-16,-20,-25) . covvvenirininnnnnns +4.75V to +5.25V

Operating Temperature Range
180C286-10,-12,-16,-20vvvvennnn -40°C to +859C
C80C286-12,-16,-20,-25ccvvvnivrnnns 09C to +70°C

D.C. Electrical Specifications Vgg = +5V £ 10%, Ta = 00C to +70°C (C80C286-12)
Vcg = +5V £ 5%, Tp = 00C to +700C (C80C286-16, -20, -25)
Voo = +5V £ 10%, Tp = -40°C to +859C (180C286-10, -12)
Vo = +5V = 5%, Tp = -400C to +85°C (180C286-16, -20)

SYMBOL PARAMETER MIN MAX UNITS TEST CONDITIONS
ViL input LOW Voltage -0.5 0.8 \
ViH Input HIGH Voltage 20 VCC+0.5 \
ViLe CLK Input LOW Voltage -0.5 1.0 \%
ViHC CLK Input HIGH Voltage 3.6 Voo+0.5 \
VoL Output LOW Voltage - 0.4 \ loL=2.0mA
VoH Output HIGH Voltage 3.0 - \ loH =-2.0mA
Vge-0.4 - \ loH =-100pA
I Input Leakage Current -10 10 A ViN=GNDorVcc
Pins 29, 31,57, 59, 61, 63-64
IsH Input Sustaining Current on -30 -500 pA Vin = GND (See Note 5)
BUSY and ERROR Pins
IBHL Input Sustaining Current LOW 38 200 pA ViN = 1.0V (See Note 1)
IBHH Input Sustaining Current HIGH -50 -400 pA VIN = 3.0V (See Note 2)
lo Output Leakage Current -10 10 pA Vo =GNDorVce
Pins 1,7-8, 10-28,32-34
lccop Active Power Supply Current - 185 mA 80C286~10 (See Note 4)
- 220 mA 80C286-12 (See Note 4)
- 260 mA 80C286-16 (See Note 4)
- 310 mA 80C286-20 (See Note 4)
- 410 mA 80C286-25 (See Note 4)
lccsn Standby Power Supply Current - 5 mA (Seé Note 3)

Capacitance

(Ta = +250C; All Measurements Referenced to Device GND)

SYMBOL PARAMETER TYP UNITS TEST CONDITIONS
CcoLK CLK Input Capacitance 10 pF FREQ = 1MHz
CiN Other Input Capacitance 10 pF
Ci/o 1/0 Capacitance 10 pF

NOTES

A WN =

IBHL should be measured after lowenng Vi to GND and then raising to 1 OV on the following pins. 36-51, 66, 67
IBHH should be measured after raising VN to Vo and then lowering to 3 OV on the following pins: 4-6, 36-51, 66-68.

. IccsB tested with the clock stopped in phase two of the processor clock cycle Vi = Vg or GND, Vo = VCC (Max), outputs unloaded.
lccop measured at 10MHz for the 80C286-10, 12.5MHz for the 80C286-12, 16MHz for the 80C286-186, 20MHz for the 80C286-20, and

25MHz for the 80C286-25 Vi = 24V or 04V, Vo = VCC (Max), outputs unloaded
5 Igy should be measured after raising Vi to Vo and then lowering to GND on pins 53 and 54

3-85

CMOS MICRO-
PROCESSORS

Specifications 80C286

A.C. Electrical Specifications Vg =+5V +10%, Ta = 0°C to +700C (C80C286-12), TA = -40°C to +85°C (I80C286-10, -12)
Ve = +5V £ 5%, Ta = 0°C to +70°C (C80C286-16), TA = -40°C to +850C (180C286-16)

A.C. Timings are Referenced to 0.8V and 2.0V Points of the Signals
as lllustrated in Datasheet Waveforms, Unless Otherwise Specified.

10MHz 12.5MHz2 16MHz
SYMBOL PARAMETER MIN | MAX | MIN | MAX | MIN | MAX UNIT TEST CONDITION
TIMING REQUIREMENTS
1 System Clock (CLK) Period 50 - 40 - 31 - ns
2 System Clock (CLK) LOW Time 12 - 11 - 7 - ns @1.0v
3 System Clock (CLK) HIGH Time 16 - 13 - 1 - ns @ 3.6V
17 System Clock (CLK) RISE Time - 8 - 8 - 5 ns 1.0V to 3.6V
18 System Clock (CLK) FALL Time - 8 - 8 - 5 ns 3.6V to 1.0V
4 Asynchronous Inputs SETUP Time 20 - 15 - 5 - ns {Note 1)
5 Asynchronous inputs HOLD Time 20 - 16 - 5 - ns (Note 1)
6 RESET SETUP Time 19 - 10 - 10 - ns
7 RESET HOLD Time 0 - o - (o} - ns
8 Read Data SETUP Time 8 - 5 - 5 - ns
9 Read Data HOLD Time 4 - 4 - 3 - ns
10 READY SETUP Time 26 - 20 - 12 - ns
1 READY HOLD Time 25 - 20 - 5 - ns
20 Input RISE/FALL Times - 10 - 8 - 6 _ns 0.8V 1o 2.0V
TIMING RESPONSES
12A Status/PEACK Active Delay 1 22 1 21 1 18 ns 1,{(Notes 3,7)
12B Status/PEACK Inactive Delay 1 30 1 24 1 20 ns 1, (Notes 3, 6)
13 Address Valid Delay 1 35 1 32 1 27 ns 1, (Notes 2, 3)
14 Write Data Valid Delay 0 40 (o] 31 0 28 ns 1, (Notes 2, 3)
15 Address/Status/Data Float Delay 0 47 o] 32 (o} 29 ns 2, (Note 5)
16 HLDA Valid Delay o] 47 0 25 o] 25 ns 1,(Notes 3, 8)
19 Address Valid to Status SETUP Time 27 - 22 - 16 - ns 1, (Notes 3, 4)

NOTES: 1. Asynchronous inputs are INTR, NMi, HOLD, PEREQ, ERROR, and BUSY. This specification 1s given only for testing purposes, to assure
recognition at a specific CLK edge.

