Rochester
Electronics Datasheet

80C286

CHMOS Microprocessor with Memory Management and Protection

The 80C286 is an advanced 16 bit CHMOS |l microprocessor designed for multi-user and multi-
tasking applications that require low power and high performance. The 80C286 is fully compatible
with its predecessor the HMOS 80286 and object-code compatible with the 8086 and 80386 family
of products. In addition, the 80C286 has a power down mode which uses less power, making it
ideal for mobile applications. The 80C286 has built-in memory protection that maintains a four
level protection mechanism for task isolation, a hardware task switching facility and memory
management capabilities that map 2% bytes (one gigabyte) of virtual address space per task

(per user) into 22 bytes (16 megabytes) of physical memory.

Rochester Electronics Quality Overview

Manufactured Components * ISO-9001
* AS9120 certification

Rochester branded components are | - Qualified Manufacturers List (QML) MIL-PRF-35835

manufactured using either die/wafers + Class Q Military

purchased from the original suppliers * Class V Space Level

or Rochester wafers recreated from the | < Qualified Suppliers List of Distributors (QSLD)
original IP. All re-creations are done with * Rochester is a critical supplier to DLA and
the approval of the Original Component meets all industry and DLA standards.
Manufacturer (OCM).

Rochester Electronics, LLC is committed to supplying
Parts are tested using original factory | products that satisfy customer expectations for
test programs or Rochester developed | quality and are equal to those originally supplied by
test solutions to guarantee product industry manufacturers.

meets or exceeds the OCM data sheet.

The original manufacturer’s datasheet accompanying this document reflects the performance
and specifications of the Rochester manufactured version of this device. Rochester Electronics
guarantees the performance of its semiconductor products to the original OCM specifications.
‘Typical’ values are for reference purposes only. Certain minimum or maximum ratings may be
based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

© 2019 Rochester Electronics, LLC. All Rights Reserved 05162019 To learn more, please visit www.rocelec.com

intal.
tel 80C286
CHMOS MICROPROCESSOR WITH
MEMORY MANAGEMENT AND PROTECTION

® High Speed CHMOS !ll Technology m 12.5 MHz Clock Rate
m Pin for Pin, Clock for Clock, and m Available in a Variety of Packages:
Functionally Compatible with the HMOS — 68 Pin PLCC (Plastic Leaded Chip
80286 Carrier)
(See 80286 Data Sheet, Order #210253) — 68 Pin PGA (Pin Grid Array)
m Stop Clock Capability (See Packaging Spec., Order #231369)
— Uses Less Power (see Iccs
Specification)
INTRODUCTION

The 80C286 is an advanced 16 bit CHMOS Il microprocessor designed for multi-user and multi-tasking
applications that require low power and high performance. The 80C286 is fully compatible with its predecessor
the HMOS 80286 and object-code compatible with the 8086 and 80386 family of products. In addition, the
80C286 has a power down mode which uses less power, making it ideal for mobile applications. The 80C286
has built-in memory protection that maintains a four level protection mechanism for task isolation, a hardware
task switching facility and memory management capabilities that map 230 bytes (one gigabyte) of virtual
address space per task (per user) into 224 bytes (16 megabytes) of physical memory.

The 80C286 is upward compatible with 8086 and 8088 software. Using 8086 real address mode, the 80C286
is object code compatible with existing 8086, 8088 software. In protected virtual address mode, the 80C286 is
source code compatible with 8086, 8088 software which may require upgrading to use virtual addresses
supported by the 80C286's integrated memory management and protection mechanism. Both modes operate
at full 80C286 performance and execute a superset of the 8086 and 8088 instructions.

The 80C286 provides special operations to support the efficient implementation and execution of operating
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load
its state, and start execution of the new task. The 80C286 also supports virtual memory systems by providing a
segment-not-present exception and restartable instructions.

L L 3 Fm————— - - S
i
\ : ADDRESS ! Az - Ag
\ LATCHES ANO DRIVERS BRE, M/10
PHYSICAL ! :
ADDRESS P FERTR
ADDER 0] PREFETCHER EXTENSION |
PEREQ
SEGMENT | |]
BASES | i + READY, HOLD
PR—— - \ | sus ¥, 30, Coo/INTA
SEGUENT | secment [TOCR, HLDA
SIZES 1 1
CHECKER
OATA TRANSCEIVERS Oy - Dy
(I]
T A -t | SO s BYTE !
i] PREFETCH |
AW | QUEUE BUS \
! Led o mmgqr=——=-"22 bl
I
| - —————]\l—— ——————— 4 fe—— RESET
E___ | s on] INSTRUCTION | f=— CLx
wsTRuCTION |3 TRUCH UNT W) | = vss
- QUEVE | fo— vec
7
________________ Y 1 e [T
M ' ‘ TBUSY
INTR ERROR
231923-1

Figure 1. 80C286 Internal Block Diagram

September 1993
Order Number: 231923-004 21

80C286 i nté o

Component Pad Views—As viewed from underside of P.C. Board Views—As viewed from the component
component when mounted on the board. side of the P.C. board. .
Plastic Leaded Chip Carrier

Plastic Leaded Chip Carrier

|~uu|u|8|§n:xn

231923~2
NOTE: Pin Grid Array
N.C. signals must not be connected
#sa35353533 833552z ¥
g g
8sszasssl§ Esssz338s58
[590066000 LR
N DSORGB GO O | TR ar CAP R | B D BBOQORBB| 0 40
a2 |9 [T X 7] W 137 BUSY NC. |96 S@| a1 az
Voo CK | D@ X1 L LT NC. WNR | O®| ok vge
A3 ResET | & @& m NC NC. N |96 @ @ | REsET a3
s M|lBdO © @] PEREQ Vg vss PEREQ | @ @ DB a4 as
A7 slas © @] ROV v Voo REDY |@ @ BB| s a7
» &|ee @ @] voa HoOLD HoLD MM |3 @ S| s
At A0 | @ ®| u/0 con/iNTA coo/WTA M/0 |@ @ DBf a0 an
M3 A2 |BORRRP®O®OP @) Ne. ok 3 A12 A3
DBBODO®DOG)
N~ e = NiX (=G PIN NO.1 MARK »
::::2‘:‘3‘“’3 |§
1328834 Fémgfgzss
231923-3
Figure 2. 80C286 Pin Configuration
Table 1. Pin Description
The following pin function descriptions are for the 80C286 microprocessor :
Symbol Type Name and Function
CLK | SYSTEM CLOCK provides the fundamental timing for 80C286 systems. It is

divided by two inside the 80C286 to generate the processor clock. The internal
divide-by-two circuitry can be synchronized to an external clock generator by a
LOW to HIGH transition on the RESET input.

D45-Dg 170 DATA BUS inputs data during memory, |1/0, and interrupt acknowiedge read
cycles; outputs data during memory and 1/0 write cycles. The data bus is active
HIGH and floats to 3-state OFF* during bus hold acknowledge.

Agz-Ag (¢] ADDRESS BUS outputs physical memory and I/0 port addresses. A0 is LOW
when data is to be transferred on pins D7_g. Ag3—A4g are LOW during I/0
transfers. The address bus is active HIGH and floats to 3-state OFF* during bus
hold acknowledge.

BHE 0 BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus.
D45-g. Eight-bit oriented devices assigned to the upper byte of the data bus would
normally use BHE to condition chip select functions. BHE is active LOW and floats
to 3-state OFF* during bus hold acknowledge.

*See bus hold circuitry section.

2-2

intal.

Table l. Pin Description (Continued)

80C286

Symbol

Type

Name and Function

BHE
(Continued)

BHE and A0 Encodings

BHE Value

A0 Value

Function

0
0
1
1

0
1
0
1

Word transfer

Transter on upper haif of data bus (D15-Dg)
Byte transfer on lower half of data bus (D7-Dg)

Will never occur

BUS CYCLE STATUS indicates initiation of a bus cycle and, along with M/TO and COD/
INTA, defines the type of bus cycle. The bus is in a T state whenever one or both are LOW,
51 and 50 are active LOW and float to 3-state OFF* during bus hold acknowledge.

80C286 Bus Cycle Status Definition

COD/INTA M/10 51 50 Bus Cycle initiated

0 (LOW) Interrupt acknowledge
Will not oceur

Will not occur

None; not a status cycle
{F A1 = 1 then halt; else shutdown
Memory data read
Memory data write
None; not a status cycle
Will not occur

1/0 read

170 write

None; not a status cycle
Will not occur

Memory instruction read
Will not occur

None; not a status cycle

(HIGH)

A2 N A e a 0000000

I e X=X = = R R gy Y B N -}
L Ll OO R as OO0 R 200200
2 O0O=20-0=20-40-0=0=20

M/10

MEMORY /0 SELECT distinguishes memory access from |/0 access. if HIGH during Tg, a
memory cycle or a halt/shutdown cycie is in progress. If LOW, an I/0 cycle or an interrupt
acknowledge cycle is in progress. M/10 floats to 3-state OFF* during bus hold
acknowledge.

COD/INTA

CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory
data read cycles. Also distinguishes interrupt acknowledge cycles from /O cycles. COD/
NTA floats to 3-state OFF* during bus hold acknowledge. Its timing is the same as M/10.

BUS LOCK indicates that other system bus masters are not to gain control of the system
bus for the current and the following bus cycle. The LOCK signal may be activated explicitly
by the “LOCK” instruction prefix or automatically by 80C286 hardware during memory
XCHG instructions, interrupt acknowledge, or descriptor table access. K is active LOW
and floats to 3-state OFF* during bus hold acknowledge.

BUS READY terminates a bus cycie. Bus cycles are extended without limit until terminated
by READY LOW. READY is an active LOW synchronous input requiring setup and hold
times relative to the system clock be met for correct operation. READY is ignored during
bus hold acknowledge.

HOLD
HLDA

BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of the 80C286
local bus. The HOLD input allows another local bus master to request control of the local
bus. When control is granted, the 80C286 will float it~ bus drivers to 3-state OFF* and then
activate HLDA, thus entering the bus hold acknowleage condition. The local bus will remain
granted to the requesting master untit HOLD becomes inactive which results in the 80C286
deactivating HLDA and regaining control of the local bus. This terminates the bus hold
acknowledge condition. HOLD may be asynchronous to the system clock. These signals
are active HIGH.

INTR

INTERRUPT REQUEST requests the 80C286 to suspend its current program execution
and service a pending external request. Interrupt requests are masked whenever the
interrupt enable bit in the flag word is cleared. When the 80C286 responds to an interrupt
request, it performs two interrupt acknowledge bus cycles to read an 8-bit interrupt vector
that identifies the source of the interrupt. To assure program interruption, INTR must remain
active until the first interrupt acknowledge cycle is completed. INTR is sampled at the
beginning of each processor cycle and must be active HIGH at least two processor cycles
before the current instruction ends in order to interrupt before the next instruction. INTR is
level sensitive, active HIGH, and may be asynchronous to the system clock.

*See bus hold circuitry section.

2-3

80C286 i n‘l‘el »

Table 1. Pin Description (Continued)

Symbol Type Name and Function

NMI | NON-MASKABLE INTERRUPT REQUEST interrupts the 80C286 with an
internally supplied vector value of 2. No interrupt acknowledge cycles are
performed. The interrupt enable bit in the 80C286 flag word does not affect
this input. The NMI input is active HIGH, may be asynchronous to the system
clock, and is edge triggered after internal synchronization. For proper
recognition, the input must have been previously LOW for at least four system
clock cycles and remain HIGH for at least four system clock cycles.

PEREQ PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE
PEACK (o} extend the memory management and protection capabilities of the 80C286 to
processor extensions. The PEREQ input requests the 80C286 to perform a
data operand transfer for a processor extension. The PEACK output signals
the processor extension when the requested operand is being transferred.
PEREQ is active HIGH and floats to 3-state OFF* during bus hoid
acknowledge. PEACK may be asynchronous to the system clock. PEACK is

active LOW.
BUSY | PROCESSOR EXTENSION BUSY AND ERROR indicate the operating
ERROR I condition of a processor extension to the 80C286. An active BUSY input

stops 80C286 program execution on WAIT and some ESC instructions until
BUSY becomes inactive (HIGH). The 80C286 may be interrupted while
waiting for BUSY to become inactive. An active ERROR input causes the
80C286 to perform a processor extension interrupt when executing WAIT or
some ESC instructions. These inputs are active LOW and may be
asynchronous to the system clock. These inputs have internal pull-up
resistors.

RESET | SYSTEM RESET clears the internal logic of the 80C286 and is active HIGH.
The 80C286 may be reinitialized at any time with a LOW to HIGH transition on
RESET which remains active for more than 16 system clock cycles. During
RESET active, the output pins of the 80C286 enter the state shown below:

80C286 Pin State During Reset
Pin Value Pin Names
1 (HIGH) 80, §1, PEACK, A23-A0, BHE, LOCK
0 (LOW) M/10, COD/INTA, HLDA (Note 1)
3-state OFF* Dy5-Dg

Operation of the 80C286 begins after a HIGH to LOW transition on RESET.
The HIGH to LOW transition of RESET must be synchronous to the system
clock. Approximately 38 CLK cycles from the trailing edge of RESET are
required by the 80C286 for internal initialization before the first bus cycle, to
fetch code from the power-on execution address, occurs.

A LOW to HIGH transition of RESET synchronous to the system clock will
end a processor cycle at the second HIGH to LOW transition of the system
clock. The LOW to HIGH transition of RESET may be asynchronous to the
system clock; however, in this case it cannot be predetermined which phase
of the processor clock will occur during the next system clock period.
Synchronous LOW to HIGH transitions of RESET are required only for
systems where the processor clock must be phase synchronous to another

clock.
Vss [SYSTEM GROUND: 0 Volts.
Veo I SYSTEM POWER: + 5 Volt Power Supply.
CAP | SUBSTRATE FILTER CAPACITOR: a 0.047 uF = 20% 12V capacitor can

be connected between this pin and ground for compatibility with the HMOS
80286. For systems using only an 80C286, this pin can be left floating.

*See bus hold circuitry section.

NOTE:
1. HLDA is only Low if HOLD is inactive (Low).

24 I

intal.

FUNCTIONAL DESCRIPTION

Introduction

The 80C286 is an advanced, high-performance mi-
croprocessor with specially optimized capabilities for
multiple user and multi-tasking systems. Depending
on the application, a 12 MHz 80C286’s performance
is up to ten times faster than the standard 5 MHz
8086's, while providing complete upward software
compatibility with Intel’s 8086, 88, and 186 family of
CPU’s.

The 80C286 operates in two modes: 8086 real ad-
dress mode and protected virtual address mode.
Both modes execute a superset of the 8086 and 88
instruction set.

In 8086 real address mode programs use real ad-
dresses with up to one megabyte of address space.
Programs use virtual addresses in protected virtual
address mode, also called protected mode. In pro-
tected mode, the 80C286 CPU automatically maps 1
gigabyte of virtual addresses per task into a 16
megabyte real address space. This mode also pro-
vides memory protection to isolate the operating
system and ensure privacy of each tasks’ programs
and data. Both modes provide the same base in-
struction set, registers, and addressing modes.

The following Functional Description describes first,
the base 80C286 architecture common to both
modes, second, 8086 real address mode, and third,
protected mode.

80C286 BASE ARCHITECTURE

The 8086, 88, 186, and 286 CPU family ail contain
the same basic set of registers, instructions, and

80C286

addressing modes. The 80C286 processor is up-
ward compatible with the 8086, 8088, and 80186
CPU’s and fully compatibie with the HMOS 80286.

Register Set

The 80C286 base architecture has fifteen registers
as shown in Figure 3. These registers are grouped
into the following four categories:

General Registers: Eight 16-bit general purpose
registers used to contain arithmetic and logical oper-
ands. Four of these (AX, BX, CX, and DX) can be
used either in their entirety as 16-bit words or split
into pairs of separate 8-bit registers.

Segment Registers: Four 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data. (For usage, refer to Memory Organi-
zation.)

Base and Index Registers: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers
may contain base addresses or indexes to particular
locations within a segment. The addressing mode
determines the specific registers used for operand
address calculations.

Status and Control Registers: The 3 16-bit special
purpose registers in figure 3A record or control cer-
tain aspects of the 80C286 processor state including
the Instruction Pointer, which contains the offset ad-
dress of the next sequential instruction to be execut-
ed.

16817 SPECIAL 15 o
REGISTER REGISTER
NAME FUNCTIONS
cs CODE SEGMENT SELECTOR
7 07 0
DS DATA SEGMENT SELECTOR
BYTE ESSABLE AX| A AL MULTIPLY/DIVIDE
&8I VO INSTRUCTIONS sS STACK SEGMENT SELECTOR
px| OH DL
REGISTER
NAMES €s EXTRA SEGMENT SELECTOR
cx| oH oL } LOOP/SHIFT/REPEAT/COUNT
SHOWN)
SEGMENT REGISTERS
BX| BH 8L
BASE REGISTERS
8P 15 0
s F STATUS WORD
INDEX REGISTERS
ol P INSTRUCTION POINTER
SP } STACK POINTER STATUS AND CONTROL
5 o REGISTERS
GENERAL
REGISTERS
Figure 3. Register Set

2-5

a
8 6
ocze |I1te| o
1% 14 13 12 1" w L] L) T L] 4 4 3
raot i w] on TorJor]w]w] o] =W ~NY
e [e =1=
. seseed Nereipiid]
— 2319234
Figure 3a. Status and Control Register Bit Functions
Flags Word Description Table 2. Flags Word Bit Functions

The Flags word (Flags) records specific characteris-
tics of the result of logical and arithmetic instructions
(bits 0, 2, 4, 6, 7, and 11) and controls the operation
of the B0C286 within a given operating mode (bits 8
and 9). Flags is a 16-bit register. The function of the
flag bits is given in Table 2.

