

HA-2700/2704/2705

Low Power, High Performance Operational Amplifiers

FEATURES	DESCRIPTION						
LOW POWER DISSIPATION HIGH SLEW RATE 20V/μs HIGH OPEN LOOP GAIN LOW INPUT BIAS CURRENT LOW OFFSET VOLTAGE HIGH CM _{rr} 106dB WIDE POWER SUPPLY RANGE ±5.5V TO ±20.0V APPLICATIONS	HA-2700/2704/2705 are internally compensated operational amplifiers which employ dielectric isolation to achieve excellent DC and dynamic performance with very low quiescent power consumption. DC performance of the amplifier input is characterized by high CMRR (106dB), low offset voltage (0.5mV, HA-2700 and HA-2704; 1mV, HA-2705) along with low bias and offset current (5.0nA and 2.5nA respectively). These input specifications, in conjunction with offset null capability and openloop gain of 300,000V/V, enable HA-2700/2704/2705 to provide accurate, high-gain signal amplification. Gain bandwidth 1MHz and slew rate of 20V/µ s allow for processing of fast, wideband signals. Input and output signal amplitudes of at least ±11 volts can be accomodated while providing output drive capability of 10mA. For maximum reliability, the output						
 HIGH GAIN AMPLIFIER INSTRUMENTATION AMPLIFIERS ACTIVE FILTERS TELEMETRY SYSTEMS BATTERY-POWERED EQUIPMENT 	is protected in the event of short circuits to ground. These amplifiers operate from a wide range of supplies (±5.5V to ±20V) with a maximum quiescent supply drain of only 150µA. HA-2700/2704/2705 are, therefore, ideally suited to low-power instrumentation and filtering applications that require fast, accurate response over a wide range of signal frequency. These amplifers are available in three performance grades: HA-2700 is rated for operation from -55°C to +125°C; HA-2704 is specified over -25°C to +85°C; HA-2705 is specified from 0°C to +75°C. All three devices are available in TO-99 cans or 14 lead D.I.P. packages.						
PINOUT	SCHEMATIC						
Case Connected to V- TOP VIEW TO-116 NC 1 OFFSET ADJ IA NC 13 NC 12 OFFSET ADJ IV- INPUT 10 OUTPUT GUARD 8 V- TOP VIEW Case Connected to V-	NO PERSONAL COMMETT STORMS COMMETT S						

2-54 CAUTION: These devices are sensitive to electrostatic discharge.
Users should follow IC Handling Procedures specified on pg. 1-4.

ABSOLUTE MAXIMUM RATINGS

Voltage Between V⁺ and V⁻ Terminals Differential Input Voltage

Internal Power Dissipation (Note 7)

Storage Temperature

44.0V ±18.0V 300mW

 $-65^{\circ}C \le T_{A} \le +150^{\circ}C$

ELECTRICAL CHARACTERISTICS

 $V^{+} = +15.0 \text{ V.D.C.}$

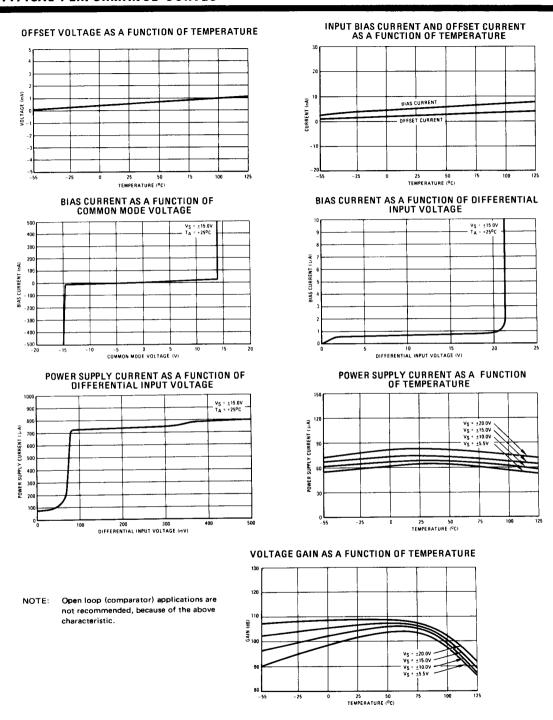
V- = -15.0 V.D.C.

