

54LS95B, 54LS96, 54LS295B, 54LS395A

Microcircuits, Digital, Bipolar, Low-Power Schottky TTL, Shift Registers, Cascadable, Monolithic Silicon

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

INCH-POUND
MIL-M-38510/306E
17 June 2003
SUPERSEDING
MIL-M-38510/306D
16 NOVEMBER 1987

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, SHIFT REGISTERS, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, TTL, low power, shift register microcircuits. Two product assurance classes and a choice of case outlines and lead finishes and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	4 bit bi-directional shift register
02	4 bit parallel-access shift register
03	4 bit parallel-access shift register
04	5 bit shift register
05	8 bit parallel-out shift register
06	4 bit right-shift, left-shift register, 3-state outputs
07	4 bit cascadable shift register, 3-state outputs
08	8 bit parallel-in shift register with clock inhibit
09	8 bit parallel-in shift register with clear

1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535.

Beneficial comments (recommendations, additions deletions) and any pertinent data which may be used in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P.O. Box 3990, Columbus OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FSC 5962

1.2.3 <u>Case outlines.</u> The case outlines should be as designated in MIL-STD-1835 and as follows:

Descriptive designator	<u>Terminals</u>	Package style
CDEDS E14 or CDEDS E14	14	Flat pack
		•
	14	Flat pack
GDIP1-T14 or CDIP2-T14	14	Dual-in-line
GDFP1-F14 or CDFP2-F14	14	Flat pack
GDIP1-T16 or CDIP2-T16	16	Dual-in-line
GDFP2-F16 or CDFP3-F16	16	Flat pack
CQCC2-N20	20	Square leadless chip carrier
CQCC1-N20	20	Square leadless chip carrier
	GDFP5-F14 or CDFP6-F14 GDFP4-14 GDIP1-T14 or CDIP2-T14 GDFP1-F14 or CDFP2-F14 GDIP1-T16 or CDIP2-T16 GDFP2-F16 or CDFP3-F16 CQCC2-N20	GDFP5-F14 or CDFP6-F14 14 GDFP4-14 14 GDIP1-T14 or CDIP2-T14 14 GDIP1-F14 or CDFP2-F14 14 GDIP1-T16 or CDIP2-T16 16 GDFP2-F16 or CDFP3-F16 16 CQCC2-N20 20

1.3 Absolute maximum ratings.

Supply voltage range	0.5 V dc to 7.0 V dc
Input voltage range	1.5 V dc at -18 mA to 5.5 V dc
Storage temperature range	65° to +150°C
Maximum power dissipation per register, (P_D) $\underline{1}/$:	
Device type 01	127 mW dc
Device type 02, 03	116 mW dc
Device type 04	110 mW dc
Device type 05	149 mW dc
Device type 06, 07	160 mW dc
Device type 08	198 mW dc
Device type 09	209 mW dc
Lead temperature (soldering, 10 seconds)	300°C
Thermal resistance, junction to case (θ_{JC}):	
Cases A, B, C, D, E, F, 2, and X	(See MIL-STD-1835)
Junction temperature (T _J) <u>2</u> /	175°C

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	2.0 V dc 0.7 V dc
Device type 01, 03, 05, 07, 09	20 ns
Device type 02	
Device type 04, 06, 08	25 ns
Minimum clear pulse width:	
Device type 01, 09	20 ns
Device type 02	15 ns
Device type 04	30 ns
Device type 05, 07	25 ns
Minimum load pulse width:	
Device type 08	30 ns
Minimum setup time at mode control:	
Device type 01	
Device type 03, 06	20 ns

^{1/} Must withstand the added P_D due to short-circuit test (e.g., I_{OS}). 2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

Minimum setup time at shift/load:

Daviss type 02	25
Device type 02	25 NS
Device type 07	
Device type 08	42 ns
Device type 09	30 ns
Minimum setup time at serial data:	
Device type 08	10 ns
Minimum setup time at serial or parallel data:	
Device type 01, 02, 03, 05, 06, 07	20 ns
Device type 04	
Device type 09	18 ns
Minimum setup time at preset:	
Device type 04	30 ns
Minimum setup time at inhibit:	
Device type 08	30 ns
Minimum hold time:	
Device type 01, 02, 03, 04, 05, 07	10 ns
Device type 06	20 ns
Device type 08	3 ns
Device type 09	2 ns
Minimum enable or inhibit time of clock:	
Device type 03	20 ns
Maximum release time shift/load:	
Device type 02	10 ns
AL	