Instruction Set

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string
manipulation, control transfer, high level instruc-
tions, and processor control. These categories are
summarized in Figure 4.

An 80C286 instruction can reference zero, one, or
two operands; where an operand resides in a regis-
ter, in the instruction itself, or in memory. Zero-oper-
and instructions (e.g. NOP and HLT) are usually one
byte long. One-operand instructions (e.g. INC and
DEC) are usually two bytes long but some are en-
coded in only one byte. One-operand instructions
may reference a register or memory location. Two-
operand instructions permit the following six types of
instruction operations:

—Register to Register
—Memory to Register
—Immediate to Register
—Memory to Memory
—Register to Memory
—Immediate to Memory

Bit
Position

Function

0

CF

Carry Flag—Set on high-order bit
carry or borrow; cleared otherwise

2

PF

Parity Flag—Set if low-order 8 bits
of result contain an even number of
1-bits; cleared otherwise

AF

Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

ZF

Zero Flag—Set if result is zero;
cleared otherwise

SF

Sign Flag—Set equal to high-order
bit of result (0 if positive, 1 if negative)

1

OF

Overflow Flag—Set if result is a too-
large positive number or a too-small
negative number (excluding sign-bit)
to fit in destination operand; cleared
otherwise

TF

Single Step Flag—Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF is
cleared by the single step interrupt.

Interrupt-enable Flag—When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

10

DF

Direction Flag—Causes string
instructions to auto decrement
the appropriate index registers
when set. Clearing OF causes
auto increment.

intal.

Two-operand instructions (e.g. MOV and ADD) are
usually three to six bytes long. Memory to memory
operations are provided by a special class of string
instructions requiring one to three bytes. For de-
tailed instruction formats and encodings refer to the
instruction set summary at the end of this document.

For detailed operation and usage of each instruc-
tion, see Appendix B of the 80286/80287 Program-
mer’s Reference Manual (Order No. 210498).

80C286
ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCIl adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
suB Subtract byte or word
SBB Subtract byte or word with borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiple byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCIl adjust for muitiply
DIVISION
Div Divide byte or word unsigned
1DV Integer divide byte or word
AAD ASCII adjust for division
CBW Convert byte to word
CwWD Convert word to doubleword

GENERAL PURPOSE
MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
PUSHA Push all registers on stack
POPA Pop all registers from stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
iN Input byte or word
ouT Qutput byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

Figure 4a. Data Transfer Instructions

Figure 4b. Arithmetic Instructions

MOVS Move byte or word string

INS Input bytes or word string

OUTS Output bytes or word string
CMPS Compare byte or word string
SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

REP Repeat

REPE/REPZ Repeat while equal/zero
REPNE/REPNZ Repeat while not equal/not zero

Figure 4c. String instructions

LOGICALS
NOT “Not” byte or word
AND “And” byte or word
OR “Inclusive or” byte or word
XOR “Exclusive or"” byte or word
TEST “Test” byte or word
SHIFTS
SHL/SAL Shift logical/ arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word

Figure 4d. Shift/Rotate Logical instructions

Figure 4g. High Level Instructions

2-8

a
80C286 |n'l'e|
®
CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below nor equal CALL Call procedure
JAE/JNB Jump if above or equal/not below RET Return from procedure
JB/INAE Jump if below/not above nor equal JMP Jump
JBE/JNA Jump if below or equal/not above
JC Jump if carry ITERATION CONTROLS
JE/JZ Jump if equal/zero
JG/JINLE Jump if greater/not less nor equal LooP Loop
JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/ING Jump if less or equal/not greater JCXZ Jump if register CX = 0
JNC Jump if not carry
JNE/JNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even
JS Jump if sign
Figure 4e. Program Transfer Instructions
FLAG OPERATIONS Memory Organization
(S;Ig 2::‘(3::?39 Memory is organized as 'sets Qf variable I.ength seg-
ments. Each segment is a linear contiguous se-
CMmC Complement carry flag quence of up to 64K (216) 8-bit bytes. Memory is
STD Set direction flag addressed using a two component address (a point-
oL Joat drocton lg 0.t offse. The ssgment selector ncicates ihe do:
ST Set int.errupt enable flag siredl s()egmént in megmory. The offset compgnent in-
cu Clear interrupt enable flag dicates the desired byte address within the segment.
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for BUSY not active ¥ ¥
ESC Escape to extension processor 32-BIT POINTER
LOCK Lock bus during next instruction min
NO OPERATION L bl ,,l,, o —!
NOP [Nooperation T Far 3 | P
EXECUTION ENVIRONMENT CONTROL SEGMENT
LMSW Load machine status word
SMSW Store machine status word
Figure 4f. Processor Control Instructions
ENTER Format stack for procedure entry 4 A
LEAVE Restore stack for procedure exit i MEMORY -
BOUND Detects values outside prescribed range 231923-5

Figure 5. Two Component Address

intal.

80C286

Table 3. Segment Register Selection Rules

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP
as a base register.

Local Data Data (DS) All data references except when relative to stack or
string destination

External (Global) Data Extra (ES) Alternate data segment and destination of string operation

All instructions that address operands in memory
must specify the segment and the offset. For speed
and compact instruction encoding, segment selec-
tors are usually stored in the high speed segment
registers. An instruction need specify only the de-
sired segment register and an offset in order to ad-
dress a memory operand.

Most instructions need not explicitly specify which
segment register is used. The correct segment reg-
ister is automaticalty chosen according to the rules
of Table 3. These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.
To access operands not residing in one of the four
immediately available segments, a full 32-bit pointer
or a new segment selector must be loaded.

Addressing Modes

The 80C286 provides a total of eight addressing
modes for instructions to specify operands. Two ad-
dressing modes are provided for instructions that
operate on register or immediate operands:

Register Operand Mode: The operand is locat-
ed in one of the 8 or 16-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: seg-
ment selector and offset. The segment selector is
supplied by a segment register either implicitly cho-
sen by the addressing mode or explicitly chosen by
a segment override prefix. The offset is calculated
by summing any combination of the following three
address elements:

the displacement (an 8 or 16-bit immediate val-
ue contained in the instruction)

the base (contents of either the BX or BP base
registers)

o

cone
DATA
STACK

] ®XTRA
SROMENY
REQISTERS

MEMORY 231923-6

Figure 6. Segmented Memory Helps
Structure Software

the Index (contents of either the Sl or DI index
registers)

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements de-
fine the six memory addressing modes, described
below.

Direct Mode: The operand's offset is contained in
the instruction as an 8 or 16-bit displacement ele-
ment.

Register indirect Mode: The operand’s offset is in
one of the registers Sl, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an

8 or 16-bit displacement and the contents of a base
register (BX or BP).

2-9

80C286

Indexed Mode: The operand’s offset is the sum of
an 8 or 16-bit displacement and the contents of an
index register (S or D).

Based Indexed Mode: The operand's offset is the
sum of the contents of a base register and an index
register.

Based Indexed Mode with Displacement: The op-
erand’s offset is the sum of a base register's con-
tents, an index register’s contents, and an 8 or 16-bit
displacement.

Data Types

The 80C286 directly supports the following data
types:
Integer: A signed binary numeric value con-
tained in an 8-bit byte or a 16-bit
word. All operations assume a 2's
complement representation. Signed
32 and 64-bit integers are supported
using the Numeric Data Processor,
the 80287.

An unsigned binary numeric value
contained in an 8-bit byte or 16-bit
word.

A 32-bit quantity, composed of a
segment selector component and an
offset component. Each component
is a 16-bit word.

A contiguous sequence of bytes or
words. A string may contain from 1
byte to 64K bytes.

A byte representation of alphanu-
meric and control characters using
the ASCII standard of character rep-
resentation.

BCD: A byte (unpacked) representation of
the decimal digits 0-9.

Packed BCD: A byte (packed) representation of
two decimal digits 0-9 storing one
digit in each nibble of the byte.

Floating Point: A signed 32, 64, or 80-bit real num-
ber representation. (Floating point
operands are supported using the
80287 Numeric Processor).

Ordinal:

Pointer:

String:

ASCII:

Figure 7 graphically represents the data types sup-
ported by the 80C286.

170 Space

The 1/0 space consists of 64K 8-bit or 32K 16-bit
ports. 1/0 instructions address the I/0 space with

intgl.

either an 8-bit port address, specified in the instruc-
tion, or a 16-bit port address in the DX register. 8-bit
port addresses are zero extended such that Ay5-Ag
are LOW. I/0 port addresses 00F8(H) through
00FF(H) are reserved.

sSIGNBITL_______J
MAGNITUDE

7 [

e [T
BYTE

Mss

MAGNITUDE

wutl 47 0
WORD

SIGN 81T~ | M8)

+2 g Y L

sigvep 31 +3

DOUBLE

WoRD

SioN BITT CMss |
—

+7 +8 45 44 43 +2 #1 [}

SIONED
QUAD
WORD*
810N BIT W8 !
MAGNITUDE
w +1 [} 0
] i
e,
MAGNITUDE
soany LN o 7 Y1 47 0
O
DECMAL
[) [8CD
OIGIT N o 4 oIGIT 0
7 N, 7 *V ey 0
ASCNH ASCHN ASCH
CTERN CTERy CTERy
PACKED [+N 7 Y1 47 0
BCD e T
b —
MOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT
ms *N g ms Y1 ore @ o
STRNG .
N SYTE'WORD 1 BYTE/WORD ¢
n *3 +2 45 1 0
POINTER

7+® 48 4T 46 45 4 43 +2 +1 0

=1 s O T

SN BIT |
EXPONENT

231923-7
Figure 7. 80C286 Supported Data Types

intel R 80C286
Table 4. Interrupt Vector Assignments
Function Norrupt m:t:'f:::m D:;:? o Inatruction.
Causing Exception?
Divide error exception 0 DIv, IDI\V Yes
Single step interrupt 1 All
NMI interrupt 2 INT 2 or NMI pin
Breakpoint interrupt 3 INT 3
INTO detected overfiow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC or WAIT Yes
Intel reserved-do not use 8-15
Processor extension error interrupt 16 ESC or WAIT
Intel reserved—-do not use 17-31
User defined 32-255

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma-
chine state (Flags) are saved on the stack to allow
resumption of the interrupted program. Interrupts fall
into three classes: hardware initiated, INT instruc-
tions, and instruction exceptions. Hardware initiated
interrupts occur in response to an external input and
are classified as non-maskable or maskable. Pro-
grams may cause an interrupt with an INT instruc-
tion. Instruction exceptions occur when an unusual
condition, which prevents further instruction pro-
cessing, is detected while attempting to execute an
instruction. The return address from an exception
will always point at the instruction causing the ex-
ception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt. In-
terrupts 0-31, some of which are used for instruc-
tion exceptions, are reserved. For each interrupt, an
8-bit vector must be supplied to the 80C286 which
identifies the appropriate table entry. Exceptions
supply the interrupt vector internally. INT instructions
contain or imply the vector and allow access to all
256 interrupts. Maskable hardware initiated inter-
rupts supply the 8-bit vector to the CPU during an
interrupt acknowledge bus sequence. Non-maska-
ble hardware interrupts use a predefined internally
supplied vector.

MASKABLE INTERRUPT (INTR)

The 80C286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by

setting the interrupt flag bit (IF) in the flag word. All
224 user-defined interrupt sources can share this in-
put, yet they can retain separate interrupt handlers.
An 8-bit vector read by the CPU during the interrupt
acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

Further maskable interrupts are disabled while serv-
icing an interrupt by resetting the IF but as part of
the response to an interrupt or exception. The saved
flag word will reflect the enable status of the proces-
sor prior to the interrupt. Until the flag word is re-
stored to the flag register, the interrupt flag will be
zero unless specifically set. The interrupt return in-
struction includes restoring the flag word, thereby
restoring the original status of IF.

NON-MASKABLE INTERRUPT REQUEST (NMI)

A non-maskable interrupt input (NM) is also provid-
od. NMI has higher priority than INTR. A typical use
of NMI would be to activate a power failure routine.
The activation of this input causes an interrupt with
an internally supplied vector value of 2. No external
interrupt acknowledge sequence is performed.

While executing the NMI servicing procedure, the
80C286 will service neither further NMI requests,
INTR requests, nor the processor extension seg-
ment overrun interrupt until an interrupt return (IRET)
instruction is executed or the CPU is reset. If NMI
occurs while currently servicing an NM\, its presence
will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an
NM! interrupt to inhibit INTR interrupts.

80C286

SINGLE STEP INTERRUPT

The 80C286 has an internal interrupt that allows pro-
grams to execute one instruction at a time. It is
called the single step interrupt and is controlled by
the single step flag bit (TF) in the flag word. Once
this bit is set, an internal single step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc-
tion to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they
are processed in a fixed order as shown in Table 5.
Interrupt processing involves saving the flags, return
address, and setting CS:IP to point at the first in-
struction of the interrupt handler. If other interrupts
remain enabled they are processed before the first
instruction of the current interrupt handler is execut-
ed. The last interrupt processed is therefore the first
one serviced.

Table 5. Interrupt Processing Order

Order Interrupt
1 Instruction exception
2 Single step
3 NMI
4 Processor extension segment overrun
5 INTR
6 INT instruction

Initialization and Processor Reset

Processor initialization or start up is accomplished
by driving the RESET input pin HIGH. RESET forces
the 80C286 to terminate all execution and local bus
activity. No instruction or bus activity will occur as
long as RESET is active. After RESET becomes in-
active and an internal processing interval elapses,
the 80C286 begins execution in real address mode
with the instruction at physical location FFFFFO(H).
RESET also sets some registers to predefined val-
ues as shown in Table 6.

intgl.

Table 6. 80C286 Initial Register State after RESET

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

HOLD must not be active during the time from the
leading edge of RESET to 34 CLKs after the trailing
edge of RESET.

Machine Status Word Description

The machine status word (MSW) records when a
task switch takes place and controls the operating
mode of the 80C286. It is a 16-bit register of which
the lower four bits are used. One bit places the CPU
into protected mode, while the other three bits, as
shown in Table 7, control the processor extension
interface. After RESET, this register contains
FFFO(H) which places the 80C286 in 8086 real ad-
dress mode.

Table 7. MSW Bit Functions
Name

Bit
Position

0 PE

Function

Protected mode enable places the
80C286 into protected mode and cannot
be cleared except by RESET.

Monitor processor extension allows
WAIT ingtructions to cause a processor
extension not present exception
{number 7).

Emulate processor extension causes a
processor extension not present
exception (number 7) on ESC
instructions to allow emulating a
processor extension.

Task switched indicates the next
instruction using a processor extension
will cause exception 7, allowing sofiware
to test whether the current processor
extension context belongs to the current
task.

1 MP

The LMSW and SMSW instructions can load and
store the MSW in real address mode. The recom-
mended use of TS, EM, and MP is shown in Table 8.

Table 8. Recommended MSW Encodings For Processor Extension Control

Instructions
TS | MP | EM Recommended Use Causing
Exception 7
0 0 0 Initial encoding after RESET. 80C286 operation is identical to 8086, 88. None
[0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software wiil emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 A processor extension exists. None
1 1 0 A processor extension exists. The current processor extension context may belongto | ESC or
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT
from a previous processor extension operation.
212

intgl.

Halt

The HLT instruction stops program execution and
prevents the CPU from using the local bus until re-
started. Either NMI, INTR with IF = 1, or RESET will
force the 80C286 out of halt. If interrupted, the
saved CS:IP will point to the next instruction after
the HLT.

8086 REAL ADDRESS MODE

The 80C286 executes a fully upward-compatible su-
perset of the 8086 instruction set in real address
mode. In real address mode the 80C286 is object
code compatible with 8086 and 8088 software. The
real address mode architecture (registers and ad-
dressing modes) is exactly as described in the
80C286 Base Architecture section of this Functional
Description.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins
Ag through A9 and BHE. Ayg through Az3 should be
ignored.

Memory Addressing

In real address mode physical memory is a contigu-
ous array of up to 1,048,576 bytes (one megabyte)
addressed by pins Ag through Aqg and BHE. Ad-
dress bits Agg—~Az3 may not always be zero in real
mode. Agp-Apgz should not be used by the system
while the 80C286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always
zero. Segment addresses, therefore, begin on multi-
ples of 16 bytes. See Figure 8 for a graphic repre-
sentation of address information.

All segments in real address mode are 64K bytes in
size and may be read, written, or executed. An ex-
ception or interrupt can occur if data operands or
instructions attempt to wrap around the end of a
segment (e.g. a word with its low order byte at offset
FFFF(H) and its high order byte at offset 0000(H). If,
in real address mode, the information contained in a
segment does not use the full 64K bytes, the unused
end of the segment may be overlayed by another
segment to reduce physical memory requirements.

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory in
real address mode (see Figure 9); system initializa-

80C286

tion area and interrupt table area. Locations from
addresses FFFFO(H) through FFFFF(H) are re-
served for system initialization. Initial execution be-
gins at location FFFFO(H). Locations 00000(H)
through 003FF(H) are reserved for interrupt vectors.

5 0
OFFSET
0000 OFFSET ADDRESS
Ny e’
15 0
SEGMENT SEGMENT
SELECTOR 000] ApDRESS
99 0
20-BIT PHYSICAL
MEMORY ADDRESS
231923-8
Figure 8. 8086 Real Address Mode
Address Calculation
FFFFFH
RESET BOOTSTRAP
PROGRAM JUMP
06 J FFFFOH
fa . la L’
T : *
3FFH
INTERRUPT POINTER
FOR VECTOR 255
3FCH
. ~
~ : ~
- ™
INTERRUPT POINTER
FOR VECTOR 1 aH
INTERRUPT POINTER 3H
FOR VECTOR 0
oH
INITIAL CS:IP VALUE IS FO00:FFFO.
231923-9

Figure 9. 8086 Real Address Mode initially
Reserved Memory Locations

2-13

[3
80!
czes intgl.
Table 9. Real Address Mode Addressing Interrupts
Interrupt Related Return Address
Function Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extend- No
interrupt ing beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with offset | Yes
= FFFF(H) or an attempt to exe-
cute past the end of a segment
Iinterrupts PROTECTED VIRTUAL ADDRESS

Table 9 shows the interrupt vectors reserved for ex-
ceptions and interrupts which indicate an addressing
error. The exceptions leave the CPU in the state ex-
isting before attempting to execute the failing in-
struction (except for PUSH, POP, PUSHA, or POPA).
Refer to the next section on protected mode initiali-
zation for a discussion on exception 8.

