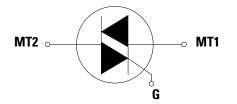

QJxx10xHx and QJxx10xx Series

10 A High Temperature Alternistor and Standard (High Communication) Triacs


Agency Approvals and Environmental

	Environmental Approvals
	RoHS
Note: Only L package is UL Recoon	ized under F71639

Main Features

Characteristic	Value	Unit
I _{T(RMS)}	10	А
$V_{\rm drm}/V_{\rm rrm}$	800	V
Ι _{GT (Q1)}	10 to 50	mA

Schematic Symbol

Description

This 10 A high temperature Alternistor and Standard TRIAC series, offered in TO-220AB, TO-220 isolated, and TO-263 packages, has 150 °C maximum junction temperature and 120 A ITSM (60 Hz). This series enables easier thermal management and higher surge handling capability in AC power control applications such as heater control, motor speed control, lighting controls, and static switching relays. Alternistor TRIAC operates in quadrant I, II, and III, and offers high performance in applications requiring high commutation capability.

Features & Benefits

- Recognized to UL 1557 as an Electrically Isolated Semiconductor Device
- Glass-passivated junctions
- Surge capability up to 120 A and 60 Hz
- The L-package has an isolation rating of 2500 VRMS
- Solid-state switching eliminates arcing or contact bounce that creates voltage transients
- No contacts to wear out from reaction of switching events
- Restricted (or limited) RFI generation, depending on activation point sine wave
- Requires only a small gate activation pulse in each halfcycle
- RoHS compliant

Applications

- Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls. Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods, and white goods appliances.
- Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.
- Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.
- Standard type devices normally operate in Quadrants I & III triggered from AC line

QJxx10xHx and QJxx10xx Series

10 A High Temperature Alternistor and Standard (High Communication) Triacs

Maximum Ratings – Alternistor Triac (3 Quadrants)

Symbol	Parameter	r		Value	Unit
		QJ8010LHy	$T_c = 120^{\circ}C$		
I _{T(RMS)}	RMS on-state current (full sine wave)	QJ8010RHy QJ8010NHy	$T_c = 130^{\circ}C$	10	А
1	Non repetitive surge peak on-state current	f = 50 Hz, t	: = 20 ms	100	А
I _{TSM}	(full cycle, T_J initial = 25°C)	f = 60 Hz, t	= 16.7 ms	120	A
l²t	l ² t Value for fusing	t _p = 8.3 ms		60	A ² s
di/dt	Critical rate of rise of on-state current	f = 60 Hz, T = 150°C		70	A/µs
I _{GTM}	Peak gate trigger current	$t_p = 20 \ \mu s, T_J = 150^{\circ}C$		4	А
P _{G(AV)}	Average gate power dissipation	T ₁ = 150°C		0.5	W
T _{stg}	Storage temperature range	-		-40 to 150	°C
T	Operating junction temperature range	-		-40 to 150	°C
$V_{\rm DSM}/V_{\rm RSM}$	Peak Non-repetitive Blocking Voltage	Pulse Width	n = 100 µs	$V_{\text{DRM}}/V_{\text{RRM}}$ + 200	V

Maximum Ratings - Standard Triac

Symbol	Paramet	Parameter			
V _{DSM} //V _{RSM}	Peak non-repetitive blocking voltage	Pulse Width =100 µs 800 V		$V_{\text{DRM}}/V_{\text{RRM}}$ + 200 V	V
I	RMS on-state current (full sine wave)	QJxx10Ly	$T_c = 120^{\circ}C$	10	А
T(RMS)		QJxx10Ry/QJxx10Ny	$T_c = 130^{\circ}C$	10	A
1	Non repetitive surge peak on-state current	f = 50 Hz, t = 20 ms	QJxx10xy	100	А
ITSM	(full cycle, T_J initial = 25°C)	f = 60 Hz, t = 16.7 ms	QJxx10xy	120	A
l²t	I ² t Value for fusing	t _p = 8.3 ms	QJxx10xy	60	A²s
di/dt	Critical rate of rise of on-state current I_{g} = 200mA with \leq 0.1 μs rise time	f = 60 Hz, T _J =150 °C		70	A/µs
I _{GTM}	Peak gate trigger current	$t_p = 20 \ \mu s, T_J =$	=150 °C	4	A/µs
P _{G(AV)}	Average gate power dissipation	T _J =150 °C		0.5	W
T _{stg}	Storage temperature range	_		-40 to 150	°C
T	Operating junction temperature range	-		-40 to 150	°C