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figure 1.
 - 3.3.2 Truth tables. The truth tables and timing diagrams shall be as specified on figure 2.
 - 3.3.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be _maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VAS) upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol		Device	Lim	Limits		
		-55°C ≤ T _C ≤ +125°C unless otherwise specified		types	Min	Max	
High-level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}$ $V_{IN} = 2.0 \text{ V}$	I _{OH} = -1.0 mA	06,07	2.4		V
			Ι _{ΟΗ} = -400 μΑ	01,02,03 04,05, 07 (QD'), 08,09	2.5		V
Low-level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V},$ $V_{IN} = 0.7 \text{ V}$	I _{OL} = 4 mA	01,02,03 04,05, 07 (QD'), 08,09		0.4	V
			I _{OL} = 12 mA	06,07			
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V, I _{IN}	_N = -18 mA, T _C = 25°C	All		-1.5	٧
High-level input current for all	I _{IH1}	V _{CC} = 5.5 V, I _{IN} = 2.7 V		01,02,05, 06,07,08,		20	μΑ
inputs except S/L for type 08	I _{IH2}	V _{CC} = 5.5 V, I _{IN}	_V = 5.5 V	09		100	
High-level input current at any	I _{IH3}	$V_{CC} = 5.5 \text{ V}, I_{IN} = 2.7 \text{ V}$		03		20	μА
input except mode	I _{IH4}	V _{CC} = 5.5 V, I _{IN} = 5.5 V				100	
High-level input current at any	I _{IH5}	$V_{CC} = 5.5 \text{ V}, I_{IN}$	N = 2.7 V	04		20	μА
input except preset enable	I _{IH6}	V _{CC} = 5.5 V, I _{IN}	_V = 5.5 V			100	
High-level input current at mode	I _{IH7}	V _{CC} = 5.5 V, I _{IN}	_N = 2.7 V	03		40	μΑ
	I _{IH8}	V _{CC} = 5.5 V, I _{IN} = 5.5 V				200	
High-level input current at preset	I _{IH9}	$V_{CC} = 5.5 \text{ V}, I_{IN}$	$V_{CC} = 5.5 \text{ V}, I_{IN} = 2.7 \text{ V}$			100	μΑ
enable	I _{IH10}	V _{CC} = 5.5 V, I _{IN} = 5.5 V				500	
High-level input current at S/L	I _{IH11}	V _{CC} = 5.5 V, I _{IN}	u = 2.7 V	08		60	μΑ
	I _{IH12}	$V_{CC} = 5.5 \text{ V}, I_{IN}$	_N = 5.5 V			300	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions 1/	Device	Lim	nits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
Off-state output current, high level voltage applied	Гохн	$V_{CC} = 5.5 \text{ V}, V_{O} = 2.7 \text{ V}$	06,07		20	μΑ
Off-state output current, low level voltage applied	l _{OZL}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	06,07		-20	μΑ
Low-level input	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01,02,06	03	44	mA
current (for all inputs except S/L,			05	10	44	
serial in & data			07	03	40	
for types 08 and 09)			08,09	001	72	
Low-level input current at any input except clock	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	03	06	76	mA
Low-level input current at any input except preset enable	I _{IL3}		04	16	4	mA
Low-level input current at clock	I _{IL4}		03	03	44	mA
Low-level input current at preset enable	I _{IL5}		04	6	-2.0	mA
Low-level input current at data	I _{IL6}		08	100	380	mA
and serial in			09	100	340	mA
Low-level input current at S/L	I _{IL7}		08	001	-1.14	mA
			09	001	380	mA
Short-circuit output current	I _{OS}	V _{CC} = 5.5 V <u>2</u> /	01,02,03, 04,05,08, 09	-15	-100	mA
			06,07	-15	-130	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions 1/	Device	Lim	nits	Unit
		$-55^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq +125^{\circ}\text{C}$ unless otherwise specified	types	Min	Max	
Supply current	I _{CC}	V _{CC} = 5.5 V	04		20	mA
			02,03		21	
			01		23	
			05		27	
			06		29	
			07		34	
			08		36	
			09		38	
Maximum shift	f _{MAX}	V _{CC} = 5.0 V	04	17		MHz
frequency		06	18			
			01,03, 05,07	20		
			02	25		
			08	20		
			09	20		
Propagation delay time, low-to-high level from clock	t _{PLH1}	V_{CC} = 5.0 V, C_L = 50 pF ±10% R_L = 2 k Ω for types 01 thru 05, 08 and 09. See figures 9 and 10 for R_L for	01,02	5	41	ns
level from clock		types 06 and 07	03,05		48	
			07		56	
			04		68	
			06		46	
			08		58	
			09		40	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions 1/	Device	Lim	nits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
Propagation delay time, low-to-high	t _{PLH2}	V_{CC} = 5.0, C_L = 50 pF ±10% R_L = 2 k Ω for types 01 thru 05, 08 and	02	5	53	ns
level form preset or preset enable		09. See figures 9 and 10 for R∟ types 06 and 07	04		60	
Propagation delay time, high-to-low	t _{PLH1}		01,02	5	47	ns
level from clock			03,05,07		56	
			04		68	
			06		52	
			08		58	
			09		46	
Propagation delay time, high-to-low	t _{PLH2}		01,02	05	53	ns
level from clear			07		56	
			05		62	
			04		90	
Propagation delay time, low to high level from S/L	t _{PLH5}		08,09	5	52	ns
Propagation delay time, high to low level from S/L or clear	t _{PHL5}		08,09	5	52	ns
Propagation delay time, high to low level from data	t _{PHL3}		08	5	46	ns
Propagation delay time, low to high level from data	t _{РLН3}		08	5	39	ns

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions 1/	Device	Lim	nits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
Propagation delay time, low to high level from data	t _{PLH4}	V_{CC} = 5.0 V, C_L = 50 pF ±10% R_L = 2kΩ for types 01 thru 05, 08 and 09. See figures 9 and 10 for R_L types 06 and 07	08	5	46	ns
Propagation delay time, high to low level from data	t _{PHL4}		08	5	39	ns
Output enable time to low level	t _{ZL}	See figures 9 and 10 for conditions	06	5	45	ns
			07	5	53	ns
Output enable time to high level	t _{ZH}		06	5	39	ns
			07		53	
Output disable time from low level	t _{LZ}		07	5	53	ns
			06		71	
Output disable time from high level	t _{HZ}		07	5	53	ns
			06		84	

 $[\]underline{1}/$ Complete terminal condition shall be as specified in table III. $\underline{2}/$ Not more than one output should be shorted at a time.

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535 test requirements	Class S	Class B
	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9,	1*, 2, 3, 9
	10, 11	
Group A test requirements	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
	9, 10, 11	9, 10, 11
Group B test when using the method 5005	1, 2, 3	N/A
QCI option.	9, 10, 11	IN/A
Group C end-point electrical	1, 2, 3,	1, 2, 3
parameters	9, 10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1.

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535 .
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
 - 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Device	type 01	Device ty	/pe 02	Device	type 03	Device	type 04
				CAS	SES			
Pin number	2, X	E,F	2, X	E,F	2, X	A,B,C, and D	2, X	E,F
1	NC	CLEAR	NC	CLR	NC	SER INP	NC	CLK
2	CLEAR	SHF RHT SER INP	CLR	J	SER INP	А	CLK	Α
3	SHF RHT SER INP	Α	J	K	Α	В	Α	В
4	Α	В	K	Α	В	С	В	С
5	В	С	Α	В	NC	D	С	Vcc
6	NC	D	NC	С	С	MODE CONT	NC	D
7	С	SHF LEFT SER INP	В	D	NC	GND	V _{CC}	Е
8	D	GND	O	GND	D	CLK 2 L SHF LOAD	D	PRESET ENABLE
9	SHF LEFT SER INP	SO	D	SHF/ LOAD	MODE CONT	CLK1 R SHF	E	SER INP
10	GND	S1	GND	CLK	GND	QD	PRESET ENABLE	QE
11	NC	CLOCK	NC	QD	NC	QC	NC	QD
12	SO	QD	SHF/LOAD	Q D	CLK 2 L SHF/LOAD	QB	SER INP	GND
13	S1	QC	CLK	QC	CLK1 R SHF	QA	QE	QC
14	CLK	QB	$\overline{\overline{Q}}$ D	QB	QD	V_{CC}	QD	QB
15	QD	QA	QD	QA	NC		GND	QA
16	NC	V _{CC}	NC	Vcc	QC		NC	CLR
17	QC		QC		NC		QC	
18	QB		QB		QB		QB	
19	QA		QA		QA		QA	
20	V _{CC}		V _{CC}		V _{CC}		CLR	

FIGURE 1. Terminal connections.