Protected Mode Initialization

To prepare the 80C286 for protected mode, the
LIDT instruction is used to load the 24-bit interrupt
table base and 16-bit limit for the protected mode
interrupt table. This instruction can also set a base
and limit for the interrupt vector table in real address
mode. After reset, the interrupt table base is initial-
ized to 000000(H) and its size set to 03FF(H). These
values are compatible with 8086, 88 software. LIDT
should only be executed in preparation for protected
mode.

Shutdown

Shutdown occurs when a severe error is detected
that prevents further instruction processing by the
CPU. Shutdown and hait are externally signalled via
a halt bus operation. They can be distinguished by
A4 HIGH for halt and Aj LOW for shutdown. In real
address mode, shutdown can occur under two con-
ditions:

¢ Exceptions 8 or 13 happen and the IDT limit does

not include the interrupt vector.

e A CALL INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if
the IDT limit is at least 000F(H) and SP is greater
than 0005(H), otherwise shutdown can only be exit-
ed via the RESET input.

2-14

MODE

The 80C286 executes a fully upward-compatible su-
perset of the 8086 instruction set in protected virtual
address mode (protected mode). Protected mode
also provides memory management and protection
mechanisms and associated instructions.

The 80C286 enters protected virtual address mode
from real address mode by setting the PE (Protec-
tion Enable) bit of the machine status word with the
Load Machine Status Word (LMSW) instruction. Pro-
tected mode offers extended physical and virtual
memory address space, memory protection mecha-
nisms, and new operations to support operating sys-
tems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80C286 Base Architecture section of
this Functional Description remain the same. Pro-
grams for the 8086, 88, 186, and real address mode
80C286 can be run in protected mode; however, em-
bedded constants for segment selectors are differ-
ont.

Memory Size

The protected mode 80C286 provides a 1 gigabyte
virtual address space per task mapped into a 16
megabyte physical addreis.rspace defined by the ad-
dress pin Ap3.Ap and BHE. The virtual address
space may be larger than the physical address
space since any use of an address that does not
map to a physical memory location will cause a re-
startable exception.

Memory Addressing

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset
components. The selector, however, specifies an in-
dex into a memory resident table rather than the up-
per 16-bits of a real memory address. The 24-bit

intgl.

base address of the desired segment is obtained
from the tables in memory. The 16-bit offset is add-
ed to the segment base address to form the physical
address as shown in Figure 10. The tables are auto-
matically referenced by the CPU whenever a seg-
ment register is loaded with a selector. All 80C286
instructions which load a segment register will refer-
ence the memory based tables without additional
software. The memory based tables contain 8 byte

80C286

DESCRIPTORS

Descriptors define the use of memory. Special types
of descriptors also define new functions for transfer
of control and task switching. The 80C286 has seg-
ment descriptors for code, stack and data segments,
and system control descriptors for special system
data segments and control transfer operations. De-
scriptor accesses are performed as locked bus op-
erations to assure descriptor integrity in multi-proc-

values called descriptors.
essor systems.

cpu CODE AND DATA SEGMENT DESCRIPTORS
s=1)

Besides segment base addresses, code and data
descriptors contain other segment attributes includ-
ing segment size (1 to 64K bytes), access rights
(read only, read/write, execute only, and execute/ 2
read), and presence in memory (for virtual memory
systems) (See Figure 11). Any segment usage vio-
lating a segment attribute indicated by the segment
ADDER descriptor will prevent the memory cycle and cause
an exception or interrupt.

r Code or Data Segment Descriptor

7 D7 0

BASE SCRIFTOR
|_Aoness_ | pescrron | | S .7

ACCESS
RIGKTS BYTE

- T
INTEL RESERVED" +6
1
P|DPL[S] TYPE IAI
1 I N
+3 BASE,,

231923-10 1
+1 LINT15o [}
1

+

BASE2; 18 +4

30

L
-0 +2

Figure 10. Protected Mode Memory Addressing

15 a7 []

231923-11

*Must be set to 0 for compatibility with 80386.

Access Rights Byte Definition

P ozl:l on Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exits, base and limit are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor
tor (S) S=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Data segment descriptor type is: If
2 Expansion Direc- ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. r Segment
1 Wiriteable (W) w=0 Data segment may not be written into. (S=1,
T W =1 Data segment may be written into. E=0)
Fiy.gj 3 Executabile (E) E=1 Code Segment Descriptor type is: If
Definition 2 Conforming (C) C=1 Code segment may only be executed Code
when CPL >DPL and CPL | Segment
remains unchanged.
1 Readable (R) R =0 Code segment may not be read S=1,
R=1 Code segment may be read. J E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

Figure 11. Code and Data Segment Descriptor Formats
2-15

80C286

Code and data (including stack data) are stored in
two types of segments: code segments and data
segments. Both types are identified and defined by
segment descriptors (S = 1). Code segments are
identified by the executable (E) bit set to 1 in the
descriptor access rights byte. The access rights byte
of both code and data segment descriptor types
have three fields in common: present (P) bit, De-
scriptor Privilege Level (DPL), and accessed (A) bit.
If P = 0, any attempted use of this segment will
cause a not-present exception. DPL specifies the
privilege level of the segment descriptor. DPL con-
trols when the descriptor may be used by a task
(refer to privilege discussion below). The A bit shows
whether the segment has been previously accessed
for usage profiling, a necessity for virtual memory
systems. The CPU will always set this bit when ac-
cessing the descriptor.

Data segments (S = 1, E = 0) may be either read-
only or read-write as controlled by the W bit of the
access rights byte. Read-only (W = 0) data seg-
ments may not be written into. Data segments may
grow in two directions, as determined by the Expan-
sion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment
containing a stack. The limit field for a data segment
descriptor is interpreted differently depending on the
ED bit (see Figure 11).

A code segment (S = 1, E = 1) may be execute-
only or execute/read as determined by the Read-
able (R) bit. Code segments may never be written
into and execute-only code segments (R = 0) may
not be read. A code segment may also have an attri-
bute called conforming (C). A conforming code seg-
ment may be shared by programs that execute at
different privilege levels. The DPL of a conforming
code segment defines the range of privilege levels
at which the segment may be executed (refer to priv-
ilege discussion below). The limit field identifies the
last byte of a code segment.

SYSTEM SEGMENT DESCRIPTORS (S = 0,
TYPE = 1-3)

In addition to code and data segment descriptors,
the protected mode 80C286 defines System Seg-
ment Descriptors. These descriptors define special
system data segments which contain a table of de-
scriptors (Local Descriptor Table Descriptor) or seg-
ments which contain the execution state of a task
(Task State Segment Descriptor).

Figure 12 gives the formats for the special system
data segment descriptors. The descriptors contain a
24-bit base address of the segment and a 16-bit lim-
it. The access byte defines the type of descriptor, its
state and privilege level. The descriptor contents are
valid and the segment is in physical memory if P =1.
If P = 0, the segment is not valid. The DPL field is
only used in Task State Segment descriptors and
indicates the privilege level at which the descrip-

2-16

intgl.

tor may be used (see Privilege). Since the Local De-
scriptor Table descriptor may only be used by a spe-
cial privileged instruction, the DPL field is not used.
Bit 4 of the access byte is 0 to indicate that it is a
system control descriptor. The type field specifies
the descriptor type as indicated in Figure 12.

System Segment Descriptor

7 97 L]
+7 INTEL R!IIMD' +8

:

i 'l°f"[°] 1"1*11 . "
+3 "‘lﬁu-o +2
+1 Lul'll'u_o [

" 8?7 ¢

231923-12

*Must be set to 0 for compatibility with 80386.

System Segment Descriptor Fields

Name | Value Description
TYPE 1 Available Task State Segment (TSS)
2 Local Descriptor Table
3 Busy Task State Segment (TSS)
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
BASE | 24-bit | Base Address of special system data
number | segment in real memory
LIMIT | 16-bit | Offset of last byte in segment
number

Figure 12. System Segment Descriptor Format

GATE DESCRIPTORS (S = 0, TYPE = 4-7)

Gates are used to control access to entry points
within the target code segment. The gate descrip-
tors are call gates, task gates, interrupt gates and
trap gates. Gates provide a level of indirection be-
tween the source and destination of the controi
transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry
point of the destination. Call gates are used to
change privilege levels (see Privilega), task gates
are used to perform a task switch, and interrupt and
trap gates are used to specify interrupt service rou-
tines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Gate Descriptor
T 07 0
LJ
+7 INTEL IEIOEIV!D' +8
WORD
o T, D o |
+3 DESTINATION SELECTOR 52]X x| +2
1 1
+1 DESTINATION OFFSETyso [
L
15 7 1]
231923-13

*Must be set to 0 for compatibility with 80386 (X is don't care)

intal.

Gate Descriptor Fields

Name Value Description
4 -Call Gate
5 ~Task Gate
TYPE 6 ~Interrupt Gate
7 ~Trap Gate
P 0 -Descriptor Contents are not
valid
1 -Descriptor Contents are
valid
DPL 0-3 Descriptor Privilege Level
WORD Number of words to copy
COUNT 0-31 | from callers stack to called

procedures stack. Only used
with call gate.

Selector to the target code
segment (Call, Interrupt or

Trap Gate)

Selector to the target task

state segment (Task Gate)

Entry point within the target

DESTINATION | 16-bit
SELECTOR | selector

DESTINATION | 16-bit

OFFSET offset
Figure 13. Gate Descriptor Format

code segment

Figure 13 shows the format of the gate descriptors.
The descriptor contains a destination pointer that
points to the descriptor of the target segment and
the entry point offset. The destination selector in an
interrupt gate, trap gate, and call gate must refer to a
code segment descriptor. These gate descriptors
contain the entry point to prevent a program from
constructing and using an illegal entry point. Task

80C286

scriptor privilege level and specifies when this de-
scriptor may be used by a task (refer to privilege
discussion below). Bit 4 must equal 0 to indicate a
system control descriptor. The type field specifies
the descriptor type as indicated in Figure 13.

SEGMENT DESCRIPTOR CACHE REGISTERS

A segment descriptor cache register is assigned to
each of the four segment registers (CS, SS, DS, ES).
Segment descriptors are automatically loaded
(cached) into a segment descriptor cache register
(Figure 14) whenever the associated segment regis-
ter is loaded with a selector. Only segment descrip-
tors may be loaded into segment descriptor cache
registers. Once loaded, all references to that seg-
ment of memory use the cached descriptor informa-
tion instead of reaccessing the descriptor. The de-
scriptor cache registers are not visible to programs.
No instructions exist to store their contents. They
only change when a segment register is loaded.

SELECTOR FIELDS

A protected mode selector has three fields: descrip-
tor entry index, local or global descriptor table indi-
cator (T1), and selector privilege (RPL) as shown in
Figure 15. These fields select one of two memory
based tables of descriptors, select the appropriate
table entry and allow highspeed testing of the selec-
tor’s privilege attribute (refer to privilege discussion
below).

gates may only refer to a task state segment. Since SEEcToR =
task gates invoke a task switch, the destination off- l Ly oex l] I".’L]
set is not used in the task gate. s 3210
Exception 13 is generated when the gate is used if a ":s RE:::TED INORCATES SELECTOR PRIVAEOE
destination selector does not refer to the correct de- PRIVILEGE | LEVEL DESIRED
scriptor type. The word count field is used in the call gy
gate descriptor to indicate the number of parameters " — T = 0 USE OLOBAL DESCHTOM TABLE
(0-31 words) to be automatically copied from the INDICATOR @
caller's stack to the stack of the called routine when ™ " " pm oA peseRTORTABLE
a control transfer changes privilege levels. The word
count field is not used by any other gate descriptor. -3 | INDEX SELECT DESCRIPTOR ENTRY IN TABLE
The access byte format is the same for all gate de- 231923-15
scriptors. P = 1 indicates that the gate contents are Figure 15. Selector Flelds
valid. P = 0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
PROGRAM VISIBLE r —————————— PR -o;u_u ;WTSI:LE— _________ -}
SEGMENT SELECTORS : mnm!“ SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE :
cs ¥ I
[| 1
= ! !
€s 1 t
1% : “ «“o ¥ %15 :
SEGMENT REGISTERS] SEGMENT DESCRIPTOR CACHE REGISTERS]
(LOADED BY PROGRAM) L {AUTOMATICALLY LOADED BY CPU) _]
—————————————————————————— 231923-14
Figure 14. Descriptor Cache Registers
2-17

80C286

LOCAL AND GLOBAL DESCRIPTOR TABLES

Two tables of descriptors, called descriptor tables,
contain all descriptors accessible by a task at any
given time. A descriptor table is a linear array of up
to 8192 descriptors. The upper 13 bits of the selec-
tor value are an index into a descriptor table. Each
table has a 24-bit base register to locate the descrip-
tor table in physical memory and a 16-bit limit regis-
ter that confine descriptor access to the defined lim-
its of the table as shown in Figure 16. A restartable
exception (13) will occur if an attempt is made to
reference a descriptor outside the table limits.

One table, called the Global Descriptor table (GDT),
contains descriptors available to all tasks. The other
table, called the Local Descriptor Table (LDT), con-
tains descriptors that can be private to a task. Each
task may have its own private LDT. The GDT may
contain all descriptor types except interrupt and trap
descriptors. The LDT may contain only segment,
task gate, and call gate descriptors. A segment can-
not be accessed by a task if its segment descriptor
does not exist in either descriptor table at the time of
access.

A, MEMORY -~

CPU o

LoT,

GDY
[§

:}
It

LDY,

\
.

~
~

231923-16

Figure 16. Local and Global
Descriptor Table Definition

The LGDT and LLDT instructions load the base and
limit of the global and local descriptor tables. LGDT
and LLDT are privileged, i.e. they may only be exe-
cuted by trusted programs operating at level 0. The
LGDT instruction loads a six byte field containing the
16-bit table limit and 24-bit physical base address of
the Global Descriptor Table as shown in Figure 17.
The LDT instruction loads a selector which refers to
a Local Descriptor Table descriptor containing the

2-18

intgl.

base address and limit for an LDT, as shown in Fig-
ure 12.

7 o7 o

+5 | INTEL RESERVED® I BASE2- 16 +4

+3 BASE1s—o +2
1

+1 LT 1s-0 0
1

1% .7 o

. 231923-17
*Must be set to 0 for compatibility with 80386.

Figure 17. Global Descriptor Table and
Interrupt Descriptor Table Data Type

INTERRUPT DESCRIPTOR TABLE

The protected mode 80C286 has a third descriptor
table, called the Interrupt Descriptor Table (IDT)
(see Figure 18), used to define up to 256 interrupts.
It may contain only task gates, interrupt gates and

" trap gates. The IDT (interrupt Descriptor Table) has

a 24-bit physical base and 16-bit limit register in the
CPU. The privileged LIDT instruction loads these
registers with a six byte value of identical form to
that of the LGDT instruction (see Figure 17 and Pro-
tected Mode Initialization).

[-~
,.: MEMORY ’1:
GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1
- . INTERRUPT
DESCRWPTOR
oy { . TABLE
i : GATE FOR on
or L | INTERRUPT #1
GATE FOR
INTERRUPT #0
(DT BASE
= <X ~
~ ~
231923-18

Figure 18. Interrupt Descriptor Table Definition

References to IDT entries are made via INT instruc-
tions, external interrupt vectors, or exceptions. The
IDT must be at least 256 bytes in size to allocate
space for all reserved interrupts.

Privilege

The 80C286 has a four-level hierarchical privilege
system which controls the use of privileged instruc-
tions and access to descriptors (and their associat-
ed segments) within a task. Four-level privilege, as
shown in Figure 19, is an extension of the user/su-
pervisor mode commonly found in minicomputers.
The privilege levels are numbered 0 through 3.

NOTE: PL BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL
INCREASES

231923-19

Figure 19

Level 0 is the most privileged level. Privilege levels
provide protection within a task. (Tasks are isolated
by providing private LDT’s for each task.) Operating
system routines, interrupt handlers, and other sys-
tem software can be included and protected within
the virtual address space of each task using the four
levels of privilege. Each task in the system has a
separate stack for each of its privilege levels.

Tasks, descriptors, and selectors have a privilege
level attribute that determines whether the descrip-
tor may be used. Task privilege effects the use of
instructions and descriptors. Descriptor and selector
privilege only effect access to the descriptor.

TASK PRIVILEGE

A task always executes at one of the four privilege
levels. The task privilege level at any specific instant
is called the Current Privilege Level (CPL) and is de-
fined by the lower two bits of the CS register. CPL
cannot change during execution in a single code
segment. A task’s CPL may only be changed by con-
trol transfers through gate descriptors to a new code
segment (See Control Transfer). Tasks begin exe-
cuting at the CPL value specified by the code seg-
ment selector within TSS when the task is initiated
via a task switch operation (See Figure 20). A task
executing at Level 0 can access all data segments
defined in the GDT and the task’s LDT and is con-
sidered the most trusted level. A task executing a
Level 3 has the most restricted access to data and is
considered the least trusted level.

DESCRIPTOR PRIVILEGE

Descriptor privilege is specified by the Descriptor
Privilege Level (DPL) field of the descriptor access

80C286

byte. DPL specifies the least trusted task privilege
level (CPL) at which a task may access the descrip-
tor. Descriptors with DPL = 0 are the most protect-
ed. Only tasks executing at privilege level 0
(CPL = 0) may access them. Descriptors with DPL
= 3 are the least protected (i.e. have the least re-
stricted access) since tasks can access them when
CPL = 0, 1, 2, or 3. This rule applies to all descrip-
tors, except LDT descriptors.