ONOOEWON

. Delay from 1.0V on the CLK to 0.8V or 2.0V.
. Output load: Cy_ = 100pF.

. Delay measured from address either reaching 0.8V or 2.0V (valid) to status going active reaching 0.8V or status going inactive reaching 2 OV.
. Delay from 1.0V on the CLK to Float (no current drive) condttion,

. Delay from 1.0V on the CLK to 0.8V for min. (HOLD time) and to 2.0V for max (inactive delay).
. Delay from 1.0V on the CLK to 2.0V for min. (HOLD time) and to 0.8V for max. (active delay).

. Delay from 1.0V on the CLK to 2.0V.

A.C. Test Conditions

TEST CONDITION I {CONSTANT CURRENT SOURCE) Cp
1 | 2.0mA | 100pF
2 -6mA (Vou to Float) 100pF
8mA (VoL to Float)

3-86

Specifications 80C286

A.C. Electrical Specifications Vg = +5V £ 5%, Tp = 0°C to +70°C (C80C286-20, ~25), TA = ~40°C to +850C (180C286-20)
A.C. Timings are Referenced to the 1.5V Point of the Signals
as lllustrated in Datasheet Waveforms, Unless Otherwise Specified.
20MHz 25MHz
SYMBOL PARAMETER MIN MAX MIN l MAX UNIT TEST CONDITION
TIMING REQUIREMENTS
1 System Clock (CLK) Period 25 - 20 - ns
2 System Clock (CLK) LOW Time 6 - 5 - ns @ 1.0V
3 System Clock (CLK) HIGH Time 9 - 7 - ns @ 3.6V
17 System Clock (CLK) RISE Time - 4 - 4 ns 1.0Vto 3.6V
18 System Clock (CLK) FALL Time - 4 - 4 ns 3.6Vto 1.0V
4 Asynchronous Inputs SETUP Time 4 - 4 - ns (Note 1)
5 Asynchronous Inputs HOLD Time 4 - 4 - ns (Note 1)
6 RESET SETUP Time 10 - 10 - ns
7 RESET HOLD Time 0 - 0 - ns
8 Read Data SETUP Time 3 - 3 - ns
9 Read Data HOLD Time 2 - 2 - ns g &,
10 READY SETUP Time 10 - 9 - ns g § ‘
11 READY HOLD Time 3 - 3 - ns 8 3
20 Input RISE/FALL Times - 6 - 6 ns 0.8Vio 2.0V 5 g ‘
TIMING RESPONSES
12A Status/PEACK Active Delay 1 15 1 12 ns 1, (Notes 3, 6)
128 Status/PEACK Inactive Delay 1 16 1 13 ns 1, (Notes 3, 6)
13 Address Valid Delay 1 23 1 20 ns 1,(Notes 2, 3)
14 Write Data Valid Delay o] 27 (o] 24 ns 1,(Notes 2, 3)
15 Address/Status/Data Float Delay 0 25 (o} 24 ns 2, (Note 5)
16 HLDA Valid Delay o] 20 o] 19 ns 1,(Notes 2, 3)
19 Address Valid to Status SETUP Time 9 - 12 - ns 1,(Notes 3, 4)
NOTES' 1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing purposes, 1o assure
recognition at a specfic CLK edge.
2. Delay from 1.0V on the CLK to 1.5V.
3. Output load: C_ = 100pF. i
4. Delay measured from address reaching 1.5V to status reaching 1.5V. !
5. Delay from 1.0V on the CLK to Fioat (no current drive) condition.
6. Delay from 1.0V on the CLK to 1.5V.
A.C. Test Conditions
TEST CONDITION 1L (CONSTANT CURRENT SOURCE) CL
1 j2.0mA| 100pF
2 -6mA (VoH to Float) 100pF
8mA (VoL to Float)

3-87 ‘

80C286

A.C. Specifications (Continued)

C80C286-12, -16
180C286-10, -12, -16
A.C. DRIVE AND MEASURE POINTS-CLK INPUT

4.0v
CLK INPUT
045V
4.0V
/ 3.6v 3.6v
CLK INPUT
\ 1.0v 1.0v
0.45v
'[. 1SETUP e tuom*t
24y
2.0V
OTHER
DEVICE
INPUT
0.8v
0.4v
le— IDELAY (Max.) —-1
=—tDELAY (Min.)
7 0 0O AYAAVAVAVAVAY. \\ Taw,
SRR IR IELIY 20v
DEVICE “.“.‘
QUTPUT @,

.......

NOTE: For A.C testing, input rise and fall times are driven at 1ns per volt.

3-88

80C286

A.C. Specifications (Continued)

C80C286-20, -25
180C286-20
A.C. DRIVE AND MEASURE POINTS-CLK INPUT

3.6V

4.0V
CLK INPUT
0.45V
4.0V
/ 36V
CLK INPUT
0.45v
t‘ tSETUP -
24V » \
- 2.0V
OTHER
DEVICE
INPUT
- 0.8v
0.4v
938
oeTPGT K
SIS
0002020002020 %% %%

NOTES. 1. Typical Output Rise/Fall Time 1s 6ns.

2. For A.C. testing, input rise and fall times are driven at 1ns per volts.

3-89

CMOS MICRO-
PROCESSORS

Specifications 80C286

A.C. Electrical Specifications (Continued) 82C284 and 82C288 Timing Specifications are given for reference only and no

guarantee is implied.