Note: xx=voltage/10, x=package, y=sensitivity

Thermal Characteristics

Symbol	Parameter	Value	Unit	
R _{e(J-C)}	Thermal Resistance, junction-to-case (AC)	QJ8010RHy/QJ8010NHy QJ8010Ry/QJ8010Ny	1.2	°C/W
0(5.6)		QJ8010LHy/QJ8010Ly	2.3	
P	The second Desistances is setting to eachieve (AC)	QJ8010RHy/QJ8010Ry	45	00000
$R_{\Theta(J\text{-}A)}$	Thermal Resistance, junction-to-ambient (AC)	QJ8010LHy/QJ8010Ly	90	°C/W

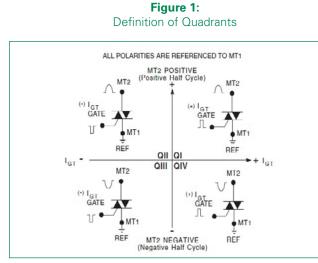
10 A High Temperature Alternistor and Standard (High Communication) Triacs

Electrical Characteristics (TJ = 25°C, unless otherwise specified) – Alternistor Triac (3 Quadrants)

Cumple of	Description	Conditions		Q	J8010x	H3	QJ	18010x	H4	QJ	18010x	H5	Unit
Symbol	Description	Conditions		MIN	ТҮР	МАХ	MIN	ТҮР	MAX	MIN	ТҮР	MAX	Unit
I _{GT}	DC Gate Trigger Current	$V_{_{ m D}}$ = 12 V, $R_{_{ m L}}$ = 60 Ω	- -	-	-	10	-	-	35	-	-	50	mA
V _{GT}	DC Gate Trigger Voltage	$V_{_{ m D}}$ = 12 V, R_{_{ m L}}= 60 Ω	- -	-	-	1.3	-	-	1.3	-	-	1.3	V
V_{gd}	Gate Non-trigger Voltage	$V_{_{D}} = V_{_{DRM}}, \ R_{_{L}} = 3.3 \ k\Omega, T_{_{J}} = 150 \ ^{\circ}C$	- -	0.2	-	-	0.2	-	-	0.2	-	-	V
I _H	Holding Current	$I_{T} = 100 \text{ mA}$		-	-	15	-	-	40	-	-	50	mA
dv/dt	Critical Rate-of-rise of	$V_{_{D}} = V_{_{DRM}}$, Gate Open, $T_{_{J}} = 150 \text{ °C}$		150	-	-	450	-	-	700	-	-	V/µs
uv/ut	Off-stage Voltage	$V_{_{D}}$ = 2/3 $V_{_{DRM}}$, Gate Open, $T_{_{J}}$ = 150 °C		200	-	-	600	-	-	1000	-	-	v/µs
(dv/dt)c		$(di/dt)/c = 6.5 \text{ A/ms}, \text{TJ} = 150 ^{\circ}\text{C}$		10	-	-	20	-	-	30	-	-	V/µs
t _{gt}	Turn-on Time	$I_{g} = 2 \times I_{gT}$, $P_{W} = 15 \mu s$, $IT = 14.1 \text{ A}$	(pk)	-	4	-	-	-	7	-	-	9	-

Electrical Characteristics (TJ = 25°C, unless otherwise specified) — Standard Triac