SELECTOR PRIVILEGE

Selector privilege is specified by the Requested Priv-
ilege Level (RPL) field in the least significant two bits
of a selector. Selector RPL. may establish a less
trusted privilege level than the current privilege level
for the use of a selector. This level is called the
task's effective privilege level (EPL). RPL can only
reduce the scope of a task’s access to data with this
selector. A task’s effective privilege is the numeric
maximum of RPL and CPL. A selector with RPL. = 0
imposes no additional restriction on its use while a
selector with RPL = 3 can only refer to segments at
privilege Level 3 regardless of the task’s CPL. RPL
is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed
to use data at a more privileged level than the caller
(refer to pointer testing instructions).

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a seg-
ment involves the type of segment to be accessed,
the instruction used, the type of descriptor used and
CPL, RPL, and DPL. The two basic types of segment
accesses are control transfer (selectors loaded into
CS) and data (selectors loaded into DS, ES or SS).

DATA SEGMENT ACCESS

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readabie code
segment descriptor. The CPL of the task and the
RPL of the selector must be the same as or more
privileged (numerically equal to or iower than) than
the descriptor DPL. In general, a task can only ac-
cess data segments at the same or less privileged
levels than the CPL or RPL (whichever is numerically
higher) to prevent a program from accessing data it
cannot be trusted to use.

An exception to the rule is a readable conforming
code segment. This type of code segment can be
read from any privilege level.

If the privilege checks fail (e.g. DPL is numerically
less than the maximum of CPL and RPL) or an incor-
rect type of descriptor is referenced (e.g. gate de-

2-19

80C286

scriptor or execute only code segment) exception 13
occurs. If the segment is not present, exception 11
is generated.

Instructions that load selectors into SS must refer to
data segment descriptors for writable data seg-
ments. The descriptor privilege (DPL) and RPL must
equal CPL. All other descriptor types or a privilege
level! violation will cause exception 13. A not present
fault causes exception 12.

CONTROL TRANSFER

Four types of control transfer can occur when a se-
lector is loaded into CS by a control transfer opera-
tion (see Table 10). Each transfer type can only oc-
cur if the operation which loaded the selector refer-
ences the correct descriptor type. Any violation of
these descriptor usage rules (e.g. JMP through a call
gate or RET to a Task State Segment) will cause
exception 13.

The ability to reference a descriptor for control trans-
fer is also subject to rules of privilege. A CALL or
JUMP instruction may only reference a code seg-
ment descriptor with DPL equal to the task CPL or a
conforming segment with DPL of equal or greater
privilege than CPL. The RPL of the selector used to
reference the code descriptor must have as much
privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal
to or less privileged than the task CPL. The selector
loaded into CS is the return address from the stack.
After the return, the selector RPL is the task’s new
CPL. If CPL changes, the old stack pointer is popped
after the return address.

When a JMP or CALL references a Task State Seg-
ment descriptor, the descriptor DPL must be the
same or less privileged than the task’s CPL. Refer-

intal.

ence to a valid Task State Segment descriptor caus-
es a task switch (see Task Switch Operation). Refer-
ence to a Task State Segment descriptor at a more
privileged fevel than the task’s CPL generates ex-
ception 13.

When an instruction or interrupt references a gate
descriptor, the gate DPL must have the same or less
privilege than the task CPL. If DPL is at a more privi-
leged level than CPL, exeception 13 occurs. If the
destination selector contained in the gate refer-
ences a code segment descriptor, the code seg-
ment descriptor DPL must be the same or more priv-
ileged than the task CPL. If not, Exception 13 is is-
sued. After the control transfer, the code segment
descriptors DPL is the task’s new CPL. if the desti-
nation selector in the gate references a task state
segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

— JMP or CALL direct to a code segment (code
segment descriptor) can only be to a conforming
segment with DPL of equal or greater privilege
than CPL or a non-conforming segment at the
same privilege level.

— interrupts within the task or calls that may
change privilege levels, can only transfer control
through a gate at the same or a less privileged
level than CPL to a code segment at the same or
more privileged level than CPL.

— return instructions that don’t switch tasks can
only return control to a code segment at the
same or less privileged level.

— task switch can be performed by a call, jump or
interrupt which references either a task gate or
task state segment at the same or less privileged
level.

Table 10. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types :;:?:l:;:; De;z:r.tor
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment | GDT/LDT
Intersegment to the same or higher privilege level Interrupt | CALL Call Gate GDT/LDT
within task may change CPL. Interrupt Instruction, Trap or IDT
Exception, External Interrupt
Interrupt Gate
Intersegment to a lower privilege level (changes task CPL) RET, IRET* Code Segment [GDT/LDT
CALL, JMP Task State GDT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET**
Interrupt instruction,
Exception, External Task Gate IoT
Interrupt

*NT (Nested Task bit of flag word) = 0
**NT (Nested Task bit of flag word) = 1

2-20

intel.

PRIVILEGE LEVEL CHANGES

Any control transfer that changes CPL within the
task, causes a change of stacks as part of the oper-
ation. Initial values of SS:SP for privilege levels 0, 1,
and 2 are kept in the task state segment (refer to
Task Switch Operation). During a JMP or CALL con-
trol transfer, the new stack pointer is loaded into the
88 and SP registers and the previous stack pointer
is pushed onto the new stack.

When returning to the original privilege level, its
stack is restored as part of the RET or IRET instruc-
tion operation. For subroutine calls that pass param-
eters on the stack and cross privilege levels, a fixed
number of words, as specified in the gate, are cop-
ied from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

Protection

The 80C286 includes mechanisms to protect critical
instructions that affect the CPU execution state (e.g.
HLT) and code or data segments from improper us-
age. These protection mechanisms are grouped into
three forms:

Restricted usage of segments (e.g. no write al-
lowed to read-only data segments). The only seg-
ments available for use are defined by descrip-
tors in the Local Descriptor Table (LDT) and
Global Descriptor Table (GDT).

Restricted access to segments via the rules of
privilege and descriptor usage.

Privileged instructions or operations that may
only be executed at certain privilege levels as de-
termined by the CPL and I/O Privilege Level
(IOPL). The IOPL is defined by bits 14 and 13 of
the flag word.

These checks are performed for all instructions and
can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will resuit in an ex-
ception. A not-present exception related to the stack
segment causes exception 12.

The IRET and POPF instructions do not perform
some of their defined functions if CPL is not of suffi-
cient privilege (numerically small enough). Precisely
these are:

¢ The IF bit is not changed if CPL > IOPL.

¢ The IOPL field of the flag word is not changed if
CPL > 0.

No exceptions or other indication are given when
these conditions occur.

80C286

Table 11. Segment Register Load Checks

Exception

Error Description Number

Descriptor table limit exceeded 13

Segment descriptor not-present 110r12

Privilege rules violated 13

Invalid descriptor/segment type seg-
ment register load:
—Read only data segment load to
SS
—Special Control descriptor load to
DS, ES, SS 13
—Execute only segment load to
DS, ES, 88
—Data segment load to CS
—Read/Execute code segment

load to SS

Table 12. Operand Reference Checks

Exception
Error Description Number

Write into code segment 13

Read from execute-only code

segment 13

Write to read-only data segment 13
Segment limit exceeded? 120r13

NOTE:

Carry out in offset calculations is ignored.

Table 13. Privileged instruction Checks

Exception
Error Description Number
CPL # 0 when executing the following
instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW,
CTS, HLT
CPL > IOPL when executing the fol-
lowing instructions: 13
INS, IN, OUTS, OUT, STi, CLI,
LOCK
EXCEPTIONS

The 80C286 detects several types of exceptions
and interrupts, in protected mode (see Table 14).
Most are restartable after the exceptional condition
is removed. Interrupt handlers for most exceptions
can read an error code, pushed on the stack after
the return address, that identifies the selector in-
volved (0 if none). The return address normally
points to the failing instruction, including all leading
prefixes. For a processor extension segment over-
run exception, the return address will not point at the
ESC instruction that caused the exception; however,
the processor extension registers may contain the
address of the failing instruction.

2-21

n
80C286 |nte|
®
Table 14. Protected Mode Exceptions
Return
Always Error
Interrupt Function Address Restart- Code
Vector At Falling able? on Stack?
Instruction?
8 Double exception detected Yes No2 Yes
9 Processor extension segment overrun No No2 No
10 Invalid task state segment Yes Yes Yes
iA] Segment not present Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yes! Yes
13 General protection Yes No2 Yes
NOTE:

1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the

saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted

under those conditions.

These exceptions indicate a violation to privilege
rules or usage rules has occurred. Restart is gener-
ally not attempted under those conditions.

All these checks are performed for all instructions
and can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception causes exception
11 or 12 and is restartable.

Special Operations

TASK SWITCH OPERATION

The 80C286 provides a built-in task switch operation
which saves the entire 800286 execution state (reg-
isters, address space, and a link to the previous
task), loads a new execution state, and commences
execution in the new task. Like gates, the task
switch operation is invoked by executing an inter-
segment JMP or CALL instruction which refers to a
Task State Segment (TSS) or task gate descriptor in
the GDT or LDT. An INT n instruction, exception, or
external interrupt may also invoke the task switch
operation by selecting a task gate descriptor in the
associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure
20) containing the entire 80C286 execution state
while a task gate descriptor contains a TSS selector.
The limit field of the descriptor must be >0028(H).

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80C286 called the Task Register (TR). This register
contains a selector referring to the task state seg-
ment descriptor that defines the current TSS. A hid-
den base and limit register associated with TR are
loaded whenever TR is loaded with a new selector.

2-22

The IRET instruction is used to return control to the
task that called the current task or was interrupted.
Bit 14 in the flag register is called the Nested Task
(NT) bit. It controls the function of the IRET instruc-
tion. If NT = 0, the IRET instruction performs the
regular current task by popping values off the stack;
when NT = 1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a
task switch, the old (except for case of JMP) and
new TSS will be marked busy and the back link field
of the new TSS set to the oild TSS selector. The NT
bit of the new task is set by CALL or INT initiated
task switches. An interrupt that does not cause a
task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing
the descriptor type field from Type 1 to Type 3. Use
of a selector that references a busy task state seg-
ment causes Exception 13.

PROCESSOR EXTENSION CONTEXT
SWITCHING

The context of a processor extension (such as the
80287 numerics processor) is not changed by the
task switch operation. A processor extension con-
text need only be changed when a different task at-
tempts to use the processor extension (which still
contains the context of a previous task). The
80C286 detects the first use of a processor exten-
sion after a task switch by causing the processor
extension not present exception (7). The interrupt
handler may then decide whether a context change
is necessary.

Whenever the B0C286 switches tasks, it sets the
Task Switched (TS) bit of the MSW. TS indicates
that a processor extension context may belong to a
different task than the current one. The processor
extension not present exception (7) will occur when
attempting to execute an ESC or WAIT instruction if
TS =1 and a processor extension is present (MP =1

in MSW).

intgl.

POINTER TESTING INSTRUCTIONS

The 80C286 provides several instructions to speed
pointer testing and consistency checks for maintain-
ing system integrity (see Table 15). These instruc-

80C286

tions use the memory management hardware to ver-
ify that a selector value refers to an appropriate seg-

ment without risking an exception. A condition flag
(ZF) indicates whether use of the selector or seg-
ment will cause an exception.

~ Y]
ﬂf’ Y
cPy INTEL RESERVED
Rese Tvee | pescaiPmion
TASK REQISTER 0
svavem PIP|O|TYPE BasEn 1 AN AVAILABLE TASK STATE
™ - — - 4~ SEGMENT ALl SEGMENT. MAY BE USED AS
DEsCRIPTOR THE DESTINATION OF A TASK
r 18 ° BASEs o hl \TION.
————————— - i |
| procrammvisisLe | | 3 A BUSY TASK STATE SEGMENT.
| 1 o) LIMITyg o CANNOT BE USED AS THE
) " ' ! DESTINATION OF A TASK
LT b 1 SWITCH.
i 11 a
' I —————— e - ———— oy —
BASE
| i A A
[] } " I~
[PSR (R ir BYTE
15 o] oFrger
TASK LOT SELECTOR @
DS SELECTOR “© P_|DEscriPTion
5 SELECTOR » 1 _{BASE AND LIMIT FIELDS ARE VALID
0 [SEGMENT IS NOT PRESENT N
CS$ SELECTOR 2 MEMORY, BASE AND LIMT ARE NOT
ES SELECTOR u
o 2
8 2
[28 | CURRENT
} TASK
s 2 [sTATE
BX u
TASK DX 2
L STATE
SEGMENT CX 20
AX 1
FLAG WORD "
(ENTRY PONT) 14)
SSFOR CPL 2 12
$P FORCPL 2 10
88 FOR CPL. 1 .) WITIAL
SP FOR CPL 1 e[FOoRCPLO12
88 FOR CPL O 4
$P FOR CPL O 2
BACK LINK SELECTORTOTSS | 0
2 v ~
231923-20
Figure 20. Task State Segment and TSS Registers
2-23

80C286

Table 15. 80C286 Pointer Test Instructions
Instruction

Operands Function

ARPL Selector,

Register

Adjust Requested Privilege
Level: adjusts the RPL of
the selector to the numeric
maximum of current selec-
tor RPL value and the RPL
value in the register. Set
zero flag if selector RPL
was changed by ARPL.

VERR Selector VERify for Read: sets the
zero flag if the segment re-
ferred to by the selector

can be read.

VERIfy for Write: sets the
zero flag if the segment re-
‘ferred to by the selector
can be written.

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

VERW Selector

LSL Register,
Selector

LAR Register, Load Access Rights: reads
Selector the descriptor access
rights byte into the register
if privilege rules allow. Set
zero flag if successful.

DOUBLE FAULT AND SHUTDOWN

If two separate exceptions are detected during a sin-
gle instruction execution, the 80C286 performs the
double fault exception (8). If an execution occurs
during processing of the double fault exception, the
80C286 will enter shutdown. During shutdown no
further instructions or exceptions are processed. Ei-
ther NMI (CPU remains in protected mode) or RE-
SET (CPU exits protected mode) can force the
80C286 out of shutdown. Shutdown is externally sig-
nalled via a HALT bus operation with A1 LOW.

PROTECTED MODE INITIALIZATION

The 80C286 initially executes in real address mode
after RESET. To allow initialization code to be
placed at the top of physical memory, Agg-Apg will
be HIGH when the 80C286 performs memory refer-
ences relative to the CS register until CS is changed.
Az3-Agp will be zero for references to the DS, ES, or
8S segments. Changing CS in real address mode
will force Apg-Aog LOW whenever CS is used again.
The initial CS:IP value of FOO0:FFFO provides 64K
bytes of code space for initialization code without
changing CS.

Protected mode operation requires several registers
to be initialized. The GDT and IDT base registers
must refer to a valid GDT and IDT. After executing
the LMSW instruction to set PE, the 80C286 must

2-24

3
intgl.
immediately execute an intra-segment JMP instruc-

tion to clear the instruction queue of instructions de-
coded in real address mode.

To force the 80C286 CPU registers to match the
initial protected mode state assumed by software,
execute a JMP instruction with a selector referring to
the initial TSS used in the system. This will load the
task register, local descriptor table register, segment
registers and initial general register state. The TR
should point at a valid TSS since any task switch
operation involves saving the current task state.

SYSTEM INTERFACE

The 80C286 system interface appears in two forms:
a local bus and a system bus. The local bus consists
of address, data, status, and control signals at the
pins of the CPU. A system bus is any buffered ver-
sion of the local bus. A system bus may also differ
from the local bus in terms of coding of status and
control lines and/or timing and loading of signals.
The 80C286 family includes several devices to gen-
erate standard system buses such as the IEEE 796
standard MULTIBUS.

Bus Interface Signals and Timing

The 80C286 microsystem local bus interfaces the
80C286 to local memory and I/O components. The
interface has 24 address lines, 16 data lines, and 8
status and control signals.

The 80C286 CPU, 82C284 clock generator, 82C288
bus controller, transceivers, and latches provide a
buffered and decoded system bus interface. The
82C284 generates the system clock and synchroniz-
es READY and RESET. The 82C288 converts bus
operation status encoded by the 80C286 into com-
mand and bus control signals. These components
can provide the timing and electrical power drive lev-
els required for most system bus interfaces including
the Multibus.

Physical Memory and 1/0 Interface

A maximum of 16 megabytes of physical memory
can be addressed in protected mode. One mega-
byte can be addressed in real address mode. Memo-
ry is accessible as bytes or words. Words consist of
any two consecutive bytes addressed with the least
significant byte stored in the lowest address.

Byte transfers occur on either half of the 16-bit local
data bus. Even bytes are accessed over D7-Dyp
while odd bytes are transferred over D15-Dg. Even-
addressed words are transferred over Dy5-Dg in
one bus cycle, while odd-addressed word require
two bus operations. The first transfers data on
D45-Dg, and the second transfers data on D7-Do.
Both byte data transfers occur automatically, trans-
parent to software.

intal.

Two bus signals, Ag and BHE, control transfers over
the lower and upper halves of the data bus. Even
address byte transfers are indicated by Ag LOW and
BHE HIGH. Odd address byte transfers are indicat-
ed by Ap HIGH and BHE LOW. Both Ag and BHE are
LOW for even address word transfers.

The I/0 address space contains 64K addresses in
both modes. The I/0 space is accessible as either
bytes or words, as is memory. Byte wide peripheral
devices may be attached to either the upper or lower
byte of the data bus. Byte-wide {/O devices attached
to the upper data byte (D15-Dg) are accessed with
odd I/O addresses. Devices on the lower data byte
are accessed with even 1/0 addresses. An interrupt
controller such as Intel's 82C59A-2 must be con-
nected to the lower data byte (D;-Dg) for proper
return of the interrupt vector.

