

PART NUMBER 54198DMB-ROC

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

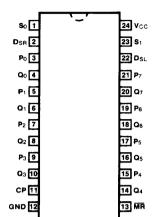
 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

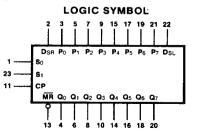
V54/74198 010748

8-BIT R/L SHIFT REGISTER


DESCRIPTION — The '198 features synchronous parallel load, hold, shift right and shift left modes, as determined by the Select (S_0, S_1) inputs. State changes are initiated by the rising edge of the clock. An asynchronous Master Reset (\overline{MR}) input overrides all other inputs and clears the register. The '198 is useful for serial-serial, serial-parallel, parallel-serial and parallel-parallel register transfers.

- PARALLEL IN/PARALLEL OUT
- SYNCHRONOUS PARALLEL LOAD
- SHIFT RIGHT AND SHIFT LEFT CAPABILITY
- ASYNCHRONOUS OVERRIDING CLEAR

ORDERING CODE: See Section 9

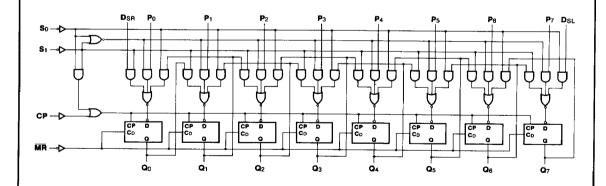

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	ОПТ	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{C to} +125^{\circ}\text{C}$	TYPE
Plastic DIP (P)	Α	74198PC		9N
Ceramic DIP (D)	Α	74198DC	54198DM	6N
Flatpak (F)	Ά.	74198FC	54198FM	4M

CONNECTION DIAGRAM PINOUT A

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	
S ₀ , S ₁	Mode Select Inputs	1.0/1.0	
Po — P7	Parallel Data Inputs	1.0/1.0	
DsR	Serial Data Input (Shift Right)	1.0/1.0	
D _{SL}	Serial Data Input (Shift Left)	1.0/1.0	
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	
CP MR	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	
Q ₀ — Q ₇	Flip-flop Outputs	20/10	

V_{CC} = Pin 24 GND = Pin 12 **FUNCTIONAL DESCRIPTION** — The '198 contains eight edge-triggered D-type flip-flops and the interstage gating required to perform synchronous parallel load, shift right, and shift left operations. Serial data enters at DSR for shift right and at DSL for shift left operations. Parallel data is applied to the $P_0 - P_7$ inputs. State changes are initiated by the rising edge of the clock. The DSR, DSL and $P_0 - P_7$ inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed.


The operating mode is determined by S_0 and S_1 , as shown in the Mode Select Table. Clocking of the flip-flops is inhibited when both S_0 and S_1 are LOW. To avoid inadvertently clocking the register, the Select inputs should only be changed while CP is HIGH. A LOW signal on \overline{MR} overrides all other inputs and forces the outputs LOW.

MODE SELECT TABLE

INPUTS				RESPONSE		
MR	СР	S ₀ * S ₁ *		MESI CNOL		
	×\\\×	X H L H	XHHLL	Asynchronous Reset; Outputs = LOW Parallel Load; Pn Qn Shift Right; DsR Q0, Q0 Q1, etc. Shift Left; DsL Q7, Q7 Q6, etc. Hold		

^{*}Select inputs should be changed only while CP is HIGH

LOGIC DIAGRAM

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74		UNITS	CONDITIONS	
		Min	Max	00	CONDITIONS	
lcc	Power Supply Current	XC		116 104	mA	$V_{CC} = Max; S_0, S_1 = 4.5 \text{ V}$ $CP = J\Gamma; \overline{MR}, P_0 = Gnd$

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{C}$ (See Section 3 for waveforms and load configurations)

,		54/74 CL = 15 pF RL = 400 Ω		UNITS	CONDITIONS
SYMBOL	PARAMETER				
		Min	Max	1	
fmax	Maximum Shift Frequency	25		MHz	Figs. 3-1, 3-8
tPLH tPHL	Propagation Delay CP to Q _n		26 30	ns	Figs. 3-1, 3-8
tPHL	Propagation Delay MR to Qn		35	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74		UNITS	CONDITIONS
		Min	Max	1 0,4113	CONDITIONS
t _s (H) t _s (L)	Setup Time HIGH or LOW Pn, DsL, DsR to CP	20 20		ns	
th (H) th (L)	Hold Time HIGH or LOW Pn, DsL, DsR to CP	0		ns	Fig. 3-6
t _s (H) t _s (L)	Setup Time HIGH or LOW So or S ₁ to CP	30 30		ns	- Fig. 3-6
th (H) th (L)	Hold Time HIGH or LOW So or S ₁ to CP	0		ns]
tw (H)	CP Pulse Width HIGH	20		ns	Fig. 3-8
tw (L)	MR Pulse Width LOW	20		ns	Fig. 3-16