Cumhal	Description	Conditions	Quadra		V	alue	11
Symbol	Description	Conditions	Quadra	ant	Qxx10x4	Qxx10x5	Unit
	DC Cata Trigger Current	V 12V B 60.0	- -	MAX.	25	50	
I _{GT}	DC Gate Trigger Current	$V_{D} = 12V R_{L} = 60 \Omega$	IV	TYP.	50	75	mA
V _{gt}	DC Gate Trigger Voltage	$V_{_{D}}$ = 12V $R_{_{L}}$ = 60 Ω	ALL	MAX.		1.3	V
V _{gd}	Gate Non-trigger Voltage	$V_{_D} = V_{_{DRM}} R_{_L} = 3.3 \text{ k}\Omega T_{_J} = 150^{\circ}\text{C}$	ALL	MIN.	0.2		V
I _H	Holding Current	$I_{T} = 100 \text{mA}$		MAX.	35	50	mA
dv/dt	Critical Rate-of-rise of Off-	$V_{_{D}} = V_{_{DRM}}$ Gate Open $T_{_{J}} = 150^{\circ}C$	800V	MIN.	600	1000	1///
av/at	stage Voltage	$V_{_{\rm D}}$ = 2/3 $V_{_{\rm DRM}}$ Gate Open $T_{_{\rm J}}$ = 150°C	8007	IVIIIN.	800	1200	V/µs
(dv/dt)c		$(di/dt)c = 6.5 \text{ A/ms } T_{J} = 150^{\circ}\text{C}$		TYP.	3	4	V/µs
	Turn on Time		- -	TYP.	1-2-6	1-2-6	
t _{gt}	Turn-on Time $I_g = 2 \times I_{gT} P_w = 15 \mu s I_T = 14.1 A(pk)$ IV	-on Time $I_{g} = 2 \times I_{gT} P_{W} = 15 \mu s I_{T} = 14.1 A(pk)$		ι ΥΡ.	10	11	μs


Static Characteristics

Symbol	Description	Conditions	Maximum Value	Unit
V _{TM}	Peak On-state Voltage	$I_{_{TM}} = 14.1A \ t_{_{p}} = 380 \ \mu s$	1.60	V
1 /1	Off-state Current, Peak Repetitive	$V_{\rm D} = V_{\rm DRM} = V_{\rm RRM,} \ T_{\rm J} = 25^{\circ}C$	10	μA
I _{DRM} /I _{RRM}	On-State Current, Peak Repetitive	$V_{\rm D} = V_{\rm DRM} = V_{\rm RRM}, T_{\rm J} = 150^{\circ}{\rm C}$	4	mA

QJxx10xHx and QJxx10xx Series

10 A High Temperature Alternistor and Standard (High Communication) Triacs

Note: Alternistors will not operate in QIV

Figure 3: Normalized DC Holding Current vs. Junction Temperature

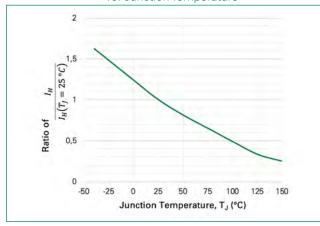
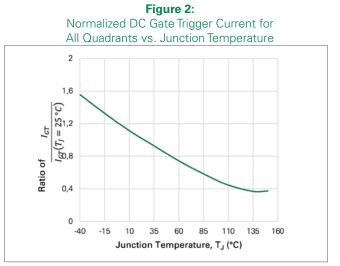
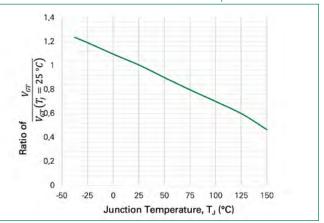




Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

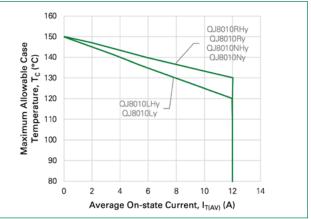


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

4

QJxx10xHx and QJxx10xx Series

10 A High Temperature Alternistor and Standard (High Communication) Triacs

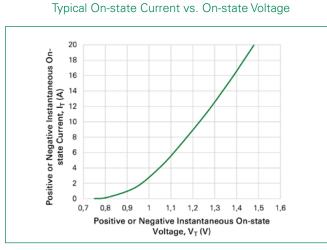
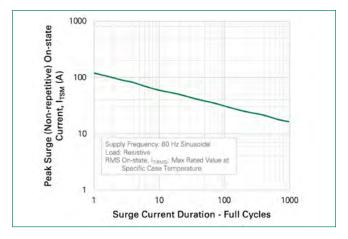
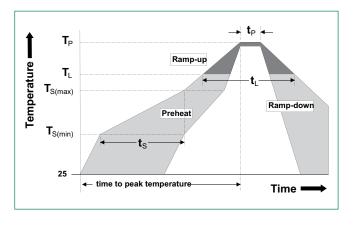