Bus Operation

The 80C286 uses a double frequency system clock
(CLK input) to control bus timing. All signals on the
local bus are measured relative to the system CLK
input. The CPU divides the system clock by 2 to pro-
duce the internal processor clock, which determines
bus state. Each processor clock is composed of two
system clock cycles named phase 1 and phase 2.
The 82C284 ciock generator output (PCLK) identi-
fies the next phase of the processor clock. (See Fig-
ure 21.)

[ONE PROCESSOR CLOCK CYCLE ————»
[————————— ONE BUS T STATE—————»
1

[«+— OF PROCESSOR OF ::0‘:‘5:80“
OF —a+<—— —
CLOCK CYCLE CLOCK CYCLE

«TN_/ _/
e e N 7o

{J
CLK CYCLE
231923-21

Figure 21. System and Processor
Clock Relationships

Six types of bus operations are supported; memory
read, memory write, /0 read, I/O write, interrupt ac-
knowledge, and halt/shutdown. Data can be trans-
ferred at a maximum rate of one word per two proc-
essor clock cycles.

The 80C286 bus has three basic states: idle (T),
send status (Tg), and perform command (T¢). The
80C286 CPU also has a fourth local bus state called
hold (Ty). Ty indicates that the 80C286 has surren-
dered control of the local bus to another bus master
in response to a HOLD request.

Each bus state is one processor clock iong. Figure
22 shows the four 80C286 local bus states and al-
lowed transitions.

80C286

@ @
READY ¢ NEW CYCLE

231923-22

Figure 22. 80C286 Bus States

Bus States

The idle (T;) state indicates that no data transfers
are in progress or requested. The first active state
Ts is signaled by status line ST or S0 going LOW
and identifying phase 1 of the processor clock. Dur-
ing Ts, the command encoding, the address, and
data (for a write operation) are available on the
80C286 output pins. The 82C288 bus controller de-
codes the status signals and generates Multibus
compatible read/write command and local trans-
ceiver control signals.

After Tg, the perform command (T¢) state is en-
tered. Memory or /0O devices respond to the bus
operation during Tg, either transferring read data to
the CPU or accepting write data. T states may be
repeated as often as necessary to assure sufficient
time for the memory or I/0 device to respond. The
READY signal determines whether T is repeated. A
repeated T state is called a wait state.

During hold (Tp), the 80C286 will float* all address,
data, and status output pins enabling another bus
master to use the local bus. The 80C286 HOLD in-
put signal is used to place the 80C286 into the Ty
state. The 80C286 HLDA output signal indicates that
the CPU has entered Tj,.

Pipelined Addressing

The 80C286 uses a local bus interface with pipe-
lined timing to allow as much time as possible for
data access. Pipelined timing allows a new bus oper-
ation to be initiated every two processor cycles,
while allowing each individual bus operation to last
for three processor cycles.

The timing of the address outputs is pipelined such
that the address of the next bus operation becomes
available during the current bus operation. Or in oth-
er words, the first clock of the next bus operation is
overlapped with the last clock of the current bus op-
eration. Therefore, address decode and routing logic
can operate in advance of the next bus operation.

*NOTE: See section on bus hold circuitry.

2-25

2

]
80C286 "Ttel ®
|« READ BUS CYCLEN READBUSCYCLEN +1— —»
K ¥ B Tlsn-'”; ﬂ‘ Ll T|c 3 1 1}Ia » i » ‘;" w2
CLK
PROC CLK 1 [| I /
|+———— 2 PCLK CYCLE TRANSFER -t —— 2PCLK CYCLE TRANSFER
41 25 CLOCK CYCLE AMESSI:O DATA VALIO
A (I YR] s sonmen] X
§0 o §1 C K» \/
READY S—— o\ f : -\ /
vt oo emonsoeoooo e S
VALID READ
DATA (N) OATA (M +1)
PIPELIMING: VALID ADDRESS (N + 1) AMMLABLE IN LAST PHASE OF BUS CYCLE (N).
231923-23

Figure 23. Basic Bus Cycle

External address latches may hold the address sta-
ble for the entire bus operation, and provide addi-
tional AC and DC buffering.

The 80C286 does not maintain the address of the
current bus operation during all T, states. Instead,
the address for the next bus operation may be emit-
ted during phase 2 of any T¢. The address remains
valid during phase 1 of the first T to guarantee hold
time, relative to ALE, for the address latch inputs.

Bus Control Signals

The 82C288 bus controlier provides control signals;
address latch enable (ALE), Read/Write commands,
data transmit/receive (DT/R), and data enable
(DEN) that control the address latches, data trans-
ceivers, write enable, and output enable for memory
and 1/0 systems.

The Address Latch Enable (ALE) output determines
when the address may be latched. ALE provides at
least one system CLK period of address hold time
from the end of the previous bus operation until the
address for the next bus operation appears at the
latch outputs. This address hold time is required to
support MULTIBUS and common memory systems.

The data bus transceivers are controlled by 82C288
outputs Data Enable (DEN) and Data Transmit/Re-
ceive (DT/R). DEN enables the data transceivers;
while DT/R controls tranceiver direction. DEN and
DT/R are timed to prevent bus contention between
the bus master, data bus transceivers, and system
data bus transceivers.

2-26

Command Timing Controis

Two system timing customization options, command
extension and command delay, are provided on the
80C286 local bus.

Command extension allows additional time for exter-
nal devices to respond to a command and is analo-
gous to inserting wait states on the 8086. External
logic can control the duration of any bus operation
such that the operation is only as long as necessary.
The READY input signal can extend any bus opera-
tion for as long as necessary.

Command delay allows an increase of address or
write data setup time to system bus command active
for any bus operation by delaying when the system
bus command becomes active. Command delay is
controlled by the 82C288 CMDLY input. After Tg,
the bus controller samples CMDLY at each failing
edge of CLK. if CMDLY is HIGH, the 82C288 will not
activate the command signal. When CMDLY is LOW,
the 82C288 will activate the command signal. After
the command becomes active, the CMDLY input is
not sampled.

When a command is delayed, the available re-
sponse time from command active to return read
data or accept write data is less. To customize sys-
tem bus timing, an address decoder can determine
which bus operations require delaying the com-
mand. The CMDLY input does not affect the timing
of ALE, DEN, or DT/R.

80C286

| READ BUS CYCLEN 1-

<——13———-—+—— Yc—u,q—-—'lc—.q—'r,___.*‘___ Te— o
ot } 2 - [- * | @ wl | L] * | "

whoonn /7 [XKL

ALE

o) |
o ffé D

231923-24

Figure 24. CMDLY Controls the Leading Edge of Command Signal

Figure 24 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system
CLKs for cycle N-1 and no delay for cycle N, and
example 2 shows delaying the read command one
system CLK for cycle N-1 and one system CLK de-
lay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the 80C286 bus alter-
nates between the status and command states. The
bus status signals become inactive after Tg so that
they may correctly signal the start of the next bus
operation after the completion of the current cycle.
No external indication of T, exists on the 80C286
local bus. The bus master and bus controller enter
T, directly after T5 and continue executing T, cycles
until terminated by READY.

READY Operation

The current bus master and 82C288 bus controlier
terminate each bus operation simultaneously to
achieve maximum bus operation bandwidth. Both
are informed in advance by READY active (open-
collector output from 82C284) which identifies the
last T¢ cycle of the current bus operation. The bus
master and bus controller must see the same sense

of the READY signal, thereby requiring READY be
synchronous to the system clock.

Synchronous Ready

The 82C284 clock generator provides READY syn-
chronization from both synchronous and asynchro-
nous sources (see Figure 25). The synchronous
ready input (SRDY) of the clock generator is sam-
pled with the falling edge of CLK at the end of phase
1 of each T. The state of SRDY is then broadcast to
the bus master and bus controller via the READY
output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to meet the
82C284 SRDY setup and hold time requirements.
But the 82C284 asynchronous ready input (ARDY) is
designed to accept such signals. The ARDY input is
sampled at the beginning of each Tg cycle by
82C284 synchronization logic. This provides one
system CLK cycle time to resolve its value before
broadcasting it to the bus master and bus controller.

2-27

80C286

An - Ay VALID ADDR

REXDY (SEENOTE 1) B

{SEENOTE2) 7\

£ AL VLVLRVLULRURURRALUURARRUR VARV RERRA ARV / 1IN,

NOTES:
1. SRDYEN is active low.

3. ARDYEN is active low.

2. If SRDYEN is high, the state of SRDY will no affect READY.

(SEENOTE3)

231923-25

Figure 25. Synchronous and Asynchronous Ready

ARDY or ARDYEN must be HIGH at the end of Ts.
ARDY cannot be used to terminate bus cycle with no
wait states.

Each ready input of the 82C284 has an enable pin
(SRDYEN and ARDYEN) to select whether the cur-
rent bus operation will be terminated by the synchro-
nous or asynchronous ready. Either of the ready in-
puts may terminate a bus operation. These enable
inputs are active low and have the same timing as
their respective ready inputs. Address decode logic
usually selects whether the current bus operation
should be terminated by ARDY or SRDY.

Data Bus Control

Figures 26, 27, and 28 show how the DT/R, DEN,
data bus, and address signals operate for different
combinations of read, write, and idle bus operations.
DT/R goes active (LOW) for a read operation. DT/R
remains HIGH before, during, and between write op-
erations.

2-28

The data bus is driven with write data during the
second phase of Tg. The delay in write data timing
allows the read data drivers, from a previous read
cycle, sufficient time to enter 3-state OFF* before
the 80C286 CPU begins driving the local data bus
for write operations. Write data will always remain
valid for one system clock past the last T, to provide
sufficient hold time for Multibus or other similar
memory or /O systems. During write-read or write-
idle sequences the data bus enters 3-state OFF*
during the second phase of the processor cycle after
the last T¢. In a write-write sequence the data bus
does not enter 3-state OFF* between T and Ts.

Bus Usage

The 80C286 local bus may be used for several func-
tions: instruction data transfers, data transfers by
other bus masters, instruction fetching, processor
extension data transfers, interrupt acknowledge, and
hait/shutdown. This section describes local bus ac-
tivities which have special signals or requirements.

*NOTE: See section on bus hold circuitry.

in'tel . 80C286

VALID ADDR / X((((/ VALIDTDDR

231923-26

Figure 26. Back to Back Read-Write Cycles

. L . MFYCI.I READ CYCLE
7 a | o 1 a | @« ﬁc - o '? - | PR P ? P

231923-27

Figure 27. Back to Back Write-Read Cycles

I 2-29

]
80C286
intgl.
WRITE CYCLE N-1 WRITE CYCLEN _L
‘*’f"}‘—a N S T AT M Sy R ey T ey
cL
Az-Ro W VALID Aomf N-t \ W] uuomoéu
5051
pd
01500 mm = e = -~ (/ VALID DATT' N-1 VALIé DATA N)})})— -
wwrc
DEN ‘A
VOH
oTR
231923-28
Figure 28. Back to Back Write-Write Cycles
HOLD and HLDA Lock will be active for the first and subsequent cy-

HOLD AND HLDA allow another bus master to gain
control of the local bus by placing the 80C286 bus
into the Ty, state. The sequence of events required
to pass control between the 80C286 and another
local bus master are shown in Figure 29.

In this example, the 80C286 is initially in the T, state
as signaled by HLDA being active. Upon ieaving Ty,
as signaled by HLDA going inactive, a write opera-
tion is started. During the write operation another
local bus master requests the local bus from the
80C286 as shown by the HOLD signal. After com-
pleting the write operation, the 80C286 performs
one T; bus cycle, to guarantee write data hold time,
then enters Ty, as signaled by HLDA going active.

The CMDLY signal and ARDY ready are used to
start and stop the write bus command, respectively.
Note that SRDY must be inactive or disabled by
SRDYEN to guarantee ARDY will terminate the cy-
cle.

HOLD must not be active during the time from the
leading edge of RESET until 34 CLKs following the
trailing edge of RESET.

Lock

The CPU asserts an active lock signal during Inter-
rupt-Acknowledge cycles, the XCHG instruction, and
during some descriptor accesses. Lock is also as-
serted when the LOCK prefix is used. The LOCK
prefix may be used with the following ASM-286 as-
sembly instructions; MOVS, INS, and OUTS. For bus
cycles other than Interrupt-Acknowledge cycles,

2-30

cles of a series of cycles to be locked. Lock will not
be shown active during the last cycle to be locked.
For the next-to-last cycle, Lock will become inactive
at the end of the first T regardless of the number of
wait-states inserted. For Interrupt-Acknowledge cy-
cles, Lock will be active for each cycle, and will be-
come inactive at the end of the first T for each cy-
cle regardless of the number of wait-states inserted.

Instruction Fetching

The 80C286 Bus Unit (BU) will fetch instructions
ahead of the current instruction being executed. This
activity is called prefetching. It occurs when the local
bus would otherwise be idle and obeys the following
rules:

A prefetch bus operation starts when at least two
bytes of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches
independent of the byte alignment of the code seg-
ment base in physical memory.

The prefetcher will perform only a byte code fetch
operation for control transfers to an instruction be-
ginning on a numerically odd physical address.

Prefetching stops whenever a control transfer or
HLT instruction is decoded by the IU and placed into
the instruction queue.

In real address mode, the prefetcher may fetch up to
6 bytes beyond the last contro! transfer or HLT in-
struction in a code segment.

i ntel o 80C286

In protected mode, the prefetcher will never cause a If the last byte of a code segment appears on an
segment overrun exception. The prefetcher stops at even physical memory address, the prefetcher will
the last physical memory word of the code segment. read the next physical byte of memory (perform a
Exception 13 will occur if the program attempts to word code fetch). The value of this byte is ignored
execute beyond the last full instruction in the code and any attempt to execute it causes exception 13.
segment.

BUS HOLD
{ BUS HOLD ACKNOWLEDGE WRTE CYCLE m
SUS CYQLE TYPR
r O'Iﬂlﬂiﬂlﬂ |o:|0||u|o‘| “l"l‘llﬂl‘tlﬂ | 2 [l lo!l
ax
(OEE NOTE §.)
= \ememe Jm
e—
_mewores) - Smore 1
g Fi-w
Agy ~ A_. {SEE NOTE 2.)
o RIS I e —
. (OEE NOTE 3.)
e ioex RIS S —.
L Oy -0y { vALD » ————————
[= < <
a _— NOT READY NOT READY mm”
ey <y S\ 2,
- READY
[I)
mvm -mn
e \ S S
VO
| -
oex)
| /T N\
TS - STATUS CYCLE
w° - (413
231923-29
NOTES:

1. Status lines are not driven by 80C286, yet remain high due to internal pullup resistors during HOLD state. See section
on bus hold circuitry.

2. Address, M/T0 and COD/INTA may start floating dunng any Tc depending on when internal 80C286 bus arbiter
decides to release bus to external HOLD. The float starts in $2 of Tc. See section on bus hold circuitry.

3. BHE and LOCK may start floating after the end of any T depending on when internal 80C286 bus arbiter decides to
release bus to external HOLD. The float starts in ¢1 of T¢. See section on bus hold circuitry.

4. The minimum HOLD to HLDA time is shown. Maximum is one Ty longer.)

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other
machine state (i.e., Interrupts, Waits, Lock, etc.).

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Syn-
chronous ready state is ignored after ready is signaled via the asynchronous input.

Figure 29. MULTIBUS Write Terminated by Asynchronous Ready with Bus Hold

I 2-31

80C286

Processor Extension Transfers

The processor extension interface uses |1/0 port ad-
dresses 00F8(H), O0OFA(H), and 00FC(H) which are
part of the 1/0 port address range reserved by intel.
An ESC instruction with Machine Status Word bits
EM = 0 and TS = 0 will perform |1/0 bus operations
to one or more of these I/0 port addresses indepen-
dent of the value of IOPL and CPL.

ESC instructions with memory references enable the
CPU to accept PEREQ inputs for processor exten-
sion operand transfers. The CPU will determine the
operand starting address and read/write status of
the instruction. For each operand transfer, two or
three bus operations are performed, one word trans-
fer with 1/0 port address 00FA(H) and one or two
bus operations with memory. Three bus operations
are required for each word operand aligned on an
odd byte address.

NOTE:
Odd-aligned numerics instructions should be avoid-
ed when using an 80C286 system running six or
more memory-write wait-states. The 80C286 can
generate an incorrect numerics address if all the
following conditions are met:

— Two floating point (FP) instructions are fetched
and in the 80C286 queue.

— The first FP instruction is any floating point store
except FSTSW AX.

— The second FP instruction is any floating point
store except FSTSW AX.

— The second FP instruction accesses memory.

— The operand of the first instruction is aligned on
an odd memory address.

— More than five wait-states are inserted during ei-
ther of the last two memory write transfers
(transferred as two bytes for odd aligned oper-
ands) of the first instruction.

The second FP instruction operand address will be
incremented by one if these conditions are met.
These conditions are most likely to occur in a multi-
master system. For a hardware solution, contact
your local Intel representative.

Ten or more command delays should not be used
when accessing the numerics coprocessor. Exces-
sive command delays can cause the 80C286 and
80287 to lose synchronization.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge se-
quence performed by the 80C286 in response to an

2-32

intgl.

INTR input. An interrupt acknowledge sequence
consists of two INTA bus operations. The first allows
a master 82C59A-2 Programmable Interrupt Control-
ler (PIC) to determine which if any of its slaves
should return the interrupt vector. An eight bit vector
is read on DO-D7 of the 80C286 during the second
INTA bus operation to select an interrupt handier
routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the
82C288 is used to enable the cascade address driv-
ers, during INTA bus operations (See Figure 30),
onto the local address bus for distribution to slave
interrupt controllers via the system address bus. The
80C286 emits the LOCK signal (active LOW) during
Ts of the first INTA bus operation. A local bus “hold”
request will not be honored until the end of the sec-
ond INTA bus operation.