	Device	e type 05	Device	type 06	Device	type 07	Device	ype 08
Pin number	2, X	A,B,C, and D	2, X	A,B,C and D	2, X	E,F	2, X	E, F
1	NC	Α	NC	SER INP	NC	CLR	NC	SHF LOAD
2	Α	В	SER INP	А	CLR	SER INP	SHF LOAD	CLOCK
3	В	QA	Α	В	SER INP	Α	CLOCK	Е
4	QA	QB	В	С	Α	В	Е	F
5	NC	QC	NC	D	В	С	F	G
6	QB	QD	С	MODE CONT	NC	D	NC	Н
7	NC	GND	NC	GND	С	LOAD SHF	G	QH
8	QC	CLK	D	OUTPUT CONT	D	GND	Н	GND
9	QD	CLR	MODE CONT	CLK	LOAD SHF	OUTPUT CONT	QH	QH
10	GND	QE	GND	QD	GND	CLK	GND	SER INP
11	NC	QF	NC	QC	NC	QD'	NC	Α
12	CLK	QG	OUTPUT CONT	QB	OUTPUT CONT	QD	QH	В
13	CLR	QH	CLK	QA	CLK	QC	SER INP	С
14	QE	Vcc	QD	Vcc	QD'	QB	Α	D
15	NC		NC		QD	QA	В	CLOCK INHIBIT
16	QF		QC		NC	CC	NC	V _{CC}
17	NC		NC		QC		С	
18	QG		QB		QB		D	
19	QH		QA		QA		CLOCK INHIBIT	
20	V_{CC}		V_{CC}		V_{CC}		V_{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

	Devi	ce type 09
Pin	2, X	E,F
number		
1	NC	SERIAL INPUT
2	SERIAL INPUT	A
3	А	В
4	В	С
5	С	D
6	NC	CLOCK INHIBIT
7	D	CLOCK
8	CLOCK INHIBIT	GND
9	CLK	CLEAR
10	GND	Е
11	NC	F
12	CLR	G
13	E	OUTPUT QH
14	F	INPUT H
15	G	SHIFT LOAD
16	NC	V_{CC}
17	QH	
18	INPUT H	
19	SHIFT LOAD	
20	V_{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

Device type 01

				INPU	TS					OUTPUTS				
CLEAR	MODE CLOC		CLOCK	SEI	RIAL		PAR/	ALLEL		Q_A	Q_B	Q_{C}	Q_D	
CLLAIN	S1	S0	CLOCK	LEFT	RIGHT	Α	В	С	D	3	38	ÿ	QD	
L	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	
Н	Χ	Χ	L'	Χ	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}	
Н	Н	Н	↑	Х	Х	а	b	С	d	а	b	С	d	
Н	L	Н	1	Х	Н	Х	Х	Х	Х	Н	Q _{An}	Q_{Bn}	Q _{Cn}	
Н	L	Н	1	Х	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}	
Н	Н	L	1	Н	Х	Χ	Х	Χ	Х	Q _{Bn}	Q_{Cn}	Q_{Dn}	Н	
Н	Η	L	1	L	Х	Х	Х	Χ	Х	Q_{Bn}	Q _{Cn}	Q_{Dn}	L	
Н	Ĺ	Ĺ	Χ	Χ	Χ	Χ	Х	Χ	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}	

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

↑ = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 $Q_{A0},\ Q_{B0},\ Q_{C0},\ Q_{D0} = level\ of\ Q_A,\ Q_B,\ Q_C,\ or\ Q_D,\ respectively,\ before\ the$ indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the most recent \uparrow transition of the clock.

Typical clear, load, right-shift, left shift, inhibit, and clear sequences.

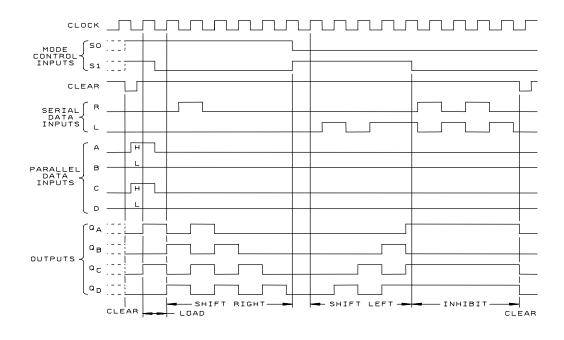


FIGURE 2. <u>Truth tables and timing diagrams.</u>

Device type 02

			INPL	JTS					OUTPUTS						
CLEAD	SHIFT/ CLOCK		SEF	RIAL	PARALLEL				0	0		0	\overline{Q}_{D}		
CLEAR	LOAD	CLOCK	J	K	Α	В	С	D	Q_A	Q_B	Qc	Q_D			
L	Х	Χ	Χ	Χ	Х	Х	Χ	Х	L	L	L	L	Н		
Н	L	1	X	Х	а	b	С	d	а	b	С	d	d		
Н	Н	L	Х	Х	Х	Х	Х	Х	Q_{A0}	Q_{B0}	Q _{C0}	Q_{D0}	\overline{Q}_{D0}		
Н	Н	↑	L	Н	Х	Х	Χ	Х	Q_{A0}	Q_{A0}	Q_{Bn}	Q _{Cn}	\overline{Q}_{Cn}		
Н	Н	1	L	L	Х	Х	Х	Х	L	Q_{An}	Q_{Bn}	Q _{Cn}	$\overline{\overline{Q}}_{Cn}$		
Н	Н	1	Н	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}		
Н	Н	1	Н	Ĺ	Х	Х	Х	Х	$\overline{\overline{Q}}_{An}$	Q_{An}	Q_{Bn}	Q_{Cn}	$\overline{\overline{Q}}_{Cn}$		

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

↑ = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , = the level of Q_A , Q_B , or Q_C , respectively, before the most recent transition of the clock.