82C284 TIMING
10MHz 12.5MHz 16MHz
SYMBOL PARAMETER MIN | MAX | MIN | MAX | MIN | MAX UNIT | TEST CONDITION
TIMING REQUIREMENTS
11 "SRDY/SRDYEN Setup Time 15 - 15 - 10 - ns
12 SRDY/SRDYEN Hold Time 2 - 2 - 1 - ns
13 ARDY/ARDYEN Setup Time 5 - 5 - 3 - ns (Note 1)
14 ARDY/ARDYEN Hold Time 30 - 25 - 20 - ns (Note 1)
TIMING RESPONSES
19 PCLK Delay o] 20 [¢] 16 o] 15 ns CL=75pF
loL=5mA
loH=1mA
82C288 TIMING
10MHz 12.5MHz 16MHz
SYMBOL PARAMETER MIN | MAX | MIN | MAX | MIN | MAX UNIT | TEST CONDITION
TIMING REQUIREMENTS
12 CMDLY Setup Time 15 - 15 - 10 - ns
13 CMDLY Hold Time 1 - 1 - 0 - ns
TIMING RESPONSES
16 ALE Active Delay 1 16 1 16 1 12 ns
17 ALE Inactive Delay - 19 - 19 - 15 ns
19 DT/R Read Active Delay - 23 - 23 - 18 ns CL = 150pF
20 DEN Read Active Delay - 21 - 21 - 16 ns IoL = 16mA Max
21 DEN Read Inactive Delay 3 23 3 21 5 14 ns loL = TmA Max
22 DT/R Read Inactive Delay 5 24 5 18 5 14 ns
23 DEN Write Active Delay - 23 - 23 - 17 ns
24 DEN Write Inactive Delay 3 23 3 23 3 15 ns
29 Command Active Delay from CLK 3 21 3 21 3 15 ns CL = 300pF
30 Command Inactive Delay from CLK 3 20 3 20 3 15 ns loL = 32mA Max

NOTE 1. These times are given for testing purposes to ensure a predetermined action.

3-90

80C286

Waveforms
READ CYCLE WRITE CYCLE
ILLUSTRATED WITH ZERD ILLUSTRATED WITH ONE READ
WAIT STATES WAIT STATE (TyOR Tg)
BUS CYCLE TYPE T Ts TC Ts Tc TC
VoH 02 ® 62 1 42 o 2 # 02 | 62]
CLK /) WA VA </ X/
T | @
SieS0 ,](/
19 19
® E;
wit A23 - Ao VALID ADDRESS VALID ADDRESS VALID IF Tg
< | Wi, coD INTA
S ~(3) ~(3)
= BHE, LOCK VALID CONTROL VALID CONTROL
~®k ~®
D15-Do ----------------- Poocsegoacnedg - eee vALlDleTE DATA

82C284

82C288

B
\\\\\&/7////

v sroven ST

W %_

| [0

I T

A 2
®‘L
s

ARDY + ARDYER 2L/ T, ////////////////////////
. -
ek /~ N/ .l ./ Y ./ '\
- @® @)
ALE /—\ '
@~ @ =@
1 E® @ 5=
CMDLY TG TG
o - —
MWTC JL L1
-] ~@) (SEE NOTE - 1)
MRDC I
~@y
DT/R t
e -
’[_: “®
DEN

MAJOR CYCLE TIMING

NOTE 1 The modified timing 1s due to the CMDLY signal being active

3-91

H

O
o)
O»n
s
0
gc

(14
Ona

80C286

Waveforms (Continued)

80C286 RESET INPUT TIMING AND

80C286 ASYNCHRONOUS INPUT SIGNAL TIMING SUBSEQUENT PROCESSOR CYCLE PHASE

NOTES

BUS CYCLE TYPE
VeH " X
ok _/ X/ .
Vei .
—
PCLK - RESET
(SEE NOTE 1) —
INTR, NMi O] ®
HOLOD, PEREQ
. eres 7777777K— [X
@* e~ ®
(SEE NOTE 2)

@
)
v
9

NOTE

1. PCLK indicates which processor cycle phase will occur on the next When RESET meets the setup time shown, the next CLK will start or repeat
CLK. PCLK may not indicate the correct phase until the first cycie 1s @2 of a processor cycle.
performed.

2. These inputs are asynchronous The setup and hold times shown
assure recognition for testing purposes

EXITING AND ENTERING HOLD

BUS CYCLE TYPE TSORT) T ™
— _/_JN_/_! K_}z_i 01 02 o 92 01 62
HLDA —’.
(SEE NOTE 4) ‘
LC
] 27
". (NOTE 3)
§les | @ - o] ,<~ (SEE NOTE 3)
T X > Tttt
- — | By
8 PEACK =mmmmmmmm s T 3 ¥ NPX TRANSFER 5 | T
® — . (SEE NOTE 1)
BHE, LOCK —
R N\ B T/ /// /7 /)
COD/INTA (SEE NOTE 2)
—
(SEE NOTE 6) |
D15-Dp ~=m—mem e m e e e KT OO e
VALID
IF WRITE
=
8 PCLK / \ / \ ;/——___/_——___/_
&L
NOTES

These signals may not be driven by the 80C286 during the time shown The worst case in terms of latest float time 1s shown
. The data bus will be driven as shown if the last cycle before T| in the diagram was a write Tg

The 80C286 puts i1ts status pins in a high impedance logic one state during T

For HOLD request set up to HLDA, refer to Figure 29
. BHE and LOCK are driven at this time but will not become valid until Ts

A O A WD =

. The data bus will remain in a high impedance state If a read cycle Is performed

3-92

80C286

Waveforms (Continued)

80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY
BUS CYCLE TYPE

Veh ™ sz | a1 S LT 2| & T8 n a1 | o T
CLK * /Y

veL 1/0 READ IF PROC. EXT. T0 MEMORY MEMORY WRITE IF PROC. EXT. TO MEMORY

- MEMORY READ IF MEMORY TO PROC. EXT. /10 WRITE IF MEMORY TO PROC. EXT.
MEMORY ADDRESS IF PROC. EXT. TO MEMORY TRANSFER 1/0 PORT
Az3 - Ap ADDRESS OOFA(H) IF MEMOXRY T0 PROC. EXT. TRANSFER
Mfio, coD INTA XX XX
. (28 MEMORY ADDRESS (F MEMORY TO FROG, EXT. TRANSRER o\
T (SEENOTE -1
(SEE NOTE -2) —of +| _|«—(®)

L2 /A

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 80C286 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY CYCLES.