Three idle processor clocks are provided by the
80C286 between INTA bus operations to aliow for
the minimum INTA to INTA time and CAS (cascade
address) out delay of the 82C59A-2. The second
INTA bus operation must always have at least one
extra T, state added via logic controlling READY.
This is needed to meet the 82C59A-2 minimum
INTA pulse width.

Local Bus Usage Priorities

The 80C286 local bus is shared among several in-
ternal units and external HOLD requests. In case of
simultaneous requests, their relative priorities are:

(Highest) Any transfers which assert LOCK either
explicitly (via the LOCK instruction prefix)
or implicitly (i.e. some segment descriptor
accesses, interrupt acknowledge se-
quence, or an XCHG with memory).

The second of the two byte bus opera-
tions required for an odd aligned word op-
erand.

The second or third cycle of a processor
extension data transfer.

Local bus request via HOLD input.

Processor extension data operand trans-
fer via PEREQ input.

Data transfer performed by EU as part of
an instruction.

(Lowest) An instruction prefetch request from BU.
The EU will inhibit prefetching two proc-
essor clocks in advance of any data
transfers to minimize waiting by EU for a
prefetch to finish.

a
lntel 80C286
®
BUS CYCLE TYPE e |[Fn MERETTT O | e ——e
[Attt vgla gl ala caluielaielag e \ a tog bt gl
CLK
$1 080
M40, COD INTA
g) e G S SRR ke
e PIID- - - === == === S G ND SESRRERE —
(SEE NOTE 1)) (SEE NOTE$)
D15 - B wnnecv;;; > """" C> ------------------ --
ON D7-D0
{SEE NOTE 2) (SEE NOTE J)
mesov WN\N 77707770000 NN L0\, (77777
NOT READY READY NOT READY READY
g ALE ’ \ ’ \
DTR \ ’ \ ’
.
231923-32
NOTES:
1. Data is ignored, upper data bus, Dg-D15, should not change state during this time.
2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA puise width.
3. Second INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width.
4. LOCK is active for the first INTA cycle to prevent a bus arbiter from releasing the bus between INTA cycles in a multi-
master system. LOCK is also active for the second INTA cycle.
5. Apa—-Ag exits 3-state OFF during ¢2 of the second Tg in the INTA cycle. See section on bus hold circuitry.
6. Upper data bus should not change state during this time.

Figure 30. Interrupt Acknowledge Sequence

During halt or shutdown, the 80C286 may service
PEREQ or HOLD requests. A processor extension
segment overrun exception during shutdown will in-

Halt or Shutdown Cycles
The 80C286 externally indicates halt or shutdown

conditions as & bus operation. These conditions oc-
cur due to a HLT instruction or multiple protection
exceptions while attempting to execute one instruc-
tion. A halt or shutdown bus operation is signalled
when S1, S0 and COD/INTA are LOW and M/ is
HIGH. A4 HIGH indicates halt, and A; LOW indi-
cates shutdown. The 82C288 bus controller does
not issue ALE, nor is READY required to terminate a
halt or shutdown bus operation.

hibit further service of PEREQ. Either NM! or RESET
will force the 80C286 out of either halt or shutdown.
An INTR, if interrupts are enabled, or a processor
extension segment overrun exception will also force
the 80C286 out of halt.

2-33

80C286

THE POWER-DOWN FEATURE OF
THE 80C286

The 80C286, unlike the HMOS part, can enter into a
power-down mode. By stopping the processor CLK,
the processor will enter a power-down mode. Once
in the power-down mode, all 80C286 outputs remain
static (the same state as before the mode was en-
tered). The 80C286 D.C. specification Igcg rates the
amount of current drawn by the processor when in
the power-down mode. When the CLK is reapplied
to the processor, it will resume execution where it
was interrupted.

In order to obtain maximum benefits from the power-
down mode, certain precautions should be taken.
When in the power-down mode, all 80C286 outputs
remain static and any output that is turned on and
remains in a HIGH condition will source current
when loaded. Best low-power performance can be
obtained by first putting the processor in the HOLD

intgl.

condition (turning off all of the output buffers), and
then stopping the processor CLK in the phase 2
state. In this condition, any output that is loaded will
source only the “Bus Hold Sustaining Current”,

When stopping the processor clock, minimum clock
high and low times cannot be violated (no glitches
on the clock line).

Violating this condition can cause the 80C286 to
erase its internal register states. Note that all inputs
to the 80C286 (CLK, HOLD, PEREQ, RESET,
READY, INTR, NMI, BUSY, and ERROR) should be
at Voo or Vsgs: any other value will cause the
80C286 to draw additional current.

When coming out of power-down mode, the system
CLK must be started with the same polarity in which
it was stopped. An example power down sequence
is shown in Figure 31.

POWER DOWN MODE

$0.51

ADDRESS
M/15,C0D/MTA

—

VALID

ADDRESS

DATA

VALID

N

WRITE DATA

—

231923-31

Figure 31. Example Power-Down Sequence

2-34

intgl.

BUS HOLD CIRCUITRY

To avoid high current conditions caused by floating
inputs to peripheral CMOS devices and eliminate the
need for pull-up/down resistors, “bus-hold” circuitry
has been used on all tri-state 80C286 outputs. See
Table A for a list of these pins and Figures Ba and
Bb for a complete description of which pins have
bus hold circuitry. These circuits will maintain the
last valid logic state if no driving source is present
(i.e., an unconnected pin or a driving source which

80C286

“resistive” type element, the associated power sup-
ply current is negligible and power dissipation is sig-
nificantly reduced when compared to the use of pas-
sive pull-up resistors.

Bus Hold Circuitry on the 80C286

Pin |Polarity Pulled to

Signal Location| when tri-stated

51, 50, PEACK, LOCK|4-6, 68 |Hi, See Figure Bb

goes to a high impedance state). To overdrive the Data Bus (Dp-D¢s) |36-51 IHi/Lo,
“bus hold" circuits, an external driver must be capa- See Figure Ba
ble of supplying the maximum “Bus Hold Overdrive” COD/INTA, M/TO 66-67 |Hi/Lo,
sink or source current at valid input voltage levels. ’ See Figure Ba
Since this “bus hold” circuitry is active and not a
Pull-Up/Pull-Down Puli-Up
OUTPUT a BOND EXTERNAL OUTPUT BOND EXTERNAL
ORIVER ¢ Pap] P DRIVER p g PAD | pw
4 Gt
A
e e s
i el 231923-51
231923-50 Figure Bb. Bus Hold Circuitry Pins 4-6, 68

Figure Ba. Bus Hold Circuitry Pins 36-51, 66-67

2-35

80C286

SYSTEM CONFIGURATIONS

The versatile bus structure of the 80C286 microsys-
tem, with a full complement of support chips, allows
flexible configuration of a wide range of systems.
The basic configuration, shown in Figure 32, is simi-
lar to an 8086 maximum mode system. It includes
the CPU plus an 82C59A-2 interrupt controller,
82C284 clock generator, and the 82C288 Bus Con-
trolier.

As indicated by the dashed lines in Figure 32, the
ability to add processor extensions is an integral fea-
ture of 80C286 microsystems. The processor exten-
sion interface allows external hardware to perform
special functions and transfer data concurrent with
CPU execution of other instructions. Full system in-
tegrity is maintained because the 80C286 supervis-
es all data transfers and instruction execution for the
processor extension.

The 80287 has all the instructions and data types of
an 8087. The 80287 NPX can perform numeric cal-
culations and data transfers concurrently with CPU
program execution. Numerics code and data have
the same integrity as ali other information protected
by the 80C286 protection mechanism.

The 80C286 can overlap chip select decoding and
address propagation during the data transfer for the
previous bus operation. This information is latched
by ALE during the middie of a Tg cycle. The latched
chip select and address information remains stable
during the bus operation while the next cycle’s ad-

2-36

]
intgl.
dress is being decoded and propagated into the sys-

tem. Decode logic can be implemented with a high
speed PROM or PAL.

The optional decode logic shown in Figure 32 takes
advantage of the overlap between address and data
of the 80C286 bus cycle to generate advanced
memory and 1O-select signals. This minimizes sys-
tem performance degradation caused by address
propagation and decode delays. In addition to se-
lecting memory and {/0, the advanced selects may
be used with configurations supporting local and
system buses to enable the appropriate bus inter-
face for each bus cycle. The COD/INTA and M/10O
signals are applied to the decode logic to distinguish
between interrupt, 1/0, code and data bus cycles.

By adding a bus arbiter, the 80C286 provides a
MULTIBUS system bus interface as shown in Figure
33. The ALE output of the 82C288 for the
MULTIBUS bus is connected to its CMDLY input to
delay the start of commands one system CLK as
required to meet MULTIBUS address and write data
setup times. This arrangement will add at least one
extra T state to each bus operation which uses the
MULTIBUS.

A second 82C288 bus controller and additional
latches and transceivers could be added to the local
bus of Figure 33. This configuration allows the
80C286 to support an on-board bus for local memo-
ry and peripherals, and the MULTIBUS for system
bus interfacing.

80C286

£6-€261E2
e viva pomeemmom—oooooos
. (1¥NOLLAO) \
nnnnnnn “a NOISN3LX3 \
||||||| < ¥0SS300¥d H
] L8208 ,
')
¥ITI0UINGD toccemme g e =g o
1dN¥YILNI ' m H .h J_
v6528 [
] 1
t [
]]
-0,)
Bz_nez_H.v ‘a-% A“ 3 = 0g-5'g ' H b .
N3/ds L ndo 1)
au e ..F 982008 R !
UM 1e v LR S '
YINI wadf------------ R e R
]
LN L ETL Asng i ! '
103735 dIH —${ S0 voun3 ¢ ' ' w o302
you3 '
P A . [
S N ;. '
t o yTTTTT T [
e 0s ' 29,
oLV < = = i HOLVHINID
A Oy - £y is - %010
= N AQvay e b 92028
—
10 f—T" X rem={vin/aos 3o b ' NIAGHY 8VN3
sng SSINAQY A o bemrs ' ' oM s ' AQuY AQV3d ONASY
v ' ¥ ! ' NIAGYS Je———— 378YNI
U DR : i o] 1353 AQ¥S fe———— Aavad oS
[RN R R [L]
R N . _
' o H, [v | a3moumos ! T
' e —— ' 1
! (wnoudo) ¢ I -t-=° Sng 982078 ' 9/4 Abl
SIDITIS diHD O 1 GNY 4-~] 300030 (4----}- 1! /10 10 »15 143 e =
AMONIN G3ONVAQY < - -4 4---oq--t--- N30 AQv3y QYR Nod—> _
teccoead IR s 1S
v 0s ¢ 0s 3y
290TIMONNOV LNBAILNI ¢ YINI = " 2y
UNMO | ¢ MOl ATONO ml
avi ol < ou0i an _|_=
ILYM AHONIN < LM = S %S¥
0,
V34 ANOMIN < 204N nav je—T $ voie A
0 A

433y

Figure 32. Basic 80C286 System Configuration

2-37

80C286 I n

Vee
SYs8,
iﬁ/ BCIK s
RESET N J———
R] S
RAWATS/ ®
9108 1 crot e » | wuLneus
5% CRALCK BPRO BUS ARBITRATION
SO RN Jlr
§ BUSY j—p
READY CORG je——b
> CLK LOCK Je—y
AEN /10 e
SLOCK
BUS ARBITER
Vee
v an " MEMORY READ
o e MEMORY WRITE
oRG 1 0 READ
oWE 10 WRITE
%2 X NTA INTERRUPT ACKNOWLEDGE
RESET RES 50 5 ALE
§i §i MCE
I 4= PCLK READY READY OEN
- — £FI oK cLK or/R
I e i H 82288 BUS
=] CONTROLLER
- ' CMDLY M/I0
]
SYNC READY SROY RESET : 4 =
ENABLE ——e—uempy SROVEN N
RESET
ASYNC READY mmmsnme ARDY ' “/0 ¢ ADDRESS BUS
ENABLE ~————p] ARDVEN " b ox LooK — &%
820284 : ' L—>p{ READY N
€LOCK ' 5
' V] aten
X ' - . P
Ve GENERATOR o pa -
Q . ——— :
H ' P m e mmem--d ‘o
1 JE—
zom$ [ERROR Ao 5 Je— cHw seLECT
H H H Y INTR NT
'-----:--:-L-:-.-—------—_-_ PEACK NTA
Vo ! | o PEREC AP __.-L W=
' H o ' soc28s =3
RN oo | I #/m
] - — -
Y C 15 = —N 0,0, C__. W =Ry
Py gty v
EREE 82594
' ' INTERRUPT
el Terwalamnnanay CONTROLLER
) 1]
' 80287 '
' PROCESSOR [
H EXTENSION OB =
H (OPTIONAL) '
 mcmccmcceeaad L] TRans- DATA BUS
I L4
R
231923-34

Figure 33. MULTIBUS System Bus Interface

2-38

80C286

T
R "
A A
N N
s s
¢ c
DATA D,s —D, : ‘DATA £
_ > g é DATA
oT R
OF OF
]
82C288
BUS
CONTROLLER 8206
i~ Ar ECC
DEN
CLK FREO
[—1[]’—[
READY] DO CBDO
16-0 16-0 CBDI
82C284
4 cLock |
GENERATOR
DRAM
CLK
o ﬁ r§ "" @«
«] «
———e * g a4 (x| O
80C286 READY
cPU -, T - MULTIBUS® SELECT
|| e —
N -
STATUS 50, 51. M 10 LA <:——— MULTIBUS®
CONTROL —— COMMAND
— (WRDT, MWTC)
DECODE | >
LOCAL { }
SELECT
[| SELECT
MUX
ADDRESS
ADDRESS A,; — A, BHE, LOCK
231923-35

Figure 34. 80C286 System Configuration with Dual-Ported Memory

Figure 34 shows the addition of dual ported dynamic
memory between the MULTIBUS system bus and
the 80C286 local bus. The dual port interface is pro-
vided by the 8207 Dual Port DRAM Controller. The
8207 runs synchronously with the CPU to maximize
throughput for local memory references. It also arbi-
trates between requests from the local and system
buses and performs functions such as refresh,

initialization of RAM, and read/modify/write cycles.
The 8207 combined with the 8206 Error Checking
and Correction memory controller provide for single
bit error correction. The dual-ported memory can be
combined with a standard MULTIBUS system bus
interface to maximize performance and protection in
multiprocessor system configurations.

2-39

-
80C28
c288 Intelq,
Table 16. 80C286 Systems Recommended Puli Up Resistor Values
80C286 Pin and Name | Pullup Value Purpose
! Pull 50, 51, and PEACK inactive during 80C286 hold periods
5—50 20KN £10%
(Note 1)
6—PEACK
63—READY 9100 +5% Pull READY inactive within required minimum time (C|_ = 150 pF,
Ir < 7 mA)

NOTE:

1. Pullup resistors are not required for 50 and 31 when the corresponding pins on the 82C284 are connected to 50 and 57.

80C286 IN-CIRCUIT EMULATION
CONSIDERATIONS

One of the advantages of using the 80C286 is that
full in-circuit emulation development support is avail-
able through either the I12ICE 80286 probe for
8 MHz/10 MHz or ICE286 for 12.5 MHz designs. To
utilize these powerful tools it is necessary that the
designer be aware of a few minor parametric and
functional differences between the 80C286 and the
in-circuit emulators. The I2ICE datasheet (I2ICE Inte-
grated Instrumentation and In-Circuit Emulation Sys-
tem, order #210469) contains a detailed description
of these design considerations. The ICE286 Fact
Sheet (#280718) and User’'s Guide (#452317) con-
tain design considerations for the 80C286 12.5 MHz
microprocessor. It is recommended that the appro-
priate document be reviewed by the 80C286 system
designer to determine whether or not these differ-
ences affect the design.

PACKAGE THERMAL
SPECIFICATIONS

The 80C286 Microprocessor is specified for opera-
tion when case temperature (T¢) is within the range
of 0°C-85°C. Case temperature, unlike ambient
temperature, is easily measured in any environment

Table 17. Thermal Resistances

to determine whether the 80C286 Microprocessor is
within the specified operating range. The case tem-
perature should be measured at the center of the
top surface of the component.

The maximum ambient temperature (Tp) allowable
without violating T¢ specifications can be calculated
from the equations shown below. T, is the 80C286
junction temperature. P is the power dissipated by
the 80C286.

Ty=Tc + P*0yc
Ta=Ty — P* 6
Tc=Ta + P* [0 — 04l

Values for 84 and 8¢ are given in Table 17.)4 is
given at various airflows. Table 18 shows the maxi-
mum T, allowable (without exceeding T¢) at various
airflows. Note that the 80C286 PLCC package has
an internal heat spreader. To can be further im-
proved by attaching “fins” or an externa! “heat sink”
to the package.

Junction temperature calculations should use an icg
value that is measured without external resistive
loads. The external resistive ioads dissipate addi-
tional power external to the 80C286 and not on the
die. This increases the resistor temperature, not the
die temperature. The full capacitive load (Ci =
100 pF) should be applied during the Icc measure-
ment.

(°C/Watt) 6y¢c and 65 Table 18. Maximum T4 at Various Airflows
044 versus Airflow Ta(°C) versus Airfiow
Package |00 ft/min (m/sec) Package ft/min (m/sec)

0} 200 | 400 { 600 | 800 | 1000
(0)/(1.01)|(2.03)((3.04)((4.06)|(5.07)

0| 200 | 400 | 600 | 800 | 1000
(0)((1.01)} (2.03) | (3.04) | (4.06) | (5.07)

68-Lead PGA |5.5{29f 22 | 16 | 16 [14 | 13

68-Lead PGA (68| 73 78 78 79 80

68-Lead PLCC

68 Lead-PLCC

w/Internal 8 |29 23 | 21 18 16 15 w/Internal 70| 74 76 78 79 80
Heat Speader Heat Speader
NOTE:

The numbers in Table 18 were calculated using a Vg of 5.0V, and an Igg of 150 mA, which is representative of the worst

case Igc at Tg = 85°C with the outputs unloaded.