Figure 7:

Figure 8: Surge Peak On-state Current vs. Number of Cycles

Notes:

1. Gate control may be lost during and immediately following surge current interval.


2. Overload may not be repeated until junction temperature has returned to steady-state rated value

QJxx10xHx and QJxx10xx Series

10 A High Temperature Alternistor and Standard (High Communication) Triacs

Soldering Parameters

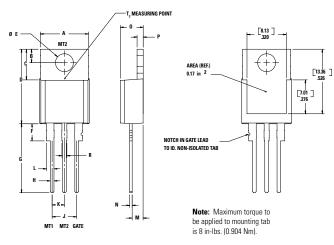
Reflow Condi	tion	Pb – Free assembly
	- Temperature Min (T _{s(min)})	150°C
Pre Heat	- Temperature Max (T _{s(max)})	200°C
	- Time (min to max) (t _s)	60 to 180 s
Average ramp	o up rate (Liquidus Temp) (T_L) to peak	5°C/second max
T _{S(max)} to T _L - F	amp-up Rate	5°C/second max
Reflow	- Temperature (T _L) (Liquidus)	217°C
nenow	- Time (min to max) (t _s)	60 to 150 seconds
Peak Tempera	nture (T _P)	260 °C (±5 °C)
Time within S	5°C of actual peak Temperature (t _p)	20 to 40 seconds
Ramp-down I	5°C/second max	
Time 25°C to	peak Temperature (T _P)	8 minutes Max.
Do not excee	d	280°C

Physical Specifications

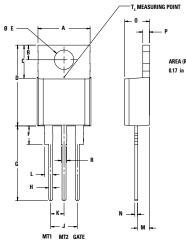
Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized epoxy meeting flammabilty classification 94V-0.
Terminal Material	Copper Alloy

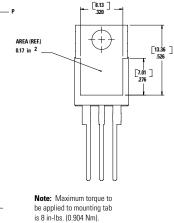
Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Environmental Specifications

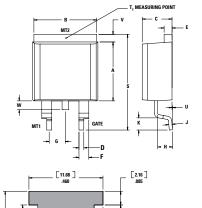
Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C, 15-min dwell-time
Temperature/Humidity	EIA/JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3 Test A
Lead Bend	MIL-STD-750, M-2036 Cond E


QJxx10xHx and QJxx10xx Series


10 A High Temperature Alternistor and Standard (High Communication) Triacs

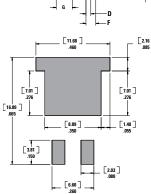
Dimension	Milimeters		Inches	
	Min	Max	Min	Max
Α	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
К	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Dimensions - TO-220AB (L-Package) - Isolated Mounting Tab

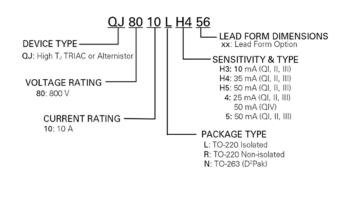

Dimension	Milimeteres		Inches	
	Min	Max	Min	Max
Α	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
К	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
м	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22



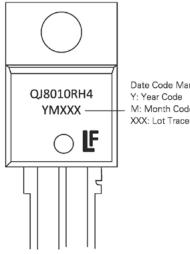
QJxx10xHx and QJxx10xx Series


10 A High Temperature Alternistor and Standard (High Communication) Triacs

Dimensions - TO-263AB (N-Package) - D2-PAK Surface Mount



Dimension	Inches		Millimeters	
	Min	Max	Min	Max
Α	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
E	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
К	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
w	0.040	0.070	1.02	1.78