NOTES.
1 PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence The first bus operation will be either
a memory read at operand address or /O read at port address 00FA(H)

2 To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) 1s 3 x ® - 12Aax - ®mn. The actual,
configuration dependent, maximum time s 3x ®-12Amax - ®min + Nx2x® N s the number of extra T¢ states added to erther the first or second
bus operation of the processor extension data operand transfer sequence

INITIAL 80C286 PIN STATE DURING RESET

BUS CYCLE TYPE
VCH 62 81 T 02 01 Tx 92 81 T 62 ¢1 T‘ 02
\J‘U“L/’*_FJ*_/“L/_}W .
Ceser 7/—{ =—(® | (seENOTE-1))
- 16 CLK PERIDDS [4
:%E; UNKNOWN Jil *
— @
Aza;%g UNKNOWN] "‘
— —— _._®
con/uﬂulflgx UNKNOWN Y «
[ocK UNKNOWN ; - o
—»{ (i5) |+— (SEE NOTE - 3)
DATA DI I IV IO) DD RN IR IR IR I D DD IOV == === Smmmmoee
--»
HLDA UNKNOWN J;— «

NOTES

1 Setup time for RESET ! may be violated with the consideration that ¢1 of the processor clock may begin one system CLK period later
2 Setup and hold times for RESET | must be met for proper operation, but RESET | may occur during ¢1 or ¢2.

3 The data bus i1s only guaranteed to be in a high impedance state at the time shown

3-93

CMOS MICRO-
PROCESSORS

80C286

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6
7 6 54 3 2 1 07 6543 210
[TTTTIITTITTTT] owoemonn [T v T o O
| 1
LOW DISP/DATA ! HIGH DISP/DATA LOW DATA | HIGH DATA |
OPCODE d jw] mod reg /m | | !
_______ e e o e e - - —em o —— . -

| X !

A. SHORT OPCODE FORMAT EXAMPLE

BYTE 1 BYTE 2 BYTE 3

7 6 54 3 2 1+ 0 7 65 4 3 2 107 654 3 210

ARERRRRARERERRERENEER

LONG OPCODE mod
-4

rim

B. LONG OPCODE FORMAT EXAMPLE

REGISTER OPERAND EXTENSION OF OPCODE
REGISTER MODE MEMORY MODE WITH DISPLACEMENT LENGTH

WORD/BYTE OPERATION
DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER

OPERATION (INSTRUCTION) CODE

FIGURE 33. 80C286 INSTRUCTION FORMAT EXAMPLES

80C286 Instruction Set Summary
Instruction Timing Notes

The nstruction clock counts hsted below establish the
maximum execution rate of the 80C286. With no delays in
bus cycles, the actual clock count of an 80C286 program
will average 5% more than the calculated clock count, due
to instruction sequences which execute faster than they
can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An
12.5MHz processor clock has a clock period of 80
nanoseconds and requires an 80C286 system clock (CLK
input) of 25MHz.

Instruction Clock Count Assumptions

1.

The instruction has been prefetched, decoded and is
ready for execution. Control transfer instruction clock
counts include all time required to fetch, decode, and
prepare the next instruction for execution.

. Bus cycles do not require wait states.

There are no processor extension data transfer or local
bus HOLD requests.

No exceptions occur during instruction execution.

3-94

80C286

Instruction Set Summary Notes

Addressing displacements selected by the MOD field are
not shown. If necessary they appear after the instruction
fields shown.

Above/below refers to unsigned value

Greater refers to more positive signed values

Less refers to less positive (more negative) signed values

if d =1, then “to” register, if d = 0 then “from” register

if w = 1, then word instruction; If w = 0, then byte
instruction

if s =0, then 16-bit immediate data form the operand

if s =1 then an immediate data byte is sign-extended to
form the 16-bit operand

x don’t care

z used for string primitives for comparison with ZF
FLAG

If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand

* = add one clock if offset calculation requires summing
3 elements

n = number of times repeated

m = number of bytes of code in next instruction

Level (L)—Lexical nesting level of the procedure

The following comments describe possible exceptions,

side effects and allowed usage for instructions in both

operating modes of the 80C286.

Real Address Mode Only

1. This is a protected mode instruction. Attempted
execution in real address mode will result in an

undefined opcode exception (6).

2. A segment overrun exception (13) will occur if a word
operand reference at offset FFFF(H) is attempted.

3. Thisinstruction may be executed in real address mode
to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt (9) will
occur if the operand exceeds the segment limit.

Either Mode

6. An exception may occur, depending on the vaiue of
the operand.

7 LOCK is automatically asserted regardless of the
presence or absence of the LOCK instruction prefix.

8. LOCK does not reamain active between all operand
transfers.

Protected Virtual Address Mode Only

9. A general protection exception (13) will occur if the
memory operand cannot be used due to either a
segment limit or access rights violation. If a stack
segment limit I1s violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL and DPL
must agree with privilege rules to avoid an exception.
The segment must be present to avoid a not-present
exception (11). If the SS register is the destination
and a segment not-present violation occurs, a stack
exception (12) occurs.

11. All segment descriptor accesses in the GDT or LDT
made by this instruction will automatically assert
LOCK to maintain descriptor integrity in multiproces-
sor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protection
exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL #0.

14. A general protection exception (13) occurs if CPL >
I0PL.

15. The IF field of the flag word is not updated if CPL >
IOPL. The IOPL field is updated only if CPL = 0.

16. Any violation of privilege rules as applied to the
selector operand does not cause a protection
exception; rather, the instruction does not return a
result and the zero flag is cleared.

17. If the starting address of the memory operand
violates a segment limit, or an invalid access is
attempted, a general protection exception (13) will
occur before the ESC instruction is executed. A stack
segment overrun exception (12) will occur if the stack
limit is violated by the operand’s starting address. If a
segment limit 1s violated during an attempted data
transfer then a processor extension segment overrun
exception (8) occurs.

18. The destination of an INT, JMP, CALL, RET or IRET
instruction must be in the defined limit of a code
segment or a general protection exception (13) will
occur.