Typical clear, shift, and load sequences.

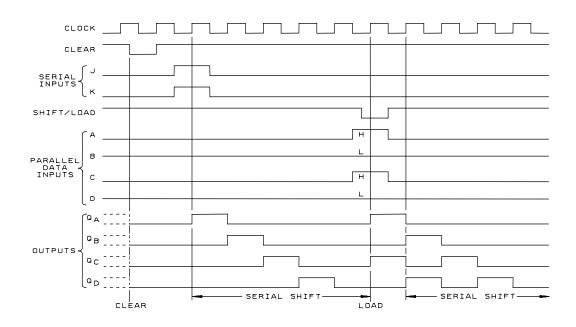


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 03

MODE	CLO	CKS	SERIAL		PARA	LLEL		0.	Q_B	0-	0-
CONTROL	2 (L)	1 (R)	SERIAL	Α	В	С	D	Q_A	QΒ	QC	Q_{D}
Н	Н	Χ	X	Χ	Χ	Χ	X	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
Н	↓	Х	Χ	а	b	С	d	а	b	С	d
Н	↓	Х	Χ	Q _B ↑	Q _C ↑	Q _D ↑	d	Q_{Bn}	Q _{Cn}	Q_{Dn}	d
L	L	Н	X	Χ	X	X	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
L	X	↓	Н	Х	Х	X	Х	Н	Q_{An}	Q_{Bn}	Q_{Cn}
L	Х	↓	L	Х	Х	Х	Χ	L	Q_{An}	Q_{Bn}	Q_{Cn}
1	L	L	Χ	Х	Х	Х	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
↓	L	L	Х	Х	Х	Х	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
↓	L	Н	Χ	Х	Х	Х	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
1	Н	L	Х	Х	Х	Х	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
1	Н	Н	Х	Χ	Х	Х	Χ	Q_{A0}	Q _{B0}	Q_{C0}	Q_{D0}

H = High level (steady state), L = Low level (steady state),

FIGURE 2. Truth tables and timing diagrams - Continued.

 $^{^{\}dagger}$ Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered to input D.

X = Irrelevant (any input, including transitions)

^{↓=} Transition from high to low level, ↑= Transition from low to high level a, b, c,

d = the level of steady state input at inputs A, B, C, or D, respectively.

 $[\]begin{split} Q_{A0},\,Q_{B0},\,Q_{C0},\,Q_{D0} = level\;of\;Q_A,\,Q_B,\,Q_C,\,or\;Q_D,\,respectively,\\ before\;the\;indicated\;steady\;state\;input\;conditions\;were\;established. \end{split}$

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, most recent \downarrow transition of the clock.

Device type 04

			INPL	JTS									
CLEAR	PRESET			PRESE	Τ		CLOCK	SERIAL	Q_A	Q_B	Q_{C}	Q_D	Q_{E}
OLLAIN	ENABLE	Α	В	C	D	Е	OLOGIC	OLIVIAL	QΑ	3	QC	30	QΕ
L	L	X	Χ	Χ	Х	X	X	X	L	L	L	L	L
L	X	L	L	L	L	L	X	Х	L	L	L	L	L
Н	Н	Н	Н	Н	Н	Н	X	Х	Н	Н	Н	Н	Н
Н	Н	L	L	L	L	L	L	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}	Q_{E0}
Н	Н	Н	L	Н	L	Н	L	Х	Н	Q_{B0}	Н	Q_{D0}	Н
Н	L	Х	Χ	Χ	Х	Х	L	Х	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}	Q_{E0}
Н	L	Χ	Χ	Х	Х	Х	↑	Н	Н	Q_{An}	Q_{Bn}	Q_{Cn}	Q_{Dn}
Н	L	Χ	Х	Х	Х	Х	↑	L	L	Q _{An}	Q_{Bn}	Q _{Cn}	Q_{Dn}

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

↑ = transition from low to high level

 Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B , etc., respectively before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , etc. = the level of Q_A , Q_B , etc., respectively before the most recent \uparrow transition of the clock.

Typical clear, shift, preset and shift sequences

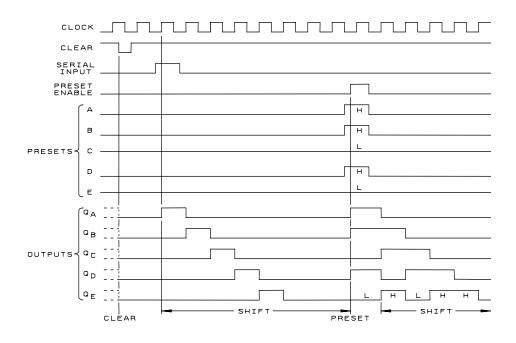


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 05

	INPUT	S		OUTPUTS				
CLEAR	CLOCK	Α	В	Q_A	Q _B	. Q _H		
L	X	Χ	Χ	L	L	L		
Н	L	Χ	Х	Q_{A0}	Q_{B0}	Q_{H0}		
Н	1	Η	Н	Н	Q_{An}	Q_{Gn}		
Н	1	L	Х	L	Q_{An}	Q_{Gn}		
Н	1	Х	L	L	Q _{An}	Q_{Gn}		

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

↑ = transition from low to high level

 $Q_{\text{A0}}, \ Q_{\text{B0}}, \ Q_{\text{H0}} = \text{the level of } Q_{\text{A}}, \ Q_{\text{B}}, \ \text{or } Q_{\text{H}}, \ \text{respectively, before the indicated} \\ \text{steady state input conditions were established.}$

 Q_{An} , Q_{Gn} = the level of Q_A , or Q_G before the most recent \uparrow transition of the clock; indicates a one-bit shift.

