

PART NUMBER 54164DMB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

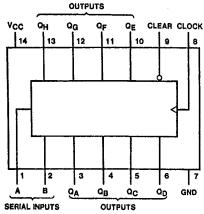
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

T-46-09-05

54164/DM74164 8-Bit Serial In/Parallel Out Shift Registers

General Description


These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either serial input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Clocking occurs on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Features

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear
- Typical clock frequency 36 MHz
- Typical power dissipation 185 mW

Connection Diagram

Dual-in-Line Package

TL/F/6552-1

Order Number 54164DMQB, 54164FMQB or DM74164N See NS Package Number J14A, N14A or W14B

Function Table

Inputs				Outputs				
Clear	Clock	A	В	QA	QB		QH	
L	Х	х	X	L	L	,	L	
Н	L	Х	Х	Q _{A0}	Q _{B0}		Q_{H0}	
Н	1 ↑	H	Н	н	Q_{An}		Q_{Gn}	
H	1	L	Х	L	Q_{An}		Q_{Gn}	
H	<u> </u>	X	L	L	Q _{An}	•••	Q _{Gn}	

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

Transition from low to high level

 Q_{AO} , Q_{BO} , Q_{HO} = The level of Q_{A} , Q_{B} , or Q_{H} , respectively, before the indicated steady-state input conditions were established.

 $Q_{An},\,Q_{Gn}=$ The level of Q_A or Q_G before the most recent $\, \uparrow \,$ transition of the clock; indicates a one-bit shift.

4

5.5V

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage

Operating Free Air Temperature Range

-55°C to +125°C **DM74**

Storage Temperature Range

-65°C to +150°C

0°C to +70°C

T-46-09-05

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

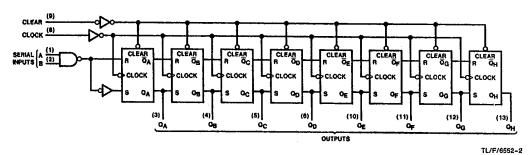
Recommended Operating Conditions

Symbol	Parameter		54164			DM74164			Units
			Min	Nom	Max	Min	Nom	Max	Units
Vcc	Supply Voltage		4.5	5	5.5	4.75	5	5.25	٧
V _{IH}	High Level Input Voltage		2			2			٧
VIL	Low Level input	Voltage			0.8			0.8	٧
Іон	High Level Outp	ut Current			-0.4			-0.4	mA
loL	Low Level Outpu	ut Current			8			8	mA
fclk	Clock Frequency	(Note 4)			25	0		25	MHz
tw	Pulse Width (Note 4)	Clock	20			20			ns
		Clear	20			20			
tsu	Data Setup Time (Note 4)		15			15			ns
t _H	Data Hold Time (Note 4)		0			5			ns
TA	Free Air Operating Temperat@re		-55		125	0		70	°C

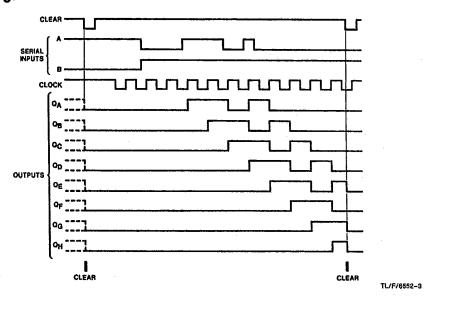
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I ₁	= -14 mA			-1.5	٧
V _{OH}	High Level Output Voltage	V _{CC} = Min, I _O V _{IL} = Max, V _{II}		2.4	3.2		٧
VoL	Low Level Output Voltage	V _{CC} = Min, I _O V _{IH} = Min, V _{IL}			0.2	0.4	٧
lı .	Input Current @ Max Input Voltage	V _{CC} = Max, V	_j = 5.5V			1	mA
l _H	High Level Input Current	V _{CC} = Max, V	ı = 2.4V			40	μΑ
l _I L	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$				-1.6	mA
los	Short Circuit Output Current	V _{CC} = Max	54	-10		-27.5	4
		(Note 2)	DM74	-9		-27.5	mA
lcc	Supply Current	V _{CC} = Max (Note 3)			37	54	mA

Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 2: Not more than one output should be shorted at a time.

Note 3: I/Co is measured with all outputs open, SERIAL Inputs grounded, the CLOCK Input at 2.4V, and a momentary ground, then 4.5V, applied to the CLEAR input. Note 4: $T_A = 25$ °C and $V_{CC} = 5V$.


$\textbf{Switching Characteristics} \text{ at V}_{\text{CC}} = 5 \text{V and T}_{\text{A}} = 25 ^{\circ} \text{C (See Section 1 for Test Waveforms and Output Load)}$

Symbol	Parameter	From (Input) To (Output)	$R_L = 800\Omega$			T-46-09-05		
			C _L = 15 pF		C _L = 50 pF		Units	
			Min	Max	Min	Max		
fMAX	Maximum Clock Frequency		25				MHz	
tpLH	Propagation Delay Time Low to High Level Output	Clock to Output		27		30	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Output		32		37	ns	
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Output		36		42	ns	

Logic Diagram

Timing Diagram

4-169