3-95

CMOS MICRO-
PROCESSORS

80C286

80C286 Instruction Set Summary

CLOCK COUNT COMMENTS
EUNCTION Real Protected Real Protected
FORMAT Address Virtual Address Virtual
Mode Address Mode Address
Mode Mode
ﬁATA TRANSFER
OV =Move:
heglster to Regrster/Memory [1000100w , modreg r/m] 2,3* 2,3* 2 9
Register/memory to register L1 000101w I modreg r/m] 2,5* 2,5* 2 9
mmediate to register/memory [1100011 wl mod000 r/m I data | dataifw = 1 2,3* 2,3* 2 9
Immediate to register [1011w reg I data I data f w=1 l 2 2
Memory to accumulator I 1010000w J addr-low T addr-high I 5 5 2 9
Accumulator to memory I 1010001 wl addr-low I addr-high l 3 3 2 9
Register/memory to segment register | 10001110 Lmod Oreg r/m] 2,5 17,19* 2 9,10,11
[Segment register to register/memory I 10001100 I mod O reg r/m‘I 2,3* 2,3 2 9
PUSH = Push:
Memory L11111111lmod110r/m] 5° s 2 9
Register 3 3 2 9
ISegment register 3 3 2 9
{01101000] catn | domia=o | 3 s |2 | e
mmn [eressed] 28 IRV IO S
kOP= Pop
hemory I 100011111mod000 r/m] 5° 5* 2 9
Feglster 5 5 2 9
egment register (reg=01) 5 20 2 9,10,11
OPA~ Pop Al ’ T w | : | @
CHG = Exhcange:
Register/memory with register [1000011w lmod reg r/m] 3,5° 3,5 2,7 7.9
Register with accumulator 3 3
N = Input from:
xed port l 1110010w| port 7 5 5 14
anable port 5 5 14
UT = Output to:
ixed port l1110011wl port —l 3 3 14
ariable port 3 3 14
LAT = Translate byte to AL 5 5 9
EA=Load EA to register I 10001101 lmod reg '/';I 3* 3*
DS = Load pointer to DS I 11000101 Jmodreg r/mI (mod+#11) 7° 21 2 9,10,11
ES=Load pointer to ES I 11000100 1mod reg r/ml (mod#1) 7* 21 2 9,10,11

Shaded areas indicate instructions not available in 80C86/88 microsystems.

3-96

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT A::r:'“ "3.::'.7‘ A::’:'“ n\:«;:a
Mode Address Mode Address
Mode Mode
DATA TRANSFER (Continued)
LAHF Load AH with flags 2 2
AHF = Store AH into flags 2 2
USHF = Push flags 3 3 2 9
OPF = Pop flags 5 5 24 9,15
RITHMETIC
DD = Add:
Reg/memory with registar to either [000000dw 1 modreg r/m I 2,7 2,7 2 9
Immaedate to register/memory l 100000 sﬂ mod000 r/m] data ldata fsw =01 3.7* 3,7* 2 9
mmediate to accumulator l 0000010w l data I dataifw=1] 3 3
ADC = Add with carry:
Reg/memory with register to either ! 000100dw L modreg r/m] 2,7* 2,7* 2 9
Jmmediate to register/memory l 100000s wi mod010 r/m I data Tdata Hfsw=01 3,7° 3,7¢ 2 9
mmediate to accumulator I 0001010w l data datafw=1] 3 3
NC = Increment:
egister/memory [1111111w l mod000 r/m] 2,7* 2,7° 2 9
egister 2 2
UB = Subtract:
Reg/memory and register to either [001010dw [modreg r/m l 2,7° 2,7 2 9
Immediate from register/memory l 100000s "Ll mod101 r/m I data ldata fsw= 01] 3,7 3,7° 2 9
Immediate from accumulator I 0010110w l data] dataifw=1 1 3 3
PBB = Subtract with borrow:
Reg/memory and register to either l 000110dw l modreg r/m I 27 2,7° 2 9
Jmmediate from register/memory ’ 100000sw l mod011 r/m l data I dataf s w=01] 3,7¢ 3,7* 2 9
mmediate from accumulator [0001110w I data l dataifw=1 J 3 3
DEC = Decrement
Register/ memory l 1111111 w [mod 001 r/m} 2,7° 2,7 2 9
Register 2 2
ICMP = Compare
Register/memory with register RO 1110tw lmod reg r/ml 2,6° 2,6° 2 9
Regrster with register/memory I 0011100w Imod reg r/mJ 2,7* 2,7° 2 9
mmediate with register/ memory I 100000sw lmod 111 r/m[data l dataif sw=01] 3,6° 36° 2 9
Immediate with accumulator [0011110 ‘LL data j datafw=1 ‘ 3 3
INEG = Change sign I 1111011w LmodO 11 r/ml 2 7 2 7
AAA = ASCIl adjust for add 3 3
DAA = Decimal adjust for add 3 3

3-97

o
x o
O
=0
NDO
go
oK

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real Real
Virtual Virtual
Address Address
Mode Add Mode Add
Mode Mode
RITHMETIC (Continued)
= ASCII adjust for subtract 3 3
AS = Decimal adjust for subtract 3 3
UL = Multiply (unsigned). l 1111011w lmod 100 r/m]
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16°* 16* 2 9
Memory-Word 24* 24 2 9
JMUL = integer muitiply (signed): 1111011w lmod 101 r/m
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24° 24* 2 9
=intoger kemediste maltiply | 01101061 |modreg o/m| data | dwtasw0 || 21260 | 2104 | 2 »
1V = Dwide (unsigned) I 1111011w lmod 110 r/ml
egister-Byte 14 14 6 6
egister-Word 22 22 6 6
emory-Byte 17* 17* 2,6 6,9
emory-Word 25°* 25° 2,6 6,9
DIV = Integer divide (signed) [1111011w Imod1 11 t/m
Register-Byte 17 17 6 6
Register-Word 25 25 6 6
Memory-Byte 20* 20° 2,6 6.9
Memory-Word 28°* 28° 2,6 6,9
M =ASCH adjust for multiply [11010100 I 00001010 l 16 16
D =ASCl| adjust for divide [11010101 l 00001010 I 14 14
BW -+ Convert byte to word 2 2
WD = Convert word to double word 10011001 2 2
OGIC
Ift/Rotate instructions:
Register/Memory by 1 I 1101000w Imod T r;! 2,7¢ 2,7 2 9
Register/Memory by CL | 1101001w ImodT‘lT r/ml 5+n8+n*{5+n8+n* 2 9
Fegtersemny by Cout [1100000w jmog ™1 v oount | Joensemlsrnsm] 2 ®
T Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