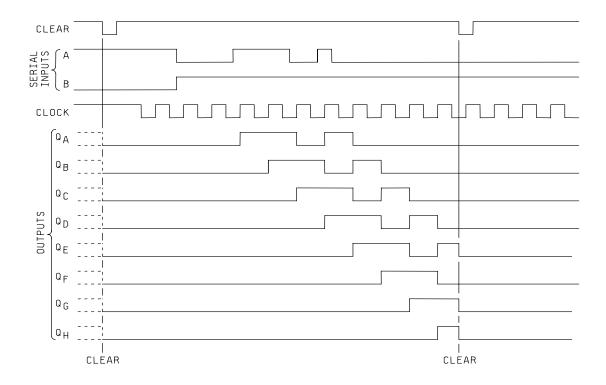


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 06

		INPUT	S				OUTPUTS					
MODE	CLOCK	SERIAL		PARA	LLEL		Q_A	Q_B	Q_{C}	Q_D		
CONTROL	OLOGIK	OLIVIAL	Α	В	С	D	34	y	3	3		
Н	Н	Χ	X	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}		
Н	↓	Х	а	b	С	d	а	b	С	d		
Н	↓	Х	Q _B ↑	Q _C ↑	Q _D ↑	d	Q_{Bn}	Q _{Cn}	Q_{Dn}	d		
L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}		
L	↓	Н	Х	X	X	Х	Н	Q_{An}	Q_{Bn}	Q_{Cn}		
L	↓	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}		

When the output control is low, the outputs are disabled to high impedance state. however, sequential operation of the registers is not affected.

- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- \downarrow = transition from high to low level.
- a, b, c,d = the level of steady state input at inputs A, B, C, or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most recent \downarrow transition of the clock.

Device type 07

	INPUTS									3 STATE OUTPUTS			
CLEAR	LOAD/SHIFT	CLOCK	SERIAL		PAR/	LLEL		QA	Q _B	Qc	Q_D	OUTPUT	
CLLAIN	CONTROL	CLOCK	SLINIAL	Α	В	С	D	Q _A	QΒ	Q()	QD	$Q_{D'}$	
L	X	Х	Χ	Χ	Χ	Χ	Χ	L	L	L	L	L	
Н	Н	Н	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}	Q_{D0}	
Н	Н	↓	Χ	а	b	С	d	а	b	С	d	d	
Н	L	Н	Χ	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}	Q_{D0}	
Н	L	↓	Н	Χ	Х	Х	Х	Н	Q_{An}	Q_{Bn}	Q_{Cn}	Q_{Cn}	
Н	L	↓	Ĺ	Х	Х	Х	Х	Ĺ	Q_{An}	Q_{Bn}	Q _{Cn}	Q_{Cn}	

When the output control is low, the outputs are disabled to high impedance state. however, sequential operation of the registers is not affected.

- H = high level (steady state), L = low level (steady state),
- X = irrelevant (any input, including transitions)
- \downarrow = transition from high to low level.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most recent \downarrow transition of the clock.

FIGURE 2. Truth tables and timing diagrams - Continued.

^{*}Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered to input D.

Device type 08

		Input	S		Inter		Output	
Shift/	Clock	Clock	Serial	Parallel	Outputs		Q _H	
load	inhibit	CIOCK	Serial	AH	Q_A	Q_B	y	
L	X	Χ	X	ah	а	b	h	
Н	L	Ш	X	X	Q_{A0}	Q_{B0}	Q_{H0}	
Н	L	1	Н	X	Н	Q_{An}	Q_Gn	
Н	L	1	L	X	L	Q_{An}	Q_{Gn}	
Н	Н	Χ	Χ	Х	Q_{A0}	Q_{B0}	Q _{H0}	

H = High level (steady state), L = Low level (steady state)

X = Irrelevant (any input, including transitions)

↑ = Transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent transition of the clock; indicates a one-bit shift.

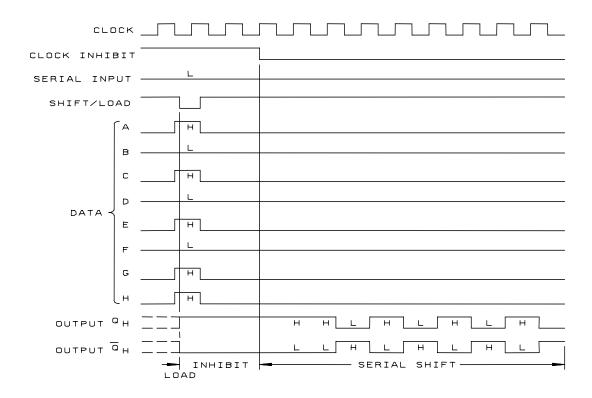


FIGURE 2. <u>Truth tables and timing diagrams</u> - Continued.

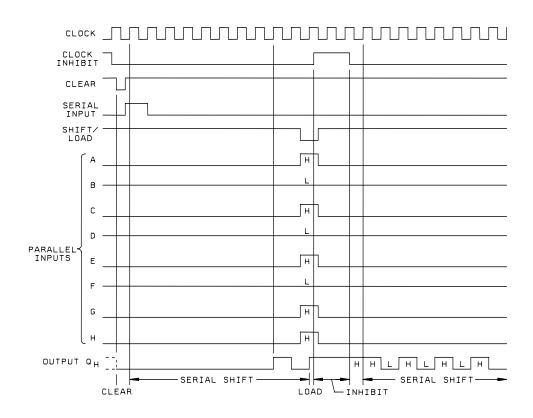
Device type 09

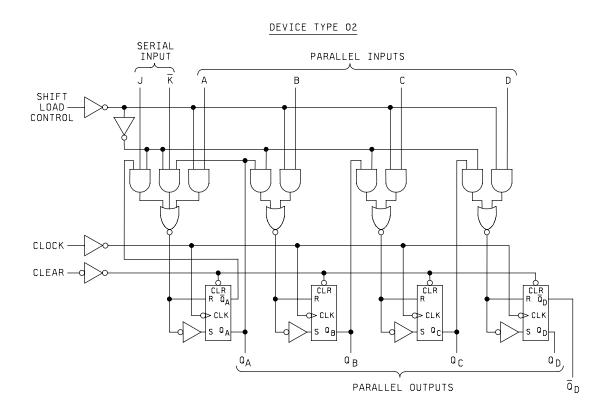
Clear	Shift/ load	Clock inhibit	Clock	Serial	Parallel AH	Inter Outp Q _A		Output Q _H
L	Х	Х	Х	Х	X	L	L	L
Н	Х	L	L	Χ	Х	Q_{A0}	Q_{B0}	Q_{H0}
Н	L	L	↑	Χ	ah	а	b	h
Н	Н	L	1	Н	Х	Н	Q_{An}	Q_{Gn}
Н	Н	L	1	L	Х	L	Q_{An}	Q_{Gn}
Н	Х	Н	↑	Х	Х	Q_{A0}	Q_{B0}	Q _{H0}

H = High level (steady state), L = Low level (steady state)

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent \uparrow transition of the clock; indicates a one-bit shift.