2-40

intgl.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias . ..0°C to +70°C
Storage Temperature —65°C to+150°C
Voltage on Any Pin with
RespecttoGround.............. —1.0Vto +7V
Power Dissipation.......................... 1.1W

D.C. CHARACTERISTICS (vcc =

80C286

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the “Absolute
Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond the
“Operating Conditions” is not recommended and ex-
tended exposure beyond the “Operating Conditions”
may affect device reliability.

5V +10%, Tcasg = 0°C to +85°C)

Symbol Parameter Min Max Typ Unit Test Conditions

lce Supply Current 3 200 125 mA Cr = 100 pF (Note 1)

lccs Supply Current (Static) 5 0.5 mA (Note 2)

CoLk CLK Input Capacitance 20 pF FREQ = 1 MHz (Note 3)

CiN Other Input Capacitance 10 pF FREQ = 1 MHz (Note 3)

Co input/Output Capacitance 20 pF FREQ = 1 MHz (Note 3)
NOTES:

1. Tested at maximum frequency with no resistive loads on the outputs.
2. Tested while clock stopped in phase 2 and inputs at Vcc or Vgg with the outputs unloaded.
3. These are not tested but are guaranteed by design characterization.

D.C. CHARACTERISTICS (vcc = 5V £10%, Toase = 0°C to +85°C)

Symbol Parameter Min Max Unit Test Conditions
ViL Input LOW Voltage —0.5 0.8 V | FREQ = 2 MHz
Vin Input HIGH Voltage 20 Vcc+ 05| V | FREQ = 2MHz
ViLe CLK Input LOW Voltage —0.5 0.8 V | FREQ = 2MHz
ViHC CLK Input HIGH Voitage 3.8 Vec + 05| V | FREQ = 2MHz
Vo. Output LOW Voltage 0.45 V | lgL = 2.0mA, FREQ = 2 MHz
VoH Output HIGH Voltage 3.0 V | iopH = —2.0mA, FREQ = 2 MHz
Ve — 0.5 V | lon = —100 uA, FREQ = 2 MHz
Iu Input Leakage Current +10 pA | VIN = GND or Vg (Note 1)
Io Output Leakage Current 10 pA | Vo = GND or V¢ (Note 1)
IiL Input Sustaining Current on —-30 —500 pA 1 V)n = OV (Note 1)
BUSY # and ERROR # Pins
IBHL Input Sustaining Current 38 150 pA | Viy = 1.0V (Notes 1, 2)
(Bus Hold LOW)
IBHH Input Sustaining Current —-50 —350 pA | Viy = 3.0V (Notes 1, 3)
(Bus Hold HIGH)
IBHLO Bus Hold LOW Overdrive 200 pA | (Notes 1, 4)
IBHHO Bus Hold HIGH Overdrive —400 uA | (Notes 1, 5)
NOTES:

1. Tested with the clock stopped.

2. IgnL should be measured after lowering Vi to GND and then raising to 1.0V on the following pins: 36-51, 66, 67.

3. lgny should be measured after raising V| to Voc and then lowering to 3.0V on the following pins: 4-6, 36-51, 66-68.
4. An external driver must source at least Ig o to switch this node from LOW to HIGH.

5. An external driver must sink at least IgnHo to switch this node from HIGH to LOW.

2-41

80C286 i nté o

A.C. CHARACTERISTICS (vcc = 5V £10%, Tcase = 0°Cto +85°C)

A.C. timings are referenced to 1.5V points of signals as illustrated in datasheet waveforms, uniess otherwise
noted.

Symbol Parameter 12.5 MHz Unit c Test
Min Max onditions
1 System Clock (CLK) Period 40 DC ns (Note 1)
System Clock (CLK) LOW Time 11 ns at1.0v
System Clock (CLK) HIGH Time 13 ns at 3.6V
17 System Clock (CLK) Rise Time .8 ns 1.0V to 3.6V (Note 2)
18 System Clock (CLK) Fall Time . 8 ns 3.6V to 1.0V (Note 2)
4 Asynchronous Inputs Setup Time 16 ns (Note 3)
5 Asynchronous Inputs Hold Time 16 ns (Note 3)
6 RESET Setup Time 19 ns
7 RESET Hold Time 6 ns
8 Read Data Setup Time 6 ns
9 Read Data Hold Time 7 ns
10 READY Setup Time 23 ns
1 READY Hold Time 21 ns -
12at Status Active Delay 5 16 ns (Notes 4, 5, 7)
12a2 PEACK Active Delay 5 18 ns (Notes 4, 5,7)
12b Status/PEACK Inactive Delay 5 20 ns (Notes 4, 5, 7)
13 Address Valid Delay 4 29 ns {Notes 4,5, 7)
14 Write Data Valid Delay 3 27 ns (Notes 4, 5, 7)
15 Address/Status/Data Float Delay 2 32 ns (Notes 2, 4, 6)
16 HLDA Valid Delay 3 24 ns (Notes 4, 5, 7)
19 Address Valid To Status 23 ns (Notes 2, 4, 5)
Valid Setup Time

NOTES:

1. Functionality at frequencies less than 2 MHz is not tested, but is guaranteed by design characterization.

2. These are not tested but are guaranteed by design characterization.

3. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

4. Delay from 1.0V on the CLK, to 1.5V or float on the output as appropriate for valid or floating condition.

5. Output load: C; = 100 pF.

6. Float condition occurs when output current is less than i g in magnitude.

7. Minimum output delay timings are not tested, but are guaranteed by design characterization.

2-42 I

intel . 80C286

A.C. CHARACTERISTICS (Continued)

DEVICE
OUTPUT
———————— c"
- 231923-36
NOTE 7:
AC Test Loading on Outputs
aov
CLK INPUT
0.45V
23192337
NOTE 8:
AC Drive and Measurement Points—CLK Input
40V
CLK INPUT / \ v /
0.45V N\
tsep | thowo
2.4y ot
OTHER “* 0}
DEVICE 1.5V
INPUT) 1oy
s
OuTPUT ’0.0 0’0.000.0.0.0’0.0.0.0.0.0,:,
231923-38

NOTE 9:
AC Setup, Hold and Delay Time Measurement—General

2-43

80C286

Typical Capacitive Derating Curves
NOM +5

NOM +4 1+

NOM +3 1+

NOM +2 1

NOM+11

OUTPUT VALID DE(nLA.Y) NOM ' i
50 125 150
NOM -1
NOM =2 ¢
=&— ADDRESS/DATA
NOM =3 1 == STATUS

NOM =4

NOM =5 ¢

LOAD CAPACITANCE (pF)

231923-46
Typical CMOS Level Slew Rates for Address/Data Buffers
101
SLEW RATE
(ns/V)
~&= RISE TIME (0.4V=3.5V)
2 X =O= FALL TIME (3.5V=-0.4V)
1 -
0 t t + i
50 75 100 125 150
LOAD CAPACITANCE (pF)
231923-47

2-44

[}
|nte| 80C286
®
Typical TTL Level Slew Rates for Address/Data Buffers
9 —_
8 =
7 -
6 -
5 -
SLEW RATE
(ns/V) 4]
33
~—&— RISE TIME (0.8V=2.0V)
24 =C= FALL TIME (2.0V~0.8V)
1 —
] + t + 4
50 75 100 125 150
LOAD CAPACITANCE (pF)
231923-48

200

175
150
/
125 /]
mA) 100
75 A

Typical icc vs Frequency for Different Output Loads

e JOH = =2 mA

—g— 10H==400 uA

wmenigpeme UNLOADED

0
S L
1
25
0
0 2 4 6 8 10 125
FREQUENCY (MHz)
231923-53
NOTES:
1. Vgc = 5.0V
2. Loaded: ig. = 2.0 mA, Ipgn as shown, C = 100 pF
Unloaded: C| = 100 pF
2-45

80C286
WAVEFORMS
MAJOR CYCLE TIMING
READ CYCLE WRITE CYCLE
ILLUSTRATED WITH ZERO ILLUSTRATED WITH ONE READ
WAIT STATES WAIT STATE (T, 0R Tg)
BUS CYCLE TYPE ® Ts T Ts T Te
[) * * # 7 ¢ " ¢)
o VaVe VaVa Ve Va Ve VaWe Ve
§i.5 @I X /
lu/m, co:"/’l-w‘: 1D ADDRESS] VALID ADDRTS W VALIO F Te
g BHE, [ocK W VALID CONTROL VALID CONTROL
®~
.| ~4®
Dy5=Dy *=ececcccssceccns P TR EETLTY 2 eoe VALID WRITE DATA ﬁ‘
VALID READ DATA
~ ~®
L ® - ® -
READY ANNKAAMAAARAAAAAAARAARRNY .
sroveSRovEN. AANNAAANAAARAAAANNNNNN I T T, v/,
(E1 o]
: st
S| Arovearoven I WG
-3
| /N /S N—t" /" \
i ALE | X ™\ s
@ \E
-3 @ 3
cwpLY 7 R\ ST
__ -® -
MWTC
g 18 -ep s
] o \ S
- @
ot/R X i
e
e -
231823-52
NOTE:
1. The modified timing is due to the CMDLY signal being active.

2-46

intgl.

WAVEFORMS (Continued)

80C286 ASYNCHRONOUS
INPUT SIGNAL TIMING

80C286

80C286 RESET INPUT TIMING AND
SUBSEQUENT PROCESSOR CYCLE PHASE

SUS CYCLE TYPE

meEnoTE 1)\ /__* /
wrRon iy é—"l“
e, TN NI

231923-40
NOTES:

1. PCLK indicates which processor cycle phase will oc-
cur on the next CLK. PCLK may not indicate the cor-
rect phase until the first bus cycle is performed.

2. These inputs are asynchronous. The setup and hold
times shown assure recognition for testing purposes.

EXITING AND ENTERING HOLD

231923-41

NOTES:

1. When RESET meets the setup time shown, the next
CLK will start $2 of a processor cycile.

2. When RESET meets the setup time shown, the next
CLK will repeat ¢1 of a processor cycle.

NOTES:

shown.

BUS CYCLE TYPE T TLORT, | T T
— Ven &1 2 Al 2 o1 ¢2 o1 ®2
o 1 SR 5_/__%_/_3
Yo
HLDA @
(SEE NOTE 4.)
45
Gaa)—>{ f~—
g% __ (SEE NOTE 3) 5 @ seenorEn)
@F— X !
__——5
@D —®
g PEACK ———— [55 ,I ---------------
¥ NPX | TRANSFER
(SEE NOTE 1.}
BHE,LOCK — ® I"— c — @) [
s = g (S8EE NOTE 5.)
B men- S R I
COD/INTA 55 (86 NOTE 2,
—) |-
(SEE NOTE 6.)
Dy — VALID
L % IF WRITE
[~/ _/ o \/ /S

1. These signals may not be driven by the 80C286 during the time shown. The worst case in terms of latest float time is

2. The data bus will be driven as shown if the last cycle before T| in the diagram was a write Tc.

3. The 80C286 floats its status pins during T. External 20 KQ resistors keep these signals high (see Table 16).
4. For HOLD request set up to HLDA, refer to Figure 29.

5. BHE and LOCK are driven at this time but will not become valid until Ts.

6. The data bus will remain in 3-state OFF if a read cycle is performed.

231923-42

2-47

80C286 i ntd o

WAVEFORMS (Continued)

80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE
A

™]
o L / \

Veu 'O READ IF PROC. EXT. TO MEMORY MEMORY WRITE IF PROC. EXT. TO MEMORY
/_mvmwulwronoc.m. /—vomewmvromc.m.

v TN/ T L/

MEMORY ADDRESS I PROC. EXT. TO MEMORY TRANSFER
uo PORT ADDRESS OOFA{H) IF MEMORY TO PROC. EXT. TRANSFER

An - Ao

wo XX 7 A

CODNTA —] G200 _uorommoommtmcunonmm
MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER

pEACK T T\ {SEENOTE 1)

ki(sumz.)—_: 5@ la—

PEREQ

ASSUMING WORD-ALIGMED MEMORY OPERAND. IF ODD ALIGNED, 802868 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY CYCLES.

NOTES: 231923-43
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence.
The first bus operation will be either a memory read at operand address or |/0 read at port address OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is:
IX O —1282max.— @min. The actual, configuration dependent, maximum time is: 3X® —12a2max — @ ppin, +
AX2XO.

A is the number of extra T¢ states added to either the first or second bus operation of the processor extension data
operand transfer sequence.

INITIAL 80C286 PIN STATE DURING RESET

BUS CYCLE TYPE

ax :_/—!
o ® (l . y
- —é«——n s =
— = 7
An A "@"
- l, UNKNOWN *
s ma Oy
Ccoo/MTA { me
o~
LocK _’ L UNKNOWN *
—»] (®) fa——(seENOTE 3,

-) —"

1
NOTES: 231923-44
1. Setup time for RESET T may be violated with the consideration that ¢1 of the processor clock may begin one
system CLK period later.
2. Setup and hold times for RESET J must be met for proper operation, but RESET | may occur during ¢1 or ¢2. If
RESET | occurs in ¢1, the reference clock edge can be $2 of the previous bus cycle.
3. The data bus is only guaranteed to be in 3-state OFF at the time shown.

2-48

| }
Intel 80C286
®
BYTE1 BYTE2 BYTE3 BYTE4 BYTES BYTES
7 & 5 4.3 21 07 68 43210
——————— P, e Y, r - ——————
iclmll olw "L [’J]”m LOW DISP/DATA HIGH DISP/DATA) LOW DATA : HIGH DATA :
_______ B el T S S |
L REGISTER OPERAND/REGISTERS TO USE IN OFFSET CALCULATION
REGISTER OPERAND/EXTENSION OF OPCODE
— e REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH
WORD/BYTE OPERATION
8TO RECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE
A. SHORT OPCODE FORMAY EXAMPLE
BYTE1 BYTE2 BYTE3 BYTE4 BYTES
7l.|'lll32|'7.l‘32|.1..03!|° _______ ——————— -
EERERRENARRENNREEN 1 i
LONG OPCODE mod| reg | vm Low orse l Hon oo J
B.mmm"m 2
231923-45

Figure 35. 80C286 Instruction Format Examples

80C286 INSTRUCTION SET
SUMMARY

Instruction Timing Notes

The instruction clock counts listed below establish
the maximum execution rate of the 80C286. With no
delays in bus cycles, the actual clock count of an
80C286 program will average 5% more than the cal-
culated ciock count, due to instruction sequences
which execute faster than they can be fetched from
memory.

To calculate elapsed times for instruction se-
quences, multiply the sum of all instruction clock
counts, as listed in the table below, by the processor
clock period. A 12 MHz processor clock has a clock
period of 83 nanoseconds and requires an 80C286
system clock (CLK input) of 24 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution. Control transfer in-
struction clock counts include all time required to
fetch, decode, and prepare the next instruction for
execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

Instruction Set Summary Notes

Addressing displacements selected by the MOD
field are not shown. If necessary they appear after
the instruction fields shown.

Above/below refers to unsigned value

Greater refers to positive signed value

Less refers to less positive (more negative) signed
values

ifd = 1 then to register; if d = 0 then from register

ifw =1 then word instruction; if w = 0 then byte
instruction

ifs = 0 then 16-bit immediate data form the oper-
and

ifs =1 then an immediate data byte is sign-ex-

tended to form the 16-bit operand
x don't care

z used for string primitives for comparison with
ZF FLAG

If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand

* = add one clock if offset calculation requires
summing 3 elements

number of times repeated

number of bytes of code in next instruction

Level (L)—Lexical nesting level of the procedure

n=
m=

2-49

80C286

The following comments describe possible excep-
tions, side effects, and allowed usage for instruc-
tions in both operating modes of the 80C286.

REAL ADDRESS MODE ONLY

1.

This is a protected mode instruction. Attempted
execution in real address mode will result in an
undefined opcode exception (6).

. A segment overrun exception (13) will occur if a

word operand reference at offset FFFF(H) is at-
tempted.

. This instruction may be executed in real address

mode to initialize the CPU for protected mode.

. The IOPL and NT fields will remain 0.
. Processor extension segment overrun interrupt

(9) will occur if the operand exceeds the seg-
ment limit.

EITHER MODE
6. An exception may occur, depending on the value

of the operand.

7. LOCK is automatically asserted regardless of the

presence or absence of the LOCK instruction
prefix.

8. LOCK does not remain active between all oper-

and transfers.

PROTECTED VIRTUAL ADDRESS MODE ONLY
9. A general protection exception (13) will occur if

the memory operand cannot be used due to ei-
ther a segment limit or access rights violation. If
a stack segment limit is violated, a stack seg-
ment overrun exception (12) occurs.

10. For segment load operations, the CPL, RPL, and

DPL must agree with privilege rules to avoid an
exception. The segment must be present to

2-50

11.

12

13.

14.

15.

16.

17.

18.

L]

intgl.
avoid a not-present exception (11). If the SS reg-
ister is the destination, and a segment not-pres-

ent violation occurs, a stack exception (12) oc-
curs.

All segment descriptor accesses in the GDT or
LDT made by this instruction will automatically
assert LOCK to maintain descriptor integrity in
multiprocessor systems.

JMP, CALL, INT, RET, IRET instructions refer-
ring to another code segment will cause a gener-
al protection exception (13) if any privilege rule is
violated.

A general protection exception (13) occurs if
CPL # 0.

A general protection exception (13) occurs if
CPL > IOPL.

The IF field of the flag word is not updated if CPL
> [OPL. The IOPL field is updated only if
CPL = 0.