Shaded areas indicate instructions not avaiiable in 80C86/88 microsystems

3-98

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT Real "ﬁm Real mﬁ
Address Address
Mode Address Mode Address
Mode Mode
RITHMETIC (Continued)
ND = And:
Reg/memory and register to either l 001000dw I modreg r/m] 2,7* 2,7* 2 9
ymmediate to register/memory [1000000w I mod 100 r/m l data I dataifw=1] 3,7* 3,7° 2 9
jmmediate to accumulator [0010010w 1 data l data if w=1 l 3 3
TEST = And function to flags, no resuit:
Register/memory and register | 1000010w l modreg r/m I 26* 2,6° 2 9
immediate data and register/memory I 1111011w] mod000 r/m] data | datafw=1 3,6° 3,6° 2 9
jmmediate data and accumulator I 1010100w [data I data f w=1 I 3 3
OR =Or:
Reg/memory and register to either l 000010dw l modreg r/m] 2,7* 2,7* 2 9
Jmmediate to register/memory [1000000w] mod001 r/m [data] dataifw=1] 3.7 3,7 2 9
jmmaediate to accumulator I 0000110w l data l data if w=1 | 3 3
XOR=Exclusive or:
Reg/memory and register to either I 001100dw I modreg r/m] 2,7* 2,7* 2 9
mmediate to register/memory I 1000000w l mod110 r/m l data I datarfw = 1 3,7* 3,7* 2 9
Jmmediate to accumulator I 0011010w I data |datmfw = 1| 3 3
OT =Invert register/memory I 1111011w I mod010 r/m I 2,7 2,7° 2 9
RING MANIPULATION:
OVS = Move byte/word 5 5 2 9
MPS = Compare byte/word 8 8 2 9
BCAS = Scan byte/word 7 7 2 9
O0DS = Load byte/wd to AL/AX 5 5 2 9
BTOS = Stor byte/wd from AL/A 3 3 2 9
8
epeated by count in CX
OV = Move string [11110011 l 1010010w| 5+4n 5+4n 2 9
MPS = Compare string l 1111001z | 1010011w l 5+9n 5+9n 28 8,9
BCAS = Scan stnng |1111001z |1010111w| 5+8n 5+8n 28 8,9
I11110011 I1010110wl 5+4n 5+4n 28 8,9
I 11110011 I 1010101wl

Shaded areas indicate instructions not avaliable in 80C86/88 microsystems

3-99

CMOS MICRO-
PROCESSORS

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
(CONTROL TRANSFER
ICALL =Call:
Direct within segment [11101000 l disp-low l disp-high I 7+m 7+m 2 18
Register/ memory I 11111111 [mod010 r/mI 7+m1t+m* | 7+m, 11+m* 28 89,18
indirect within segment
Direct intersegment I 10011010 I segment offset] 13+m 26+m 2 11,12,18
Protected Mode Only (Direct intersegment): | segment selector l
Via call gate to same privilege level 41+m 8,11,12,18
Via call gate to different privilege level, no parameters 82+m 8,11,12,18
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18
Via TSS 177+m 8,11,12,18
Via task gate 182+m 8,11,12,18
Indirect intersegment 11111111]mod01 1 r/n:l (mod=+11) 16+m 29+m* 2 8,9,11,12,18
Protected Mode Only (Indirect intersegment):
Via cali gate to same privilege level 44+ m* 8,9,11,12,18
Via call gate to different privilege level, no parameters 83 +m* 8,9,11,12,18
Via call gate to different privilege level, x parameters 90+4x +m* 8,9,11,12,18
Via TSS 180+ m* 89,11,12,18
Via task gate 185+m* 8,9,11,12,18
JMP = Unconditional jump:
Short/long | 11101011 I disp-low I 7+m 7+m 18
[Direct within segment I 11101001] disp-low I disp-high l 7+m 7+ m 18
Register/memory indirect within segment l 11111111 Imod 100 r/m] 7+m11+m* | 7+m, 11+m* 2 9,18
Direct intersegment I 11101010 I segment offset I 11+m 23+m 11,12,18
Protected Mode Only (Direct intersegment): I segment selector l
Via call gate to same privilege level 38+m 8,11,12,18
ViaTSS 175+m 8,11,12,18
Via task gate 180+m 8,11,12,18
Indirect intersegment 11111111 [mod 101 r/m (mod=+11) 15+m* 26+ m* 2 8,9,11,12,18
Protected Mode Only (Indirect intersegment):
Via call gate to same privilege level 41+m* 8,9,11,12,18
Via TSS 178+ m* 8,9,11,12,18
Via task gate 183+m* 8,9,11,12,18
RET = Return from CALL:
Within segment 11000011 11+m 11+m 2 8,9,18
|Within seg adding immed to SP I 11000010 I data-low 1 data-high | 11+m 11+m 2 8,9,18
intersegment 11001011 15+m 25+m 2 8,9,11,12,18
Intersegment adding immediate to SP I 11001010 l data-low I data-high] 15+m 2 8,9,11,12,18
Protected Mode Only (RET):
To different privilege level 55+m 9,11,12,18