FIGURE 2. <u>Truth tables and timing diagrams</u> - Continued.

X = Irrelevant (any input, including transitions)

^{↑ =} Transition from low to high level

DEVICE TYPE 01 PARALLEL INPUTS В С D, MODE S1 RIGHT SHIFT-SHIFT - LEFT SERIAL INPUT SERIAL INPUT s a_B - CLK - CLK CLK > CLK R R CLR CLOCK-CLEAR -Q_D ۵A ۵c QΒ PARALLEL OUTPUTS

FIGURE 3. Logic diagrams.

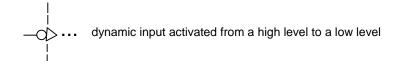


FIGURE 3. Logic diagrams - Continued.

DEVICE TYPE 03 CIRCUITS A,B,C,D, AND E

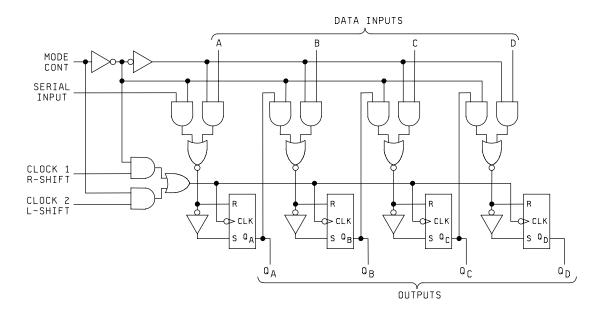


FIGURE 3. Logic diagrams - Continued.

DEVICE TYPE 04 PRESET D PRESET PRESET PRESET PRESET OUTPUT O_A OUTPUT OB OUTPUT O_C OUTPUT O_D OUTPUT QE PRESET ENABLE PRESET SERIAL INPUT - CLK → CLK > CLK > CLK ф clk CLEAR CLEAR CLEAR CLEAR CLEAR -CLOCK -- DYNAMIC INPUT ACTIVATED FROM A HIGH LEVEL TO A LOW LEVEL DEVICE TYPE 05 CLEAR -CLOCK CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR SERIAL { A-INPUTS { Bāc ŌΔ $\bar{\mathbf{o}}_{\mathsf{B}}$ R āD R ŌE ā_s

FIGURE 3. Logic diagram - Continued.

OUTPUT Q_C 0UT PUT Q_D ουτ[']Ρυτ ^QΕ ουτ'ρυτ ^QF OUTPUT Q_G

OUTPUT Q_A OUTPUT OB OUTPUT Q_H

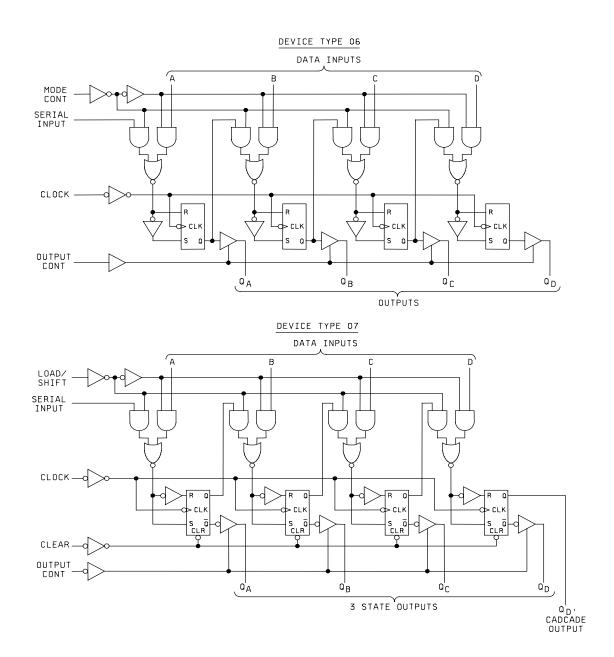
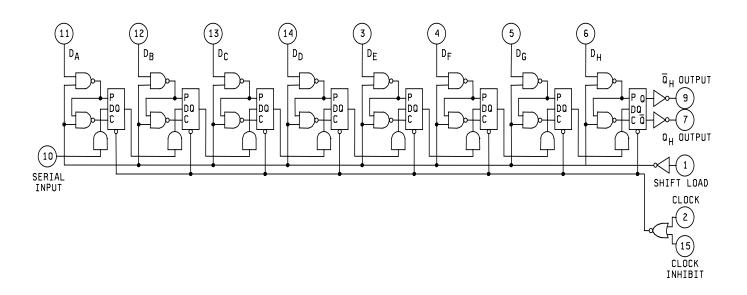



FIGURE 3. Logic diagrams - Continued.

$\frac{\texttt{DEVICE TYPE 08}}{\texttt{CIRCUIT A}}$

Pin numbers are for cases E and F only.

FIGURE 3. Logic diagrams - Continued.

DEVICE TYPE 08
CIRCUIT C AND F

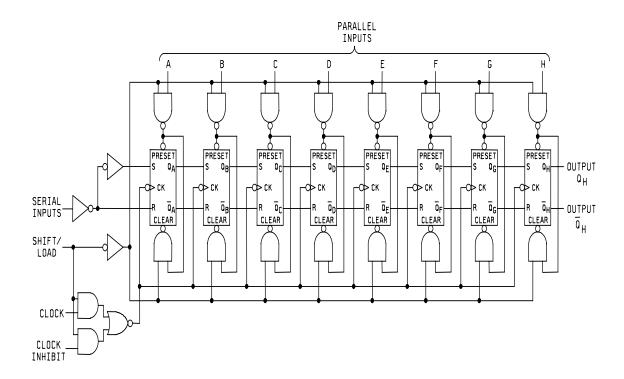
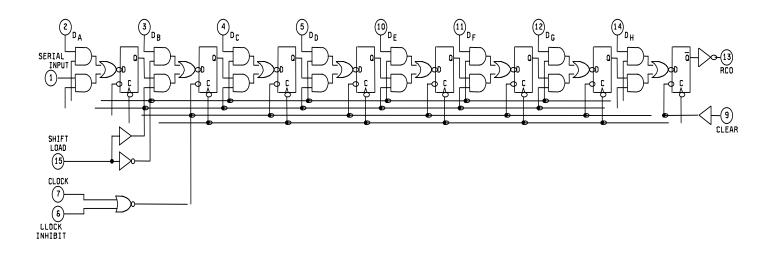



FIGURE 3. Logic diagrams - Continued.