		HA-2700 -55°C to +125°C			HA-2704 -25°C to +85°C			HA-2705 0°C to +75°C			1
PARAMETER	TEMP.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX	MIN.	TYP.	MAX.	UNITS
* Offset Voltage (Note 1)	+25°C Full		0.5	3.0 5.0		0.5	3.0 6.0		1.0	5.0 7.0	mV mV
* Bias Current	+25°C Full		5.0	20.0 50.0		5.0	20.0 50.0	:	5.0	40.0 70.0	пА nA
* Offset Current	+25°C Full		2.5	10.0 30.0		2.5	10.0 30.0		2.5	15.0 40.0	nA nA
Common Mode Range	Full	±11.0	İ		<u>+</u> 11.0			<u>+</u> 11.0			v
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Notes 2 & 3)	+25°C Full	200K 100K	300K		200K 100K	300K		200K 100K	300K		V/V V/V
* Common Mode Rejection Ratio (Note 4)	Full	86	106		86	106		80	106		dB
Gain Bandwidth Product (Note 2)	+25°C		1.0			1.0			1.0		MHz
OUTPUT CHARACTERISTICS Output Voltage Swing (Note 2)	+25°C Full	±12.0 ±11.0	±13.0		±12.0 ±11.0	<u>+</u> 13.0		±12.0 ±11.0	<u>+</u> 13.0		V
Output Current (Note 3)	+25°C		10			10			10		mA
TRANSIENT RESPONSE CHARACTERISTICS * Slew Rate (Notes 2 & 6)	+25 ⁰ C	10	20		10	20		10	20		V/µs
POWER SUPPLY CHARACTERISTICS * Supply Current	+25 ⁰ C		75	150		75	150		75	150	μА
* Power Supply Rejection Ratio (Note 5)	Full	86	100		86	100		80	100		dB

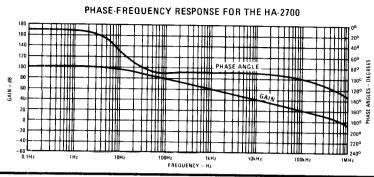
NOTES: 1. Can be adjusted to zero with 1 megohm pot between Pins 1 and 8 with the tap to Pin 7.

^{2.} $R_L = 2K$, $C_L = 100pF$

^{3.} $V_0 = \pm 10.0V$

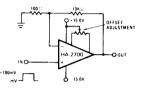

^{4.} $V_{CM} = \pm 10V$

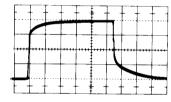
^{5.} $V_S = \pm 10.0V$ to $\pm 20.0V$


^{6.} Av = 5

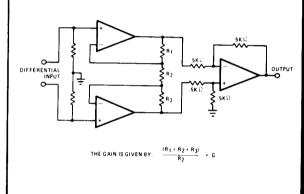
^{7.} Derate by 6.6 mW/OC above 105OC.

^{*100%} Tested For DASH 8

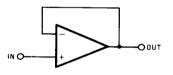

TYPICAL PERFORMANCE CURVES (continued)



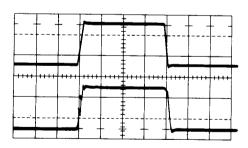
TYPICAL APPLICATIONS


Horizontal - 20 us/division Vertical = 5 0V/division

HIGH GAIN AMPLIFIER (100 V/V)



DIFFERENTIAL INPUT INSTRUMENTATION AMPLIFIER


UNITY GAIN VOLTAGE FOLLOWER

Non-inverting unity gain with a $2K\Omega$ and 100pF load TOP: V_{1N} = 10.0V Peak to Peak BOTTOM: YOUT SCALE: Horizontal –1 μ s/division

Vertical -5.0V/division

NOTE: Faster increase rise and fall time and increase distortion on output wave form.