3-100

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Real Protected | pga1 | Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
CONTROL TRANSFER (Continued)
JE/JZ = Jump on equal zero I 0111010ﬂ disp] 7+mor3 7+mor3 18
JL/JNGE = Jump on less/not greater or equal L 01111100 J disp] 7+mor3 7+mor3 18
JLE/JNG = Jump on less or equal/not greater I 01111110 l disp J 7+mor3 7+mor3 18
JB/JNAE = Jump on below/not above or equal ’ 01110010 I disp I 7+mor3 7+mor3 18
JBE/JNA = Jump on below or equal/not above { 01110110 I disp I 7+mor3 7+mor3 18
JP/JPE = Jump on panty/parnty aven [01111010 I disp J 7+mor3 7+mor3 18
JO = Jump on overflow { 01110000 I disp J 7+mor3 7+mor3 18
JS=Jump on sign I 01111000] disp J 7+ mor3 7+mor3 18
JNE/JNZ = Jump on not equal/not zero [01110101] disp I 7+mor3 7+mor3 18
JNL/JGE = Jump on not less/greater or equal ro 1111101 r disp I 7+mor3 7+mor3 18
JNLE/JG = Jump on not iess or equal/greater [oO1t111111 r disp I 7+mor3 7+mor3 18 o' &D
¢
JNB/JAE = Jump on not below/above or equal I 01110011 [disp l 7+mor3 7+mor3 18 Q 8
E0
JNBE/JA = Jump on not below or equal/above l 01110111 I disp l 7+mor3 7+mor3 18 5 w
(&)
Q0
JNP/JPO = Jump on not par/par odd [01111011 I disp] 7+mor3 7+mor3 18 = e
on
JNO = Jump on not overflow r01 110001 l disp I 7+mor3 7+mor3 18
JNS = Jump on not sign l 01111001 J disp] 7+meor3 7+mor3 18
LOOP = Loop CX times l 1110001L[disp J 8+mord 8+moré 18
LOOPZ/L.OOPE = Loop while zero/equal I 11100001 I disp J 8+mor4 8+mor4d 18
LOOPNZ/L.OOPNE = Loop while not zero/equal i 11100000 | disp J 8+mor4 8+mord 18
JCXZ = Jump on CX zero I 11100011J disp J 8+mord 8+mor4 18
|ENTER ~ Enter Proosdire ' { 11003000 [sstaiow [dammgn | ¢]
L '
ko 4
LS]) : ;
LEAVE = Logvy Procedses | Jdient1001 v e aa
INT = Interrupt:
Type specified [11001101 l type I 23+m 2,78
Type 3 11001100 23+m 2,78
INTO = Interrupt on overfiow 11001110 24 +mor3 268
(Bifno @Bifno
interrupt) interrupt)

Shaded areas indicate instructions not available in 80C86/88 microsystems

3-101

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT ea Virtual eal Virtual
Address Address
Mode Address Mode Address
Mode Mode

ICONTROL TRANSFER (Continued)
Protected Mode Only:

Via interrupt or trap gate to same pnivilege level 40+ m 7,8,11,12,18

Via interrupt or trap gate to fit different privilege level 78+ m 7,8,11,12,18

Via Task Gate 167+m 7,8,11,12,18
SRET = Interrupt return 17+m 31+ m 24 |89,11,12,1518
Protoctod Mode Only:

To different pnvilege level 55+m 8,9,11,12,15,18

To different task (NT = 1) 169+m 8,9,11,12,18
mwmmmuw 101300010 | modreg vim | Wl W §o2s | esstnide

L
PROCESSOR CONTROL
ICLC = Clear carry 2 2
ICMC = Complement carry 2 2
prc=setcany 2 2
ICLD = Clear direction 2 2
BTD = Set direction 2 2
ICLI = Ciear interrupt 3 3 14
ISTi= Set interrupt 2 2 14
HLT = Halt 2 2 13
WAIT=wart 3 3
L.OCK = Bus lock prefix . I 11110000 l 0 0 14
=Cloar sk ewtichod ey “{oom01111 | 00000110) 2 2 3 "
SC = Processor Extension Escape b1 Ot1TTT I modLLL r/m] 9-20° 9-20* 5,8 8,17
(TTT LLL are opcode to processor extension)
SI——— o |
4" i‘ " i“ . "' ‘, S L ")"' ‘ . ’ e
DY v Load gidbel doscriior bl regiater | 00001111 | 00000001 fmos010 vl | a1t | me.
Y St laba bcrpior b rugior | 99001111 1 90000001 [moa000_wim] | 14* 1
siisrogind | 00001111 | 90000001 Imodots wml | 1t
ket [00001111 | 05000001 Imoso6t wm]-

3-102

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT Real vl | Rod Virtual
Address Address
Mode Addrese Mode Addrese
Mode Mode
ot ok - "
CONTNOL Cortiunc) : 1 . v
TR~ oo sk regieter ' - R
o et /smmencry 17100 1] awae
S regeete owencry S e 1.1
WWW : lwggam e | s
{::wmmmm C|eoeoyriay 2 | s
trom reghtr/marmcry [00001111 | 90000010 { mosreg wm] | e |1 | et
from vegistermamory { 00001111 | 00000011 | modreg vim | wiee |1 | osum
ARPL = Adet requseted peiiege Jevel: L 01100011 | modweg wm | | wenre | 2 80
VERR = Verlty oad soces: reglebar/mamory | 00001111 | 90000000 | moa100wm | | sree | 1 ||
VIR = Vorlty witte acoses: { 00001111 | 00000000 | mod1otem | | tase | 1 211,96 |