Device Type 09

Pin numbers are for cases E and F only.

FIGURE 3. Logic diagrams - Continued.

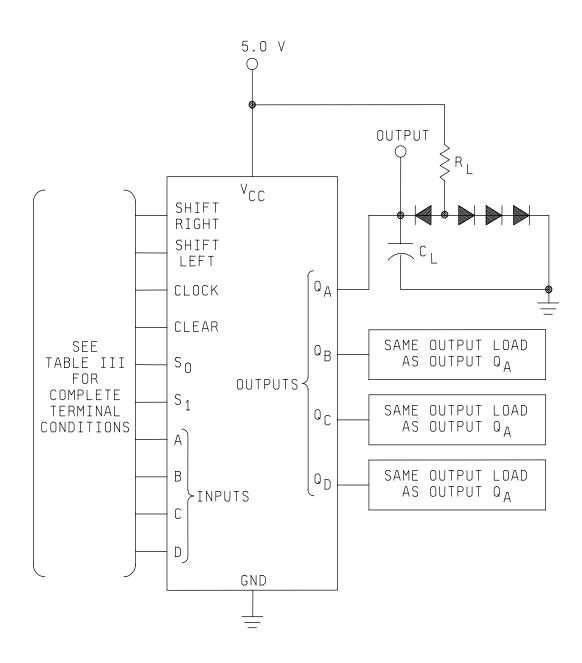
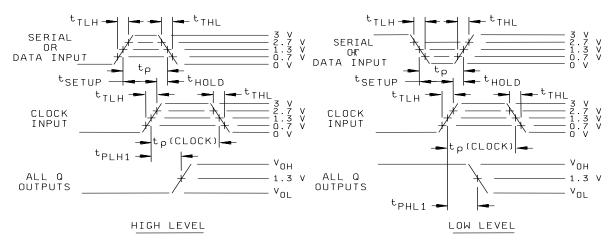
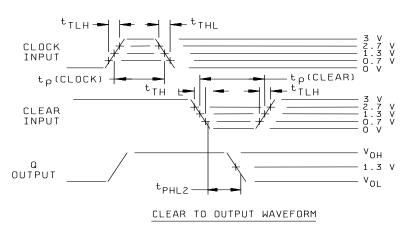




FIGURE 4. Switching test circuit and waveforms for device type 01.

CLOCK TO OUTPUT WAVEFORMS

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 Mhz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 20 ns.
- 2. Serial or data pulse characteristics: $t_{THL} \le 15$ ns, $t_{THL} \le 6$ ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 10$ ns, t_{p} (serial) or t_{p} (data) = 30 ns.
- 3. Clear pulse characteristics: $t_{THL} \le 15$ ns, $t_{THL} \le 6$ ns; t_p (clear) = 20 ns.
- 4. $C_L = 50 \text{ pF} \pm 10 \text{ percent incliding scope, probe, wiring and stray capacitance without package in test fixture.}$
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. $R_L = 2.0 \text{ k}\Omega$ ±5percent.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 4. Switching test circuit and waveforms for device type 01 - Continued.

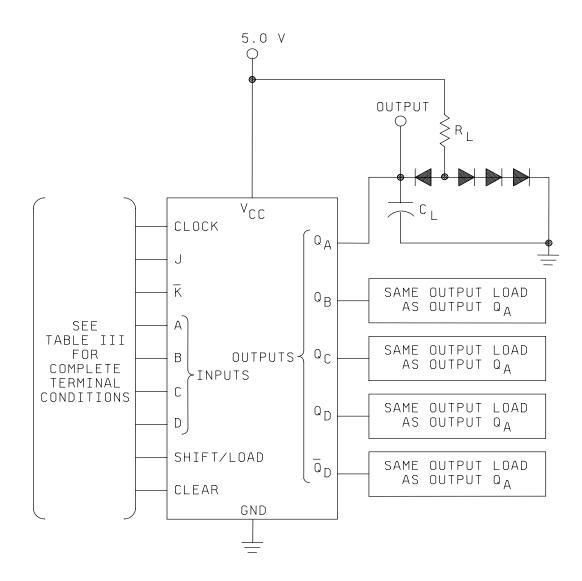


FIGURE 5. Switching test circuit and waveforms for device type 02.

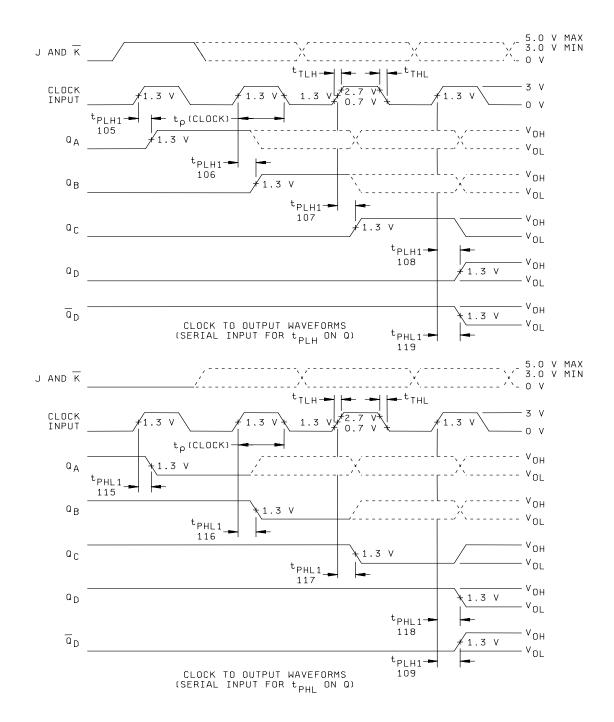
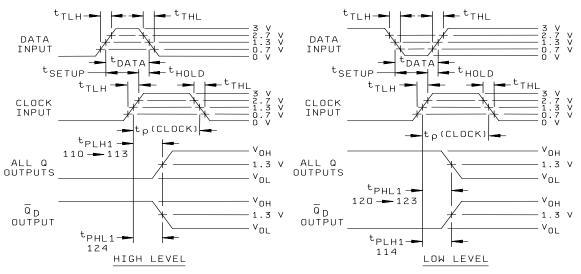
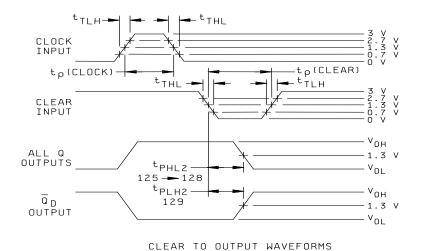