Part Numbering System

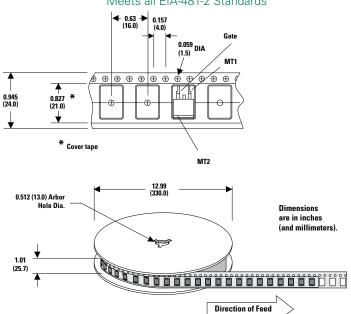
Part Marking System

TO-220 AB (L and R package) TO-263 AB (N package)

Date Code Marking M: Month Code XXX: Lot Trace Code

QJxx10xHx and QJxx10xx Series

10 A High Temperature Alternistor and Standard (High Communication) Triacs


Product Selector

Part Number	Gate Sensitivity Quadrants		T	De alas as
	1 – 11 – 111	IV	Туре	Package
QJ8010LH3	10 mA	-	Alternistor Triac	TO-220L
QJ8010RH3	10 mA	-	Alternistor Triac	TO-220R
QJ8010NH3	10 mA	-	Alternistor Triac	TO-263 D ² PAK
QJ8010LH4	35 mA	_	Alternistor Triac	TO-220L
QJ8010RH4	35 mA	-	Alternistor Triac	TO-220R
QJ8010NH4	35 mA	_	Alternistor Triac	TO-263 D ² PAK
QJ8010LH5	50 mA	-	Alternistor Triac	TO-220L
QJ8010RH5	50 mA	_	Alternistor Triac	TO-220R
QJ8010NH5	50 mA	-	Alternistor Triac	TO-263 D ² PAK
QJ8010L4	25 mA	50 mA	Standard Triac	TO-220L
QJ8010R4	25 mA	50 mA	Standard Triac	TO-220R
QJ8010N4	25 mA	50 mA	Standard Triac	TO-263 D ² PAK
QJ8010L5	50 mA	TYP 75 mA	Standard Triac	TO-220L
QJ8010R5	50 mA	TYP 75 mA	Standard Triac	TO-220R
QJ8010N5	50 mA	TYP 75 mA	Standard Triac	TO-263 D ² PAK

Packing Options

Part Number	Marking	Weight	Packing Mode	M.O.Q
QJ8010RHyTP	QJ8010RHy	2.2 g	Tube Pack	1000 (50 per tube)
QJ8010LHyTP	QJ8010LHy	2.2 g	Tube Pack	1000 (50 per tube)
QJ8010NHyTP	QJ8010NHy	1.6 g	Tube Pack	1000 (50 per tube)
QJ8010NHyRP	QJ8010NHy	1.6 g	Embossed Carrier	500
QJ8010LyTP	QJ8010Ly	2.2 g	Tube Pack	1000 (50 per tube)
QJ8010RyTP	QJ8010Ry	2.2 g	Tube Pack	1000 (50 per tube)
QJ8010NyTP	QJ8010Ny	1.6 g	Tube Pack	1000 (50 per tube)
QJ8010NyRP	QJ8010Ny	1.6 g	Embossed Carrier	500

TO-263 Embossed Carrier Reel Pack (RP) Specifications Meets all EIA-481-2 Standards

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly forth in applicable Littelfuse product documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:

QJ8010NH4RP QJ8010RH4TP QJ8010LH4TP QJ8010L4TP QJ8010L5TP QJ8010LH3TP QJ8010R4TP QJ8010R5TP QJ8010RH3TP QJ8010N4RP QJ8010N4TP QJ8010N5RP QJ8010N5TP QJ8010NH3RP QJ8010NH3TP QJ8010LH5TP QJ8010NH4TP QJ8010NH5TP QJ8010RH5TP QJ8010NH5RP QJ6010N4TP QJ6010R5TP QJ6010L4TP QJ6010LH3TP QJ6010L5TP QJ6010LH5TP QJ6010RH3TP QJ6010LH4TP QJ6010NH3TP QJ6010NH3RP QJ6010R4TP QJ6010NH5RP QJ6010N5RP QJ6010RH4TP QJ6010N4RP QJ6010NH5TP QJ6010NH4TP QJ6010NH4RP QJ6010N5TP QJ6010RH5TP