Any violation of privilege rules as applied to the
selector operand do not cause a protection ex-
ception; rather, the instruction does not return a
result and the zero flag is cleared.

If the starting address of the memory operand
violates a segment limit, or an invalid access is
attempted, a general protection exception (13)
will occur before the ESC instruction is execut-
ed. A stack segment overrun exception (12) will
occur if the stack limit is violated by the oper-
and’s starting address. If a segment limit is vio-
lated during an attempted data transfer then a
processor extension segment overrun exception
(9) occurs.

The destination of an INT, JMP, CALL, RET or
IRET instruction must be in the defined limit of a
code segment or a general protection exception
(13) will occur.

]
| ntel R 80C286
80C286 INSTRUCTION SET SUMMARY
CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real | et | P Girum
Address Address
Mode Address Mode Address
Mode Mode
DATA TRANSFER
”OV =Move:
hsgister to Register/Memory l 1000100w | modreg r/m } 2,3* 2,3 2 9
Register/memory to register l 1000101w | modreg r/m l 2,5 2,5* 2]
Immediate to register/memory i 1100011w | modCQ0 r/m] data] dataif w = 1 2,3 23* 2 9
immediate to register ! 1011w reg l data I dataifw=1 l 2 2
Memory to accumulator [1010000w I addr-low { addr-high] 5 5 2 9
Accumulator to memory [1010001 w l addr-low { addr-high l 3 3 2 9
Register/memory to segment register ! 10001110 l mod O reg r/m] 2,5* 17,19* 2 9,10,11
[Segment register to register/memory | 10001100 l mod O reg r/m I 2,3* 2,3* 2 9
PUSH = Push:
Memory I11111111lmod110r/m’ 5* 5* 2 9
Register 3 3 2 9
ISegment register 3 3 2 9
-2 £
POP=Pop:
Memory [10001111 |mod000 r/m 5* 5 2 9
Register 5 5 2 9
[Segment register (reg+01) 5 20 2 9,10,11
popA=Fop e 8110t Wl w 2 s
XCHG = Exchange:
Fegister/memory with register [100001 1w Imod reg r/m] 3,5* 35 2,7 7.9
Register with accumulator 3 3
N=Input trom:
Fixed port [1110010wl port 5 5 14
Variable port 5 5 14
OUT = Output to:
Fixed port [1110011w[port] 3 3 14
Mariable port 3 3 14
XLAT = Transiate byte to AL 5 5 9
LEA = Load EA to register [10001101 [modreg r/m] 3* 3*
LDS = Load pointer to DS [11000101]modreg r/nq (mod=+11) 7* 21° 2 8,10,11
LES = Load pointer to ES [11000100 lmodreg r/m] {mod+1) 7 21" 2 9,10,11

Shaded areas indicate instructions not availabie in 8086, 88 microsystems.

2-51

80C286 |n
®

80C286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT Reat |° Virtual I neat |f Virtual

Address Address
Mode Address Mode Address
Mode Mode

DATA TRANSFER (Continued)
LAHF Load AH with fiags 2 2
[BAHF = Store AH into flags 2 2
PUSHF = Push flags 3 3 2 9
POPF =Pop flags 5 5 24 9,15
ARITHMETIC
ADD = Add:
Reg/memory with register to either l 000000dw I mod reg r/ﬂ 2,7* .7 2 9
Jmmediate to register/memory l 100000sw I mod 000 r/m I data Idata ifaw = 01 3,7* 37" 2 9
fmmediate to accumulator | 00000t0w l data] data if w=1 I 3 3
ADC = Add with carry:
Reg/memory with register to either | 000100dw I modreg r/m I 2,7 2,7* 2 9
Immediate to register/memory | 100000sw] mod010 r/m l data I dataitsw = 01 37 3 2 8
Jmmediate to accumulator l 0001010w] data dataifw=1 | 3 3
FNC= Increment:
Register/memory l 1111111w | mod000 r/m I 27 2,7* 2]
Register 2 2
FUB = Subtract:
Reg/memory and register to either I 001010dw l modreg r/m] 2,7 27 2 9
Jmmediate from register/memory [100000sw 1 mod101 r/m | data I dataifsw = 01 3,7 3,7* 2 9
Jmmediate from accumulator I 0010110w l data l dataif w=1 I 3 3
EBB = Subtract with borrow:
Reg/memory and register to either fO 00110dw I modreg r/m } 2,7 2,7 2 9
Immediate from register/memory | 100000sw I mod011 r/m I data | data if sw=01J 37 3,7* 2 9
immediate from accumulator [0001110w ! data I dataifw=1 | 3 3
DEC = Decrement
Register/memory | 1111111w I mod00 1 r/m] 2,7 2,7 2 9
Register 2 2
CMP =Compare
Register/memory with register [0011101w Imod reg r/ml 2,6* 2,6* 2 9
Register with register/memory | 0011100w [mod reg 1/l rﬂ 2.7f 2,7* 2 9
immediate with register/memory [100000sw Imod 111 r/ml data ‘ dataif s w=O1J 3,6* 3,6 2 9
Jmmediate with accumulator [0011110w | data I dataifw=1 J 3 3
INEG = Change sign I 1111011w Irnod011 r/nﬂ 2 7 2 9
AAA = ASCI adjust for add 3 3
DAA = Decimal adjust for add 3 3

2-52

in‘tel o 80C286

80C286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode

IARITHMETIC (Continued)

IAAS = ASCI! adjust for subtract 00111111 3 3
PAS=DecimaI adjust for subtract 00101111 3 3

MUL = Multiply (unsigned): { 1111011w {mod100 r/m

Register-Byte 13 13

Register-Word 21 21

Memory-Byte 16* 16* 2 9
Memory-Word 24* 24* 2 9
BMUL = Integer multiply (signed): [1111011w [modi101 /m

Register-Byte 13 13

Register-Word 21 21

Memory-Byte 16 16* 2 9
Memory-Word 24* 24° 2 9
‘ 224 |2 3
PIV = Divide (unsigned) [1111011w {mod 110 /m

Register-Byte 14 14 6 6
Register-word 22 22 6 6
Memory-Byte 17 17* 2,6 6,9
Memory-Word 25* 25 26 69
DIV = Integer divide (signed) 1111011w |mod111 r/m

Register-Byte 17 17 6 6
Register-Word 25 25 6 6
Memory-Byte 20 20 26 6.9
Memory-Word 28" 28 2,6 6.9
JAAM = ASC!| adjust for multiply [11010100] 00001010 | 16 16

IAAD = ASCII adjust for divide l 11010101 l 00001010 | 14 14

ICBW = Convert byte to word 10011000 2 2
ICWD = Convert word to double word 10011001 2 2

LOGIC
[Shift/Rotate instructions:
Register/Memory by 1 ’ 1101000w Imod TI7 r/ml 2,7 2,7 2 9
Register/Memory by CL l 1101001w ImodTTT r/ml 5+n8+n*|5+n8+n* 2 8
L*&’Md‘*‘swp+ n‘:* 2 8
T instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
10t SHR
111 SAR

Shaded areas indicate instructions not available in 8086, 88 microsystems.

2-53

800286 |n .

80C286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT Real | = ol ‘| Rea " Virteal !
Address Address
Mode Address Mode Address
Mods Mode
ARITHMETIC (Continued)
IAND = And:
Reg/memory and register to either [001000dw [mod reg r/mJ 2,7 2,7 2 9
Immediate to register/memory [1000000w l mod100 r/m I data l dataif w=1 3,7* 3,7* 2 9
Jmmediate to accumulator I 0010010w l data l data if w=1] 3 3
[TEST = And function to flags, no resuit:
Register/memory and register [1000010w Lmod reg r/m l 26° 26" 2 9
Immediate data and register/memory | 1111011w l mod000 r/m] data 1 dataifw=1 3.6 3,6°* 2 9
Immediate data and accumulator I 1010100w [data J dataifw=1] 3 3
OR=0r:
Reg/memory and register 1o either l 000010dw l mod reg '/li 2,7 27 2 9
Immediate to register/memory l 1000000w I mod0O1 r/m l data l data if w=1 3,7 3,7* 2 9
fmmediate to accumulator [0000110w I data I dataifw=1] 3 3
IXOR = Exclusive or:
Reg/memory and register to either | 001100dw l modreg r/m] 2,7° 2,7 2 9
fmmediate to register/memory [1000000w 1 mod110 r/m] data I dataifw =1 37 3.7 2 9
Jmmediate to accumulator [0011010 wJ data ldata ifw = 1| 3 3
NOT = Invert register/memory [1111011w l mod010 r/m] 27" 2,7* 2]
ISTRING MANIPULATION:
OVS = Move byte/word 5 5 2 9
MPS = Compare byte/word 8 8 2]
AS = Scan byte/word 7 7 2 9
0DS = Load byte/wd to AL/AX 5 5 2 9
TOS = Stor byte/wd from AL/A
epeated by count in CX
OVs =Move string 1 11110011 [10100!0w] 5+4n 5+4n 2 9
MPS = Compare string [1111001z I 1010011w I 5+9n 5+9n 28 8,9
AS = Scan string I 1111001z I 1010111w| 5+8n 5+8n 28 8,9
0DS = Load string I 11110011 [1010110w| 5+4n 5+4n 28 8.9
TOS = Store string [11110011]1010101\"1

Shaded areas indicate instructions not available in 8086, 88 microsystems.

2-54

i ntel R 80C286

80C286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
Protected Protected
IFUNCTION FORMAT Real Real
Virtual Virtual
Address Address
Mode Address Mode Address
Mode Mode
JCONTROL TRANSFER
ICALL =Calt:
Direct within segment I 11101000] disp-low I disp-high I 7+m 7+m 2 18
[Register/memory I 11111111 Imod010 r/ml 74+m11+m* | 7+m, 11+m* 28 89,18
indirect within segment
Direct intersegment I 10011010 I offset I 13+m 26+m 2 11,12,18
[Protected Mode Only (Direct intersegment): I segment selector I
Via call gate to same privilege lavel 41+m 8,11,12,18
Via call gate to different privilege level, no parameters 82+m 8,11,12,18
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18
ViaTSS 177+m 8,11,12,18
Via task gate 182+m 8,11,12,18
Indirect intersegment l 11141111 Imod01 1 /m {mod+11) 16+m 20+ m* 2 8,9,11,12,18
Protected Mode Only (Indirect intersegment):
Via call gate to same privilege level 44+m* 8,9,11,12,18
Via call gate to different privilege level, no parameters 83 +m* 8,9,11,12,18
Via call gate to different privilege level, x parameters 90+4x +m* 8,9,11,12,18
Via TSS 180+m* 8,9,11,12,18
Via task gate 185+m* 8,9,11,12.18
[JMP = Unconditional jump:
[Short/long [11101011 | disp-low] 7+m 7+m 18
Direct within segment [11101001 | disp-low l disp-high I 7+m 7+ m 18
[Register/memory indirect within segment | 11111111 |mod100 r/m] 74+m114+m*| 7+m, 11+m* 2 9,18
Direct intersegment b1 101010 [segment offset] 11+m 23+m 11,1218
[Protected Mode Only (Direct interssgment): l segment selector]
Via call gate to same privilege level 38+m 8,11,12,18
Via TSS 175+m 8,11,12,18
Via task gate 180+m 8,11,12,18
indirect intersegment | 11111111 Imod1o1 r/nﬂ (mod+#11) 15+m* 26+m* 2 8,8,11,12,18
d Mode Only (| [g
Via call gate to same privilege level 41+m* 8,8,11,12,18
Via TSS 178+m* 8,9,11,12,18
Via task gate 183+m* 8,9,11,12,18
[RET = Return from CALL:
[Within segment 11000011 11+m 11+m 2 89,18
[Within seg adding immed to SP l 11000010 l data-low] data-high] 1t+m 1M1+m 2 89,18
Intersegment 154+m 25+m 2 8,9,11,12,18
gment adding immediate to SP | 11001010 I data-low] data-high] 15+m 2 8,9,11,12,18
Protected Mode Only (RET):
To different privilege level 55+m 9,11,12,18

2-55

80C286

80C286 INSTRUCTION SET SUMMARY (Continued)

INtal.

' CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real Virtual Real Virtual
Address Address
Mode Address Mode Address
Mode Mode

CONTROL TRANSFER (Continued)
JE/JZ=Jump on equal zero I 01110100 l disp | 7+mor3 7+mor3 18
JL/JNGE = Jump on less/not greater or equal [01111100 I disp J 7+mor3 7+mor3 18
JLE/JNG = Jump on less or equal/not greater l 01111110 [disp I 74+mor3 7+mor3 18
JB/JNAE = Jump on below/not above or equal (011100140 I disp I 7+mor3 7+mor3 18
JBE/JNA = Jump on below or aqual/not above [01110110 | disp l 74+mor3 7+mor3 18
JP/JPE = Jump on parity/parity even l 01111010 I disp J 7+mor3 7+mor3 18
JO = Jump on overflow [01110000] disp I 7 +mor3 7+mor3 18
JS = Jump on sign I 01111000 I disp J 7+ mor3 7+mord 18
JNE/JNZ = Jump on not equal/not zero I 01110101 [disp J 7+mor3 7+mor3 18
JNL/JGE = Jump on not less/greater or equal l 01111101 l disp J 7+mor3 7+mor3 18
JNLE/JG = Jump on not less or equal/greater I 01111111] dispJ 7+mor3 7+mor3 18
JNB/JAE = Jump on not below/above or equal I 01110011 I disp J 7+mor3 7+mor3 18
JNBE/JA = Jump on not below or equal/above l 01110111 l dispJ 7+mor3 7+mor3 18
JNP/JPO = Jump on not par/par odd I 01111011 I disp J 7+mor3 7+mor3 18
JNO = Jump on not overfiow I 01110001 I disp l 7+mor3 7+mor3 18
JNS = Jump on not sign I 01111001 l disp I 7 +mord 7+mor3 18
LOOP =Loop CX times | 11100010 I disp I 8 +mord 8+mord 18
LOOPZ/LOOPE = Loop while zero/equal [11100001 | disp l 8+moré B+mord 18
LOOPNZ/LOOPNE = Loop while not zero/equal I 11100000 l disp J 8+mord 8+moré 18
JCXZ=Jump on CX zero [11100011 I disp] 8 +mord 8+moré 18

INT = interrupt:

Type spacified
Type 3

INTO = Interrupt on overflow

{11001101 [tpe |

11001100

23+m
23+m

24 +tmor3
3ifno
interrupt)

Bifno
interrupt)

2,78
2,78

268

Shaded areas indicate instructions not available in 8086, 88 microsystems.

2-56

]
I n 80C286
®
80C286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected
FUNCTION FORMAT Virtual Virtuat
Address Address
Mode Address Mode Address
Mode Mode
ICONTROL TRANSFER (Continued)
Protected Mode Only:
Via interrupt or trap gate to same privilege level 40+ m 7,8,11,12,18
Via interrupt or trap gate to fit different privilege level 78+ m 7,8,11,12,18
Via Task Gate 167+m 7,8,11,12,18
RET = Interrupt return 11001111 17+m 31+m 24 8,8,11,12,15,18
Protected Mode Only:
To different privilege level 55+m 8,8,11,12,15,18
To different task (NT=1) 169+m 8,9,11,12,18

s

PROCESSOR CONTROL
LC=_Clear carry
MC = Complement carry
BTG =Setcany
LD = Clear direction
ISTD = Set direction
Li=Clear interrupt
STI=Set interrupt
ATT— v
OCK = Bus fock prefix
T8~ Clver taak ewiiched flag ' guootiil los .

SC = Processor Extension Escape I 110117TT l modLLL /m
(TTT LLL are opcode to processor extension)

001 reg 110

BEG = Segment Override Prefix

Shaded areas indicate instructions not available in 8086, 88 microsystems.

. f %

8,17

2-57

80C286

80C286 INSTRUCTION SET SUMMARY (Continued)

INtal.

FUNCTION

2-58

FORMAT

CLOCK COUNT

COMMENTS

Shaded areas indicate instructions not available in 8086, 88 microsystems.

Protected
Virtual
Address
Mode

Protected
Virtual
Address

Real
Address

intal.

Footnotes

The Effective Address (EA) of the memory operand
is computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

it mod = 00 then DISP = 0*, disp-low and disp-high
are absent

if mod = 01 then DISP = disp-low sign-extended to
16 bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP
if r/m = 001 then EA = (BX) + (DI) + DISP
if r/m = 010 then EA = (BP) + (Sl) + DISP
if r/m = 011 then EA = (BP) + (DI) + DISP
if r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) + DISP

]

DISP follows 2nd byte of instruction (before data if
required)
*except if mod = 00 and r/m = 110 then EQ = disp-high: disp-fow.

SEGMENT OVERRIDE PREFIX

001reg11(ﬂ

reg is assigned according to the following:

Segment

reg Register
00 ES
01 CcSs
10 SS
1 bC

80C286

REG is assigned according to the following tabie:

16-Bit (w = 1) 8-Bit (w = 0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 S 110 DH
11 D - 111 BH

The physical addresses of all operands addressed
by the BP register are computed using the SS seg-
ment register. The physical addresses of the desti-
nation operands of the string primitive operations
(those addressed by the DI register) are computed
using the ES segment, which may not be overridden.

DATA SHEET REVISION REVIEW

The following list represents key differences be-
tween this and the —002 data sheet. Please review
this summary carefully.

1. The test conditions in the A.C. Characteristics ta-
ble has been changed.

2. The “Typical Igc vs Frequency for Different Out-
put Loads” graph has been modified.

3. The maximum ambient temperature (T4) vs. vari-
ous airflows has been updated.

4. Deleted the 82C284 and 82C288 A.C. Character-
istics tables.

5. "“PRELIMINARY" status was removed from the
datasheet.

2-59

	RE_DSHEET_A80C286-12_REI_COVER
	RE_DSHEET_A80C286-12_REI_UNSECURED