Shaded areas indicate instructions not available in 80C86/88 microsystems

3-103

CMOS MICRO-
PROCESSORS

B

80C286

80C286 Machine Instruction Encoding Matrix

01

w/i'm wyi'q wya'm | wyi'q
gding | zdip | ais alo LS (o) o1s jon o] Ldio | tdin| DWO 17H Zd3H d34d OO 4
mxa a'xa m'xa q‘xa ps p p p M q M q 34007 | INdOO1
1no 1no Ni NI dNr dinr dAr | 7TIvO | 1NO 1no NI NI ZXOr | 4007 {/Zd007 |/ZNdOO1 3
L 9 S 14 € 4 I 0 109 70'a m q
0s3 0s3 0s3 0s3 083 0s3 0s3 0s3 1VIX avy WYY Hiys Hius wys yiys a
(Aue) | ¢ 8dA) 1 (ds+) w/srm | w/at'q (dS+) 'm 1‘q
1341 | OLNI ANI ANI 134 134 | 3AVIT |HILNTI| AOW AOW san S 134 134 His HIYs o}
1a- 18- da-! ds-t xg-1 Xa-! XO-t Xv-i Ha-! Ha- HO- Hv-! ag- Q- 0+ av-!
AOW | AOWN | AOW | AOW | AOW AOW AOW AOWN AOW | AOW AOW AOW AOW ANOW AOW AOW a
B'I'Mm B''q w-xXv | w-iy Xv-w av-w
MSVYOS|8SVYIS MSAOT 8SA0T|MSOLS|8S0LS | LS3L | L1S3L |MSIWND|9SdNOfMSAOW |[ESAOWN] AOW | AOW AOW AOW v
p 1a IS dg dS X8 Xa X0 XV
4HV | dHVS | 4dOd | 4HSNd| LivM | 71vO | AMD | MgD0 | DHOX | OHOX | DHOX | DHOX | ODHOX | DHOX | DHOX OHOX 6
w/ | wyayas wyas| waam | wayg |waym Jwayg] wasm | owag | owatsm | watg o | watst |owyag wy'm wy/iq
dOd AOW val AOWN | AOW | AOW AOW | AOW | DHOX | OHOX | 1S3L | 1S31 | pswwy | psww| | pawuwi pawuwy 8
or ONr 3Or | 3ONr | Odr 3dr vr VNI ZNI zr 3vr JVNr
/ATINC | /370 | /NP /e /dNP /dr SNI sr /3GNr | /38r | /3NF /3ar /aNr /ar ONP or L
rw/a'q 1'q FU/LYm I'M
MSLNO|gS1INO | MSNI | 8SNI | TNWIE | HSNd | TNWIE | HSNd Jddv |[ANNO8 | vdOd VHSNd 9
1a IS dg ds Xg Xa X0 Xv 1a IS dd ds Xg Xa X0 XV
d0Od dOd dOd dOd d0Od dod dOd dOd | HSNd | HSNd | HSNd | HSNd | HSNd | HSNd | HSNd HSNd S
1a IS dg ds X8 Xa X0 Xv 1a IS d8 dsS Xg Xa X0 XV
03a 03a o3a 03a 03a 03a 03a 03a ONI ONI ONI ONI ONI ONt ONI ONI 14
SQ= "M I'q wym | warg waym | wayq s8= BI'M erg Jwaym wrvg | wagm wyi'y'q
Svv o3s dND | dWO dWO dND dND | diNO vvv 93s HOX HOX HOX HOX HOX HOX €
§0= m I‘q w/aym | wayg | waym | wayq s3= BI'M ei'g Jwarm | wavg | waym | owayq
sSva D3s ans ans ans ans ans ans vva B3s anNv aNVv anNv anyv anNv anNv 14
sa sa I'm 'q W/FYM | w/ayq [waym | wiay'q SS SS er'm BI'q Jwuayml w/srg | warm | wapq
dOd | HSNd | €8S a4as a8s g4s g8s a4gs dOd | HSNd | OQv oav oav oav oav oav i
SO I'm rq W/'YM L Wy fwatym b wa'yq S3 S3 eI'm erq | waym | watyg | waEmo o wayq
U NVAd] HSNd HO HO HO HO HO HO d0d | HSNd | aav aav aav aav aav aav 0
4 E] a o a v 6 8 L 9 S v £ 14 8 0
iH

3-104

80C286

80C286 Machine Instruction Encoding Matrix (Continued)

where:

mod r/m 000 001 010 011 100 101 110 m

Immed ADD OR ADC SBB AND suB XOR CMP
Shift ROL ROR RCL RCR | SHL/SAL | SHR - SAR
Grp 1 TEST - NOT NEG MUL IMUL DIV IDWV
Grp 2 INC DEC CALL CALL JMP JMP PUSH —

id 1d id I,id

PVAM 0 SLDT STR LLDT LTR VERR VERW - -

PVAM 1 SGDT SIDT LGDT LIDT SMSW — LMSW —

PVAM 2 LAR

PVAM 3 LSL

PVAM 6 | CLTS

b = byte operation m = memory

d = direct
= from CPU reg
1 = immediate
1a = immediate to AX
id = indirect
1Is = immediate byte sign extension
| = long 1e. Intersegment
n =2nd byte of PVAM instruction

r/m = EA 1s second byte
sI = short intrasegment
sr = segment register

t = to CPU register

v = variable

w = word operation

z = zero

Footnotes

The Effective Address (EA) of the memory operand is
computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field
if mod = 00 then DISP = 0%, disp-low and disp-high are absent

if mod = 01 then DISP =disp-low sign extended to 16 bits, disp-
high is absent

If mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (Si) + DISP
if r/m = 001 then EA = (BX) + (DI) + DISP
if r/m = 010 then EA = (BP) + (Sl) *+ DISP
if r/m = 011 then EA = (BP) + (DI) + DISP
if r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA + (BP) + DISP*

if r/m =111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data is
required)

* except if mod = 00 and r/m = 110 then EQ = disp-high:
disp-low.

Segment Override Prefix

[001reg110]

reg is assigned according to the following:

REG SEGMENT REGISTER
00 ES
01 (0]
10 SS
11 DS

REG is assigned according to the following table:

16-BIT (w = 1) 8-BIT (w = 0)
000 AX 000 AL
001 CX 001 cL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 S| 110 DH
111 DI 111 BH

The physical addresses of all operands addressed by the
BP register are computed using the SS segment register.
The physical addresses of the destination operands ofthe
string primitive operations (those addressed by the DI
register) are computed using the ES segment, which may
not be overridden.

3-105

!

CMOS MICRO-
PROCESSORS