FIGURE 5. Switching test circuit and waveforms for device type 02 - Continued.

CLOCK TO OUTPUT WAVEFORMS (PARALLEL INPUT)

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{TLH} \leq$ 6 ns, t_p (clock) \geq 18 ns.
- 2. Data pulse characteristics: $t_{TLH} \le 20$ ns, $t_{THL} \le 6$ ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 10$ ns, $t_{DATA} = 30$ ns.
- 3. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns; t_p (clear) = 15 ns.
- 4. $C_L = 50 \text{ pF} \pm 10$ percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. $R_1 = 2.0 \text{ k}\Omega \pm 5 \text{ percent.}$
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 5. <u>Switching test circuit and waveforms for device type 02</u> - Continued.

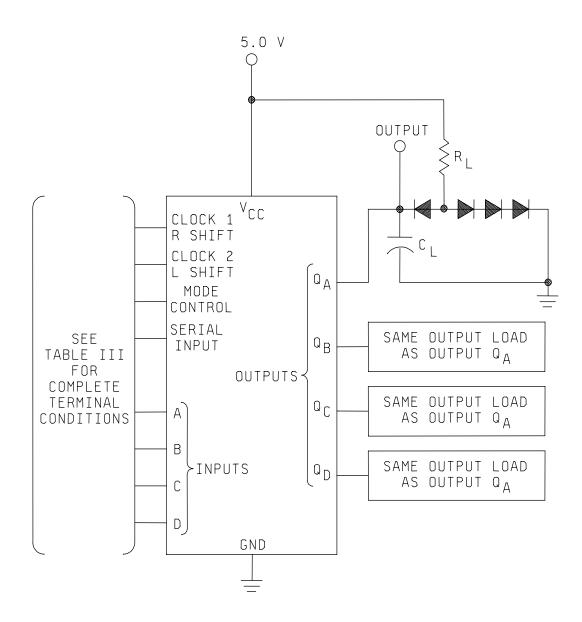
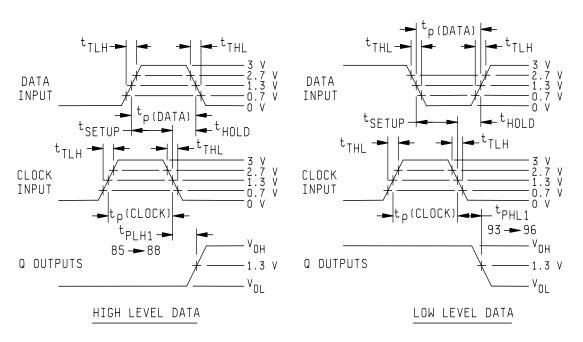
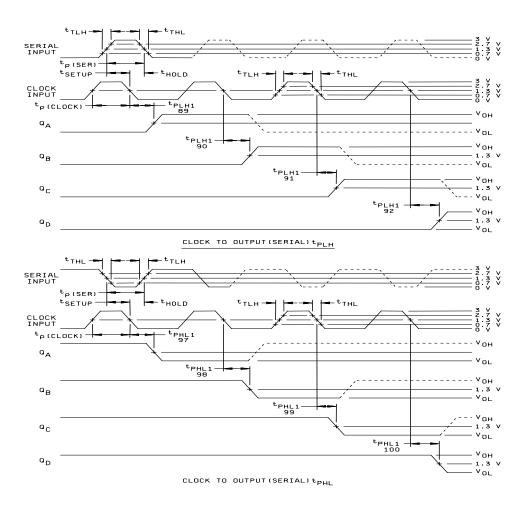




FIGURE 6. Switching test circuit and waveforms for device type 03.

CLOCK TO OUTPUT (PARALLEL)

FIGURE 6. <u>Switching test circuit and waveforms for device type 03</u> - Continued.

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 20 ns.
- 2. Serial data pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (SER) or t_p (DATA) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 3. $C_L = 50 \text{ pF} \pm 10$ percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 6. Switching test circuit and waveforms for device type 03 - Continued.

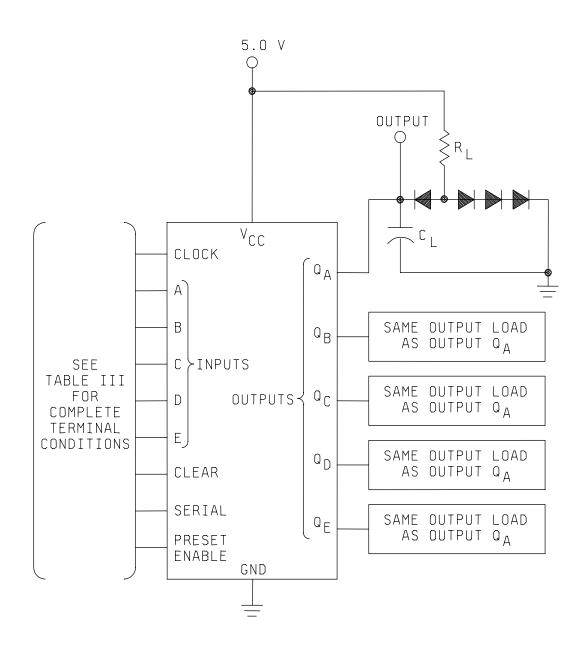


FIGURE 7. Switching test circuit and waveforms for device type 04.

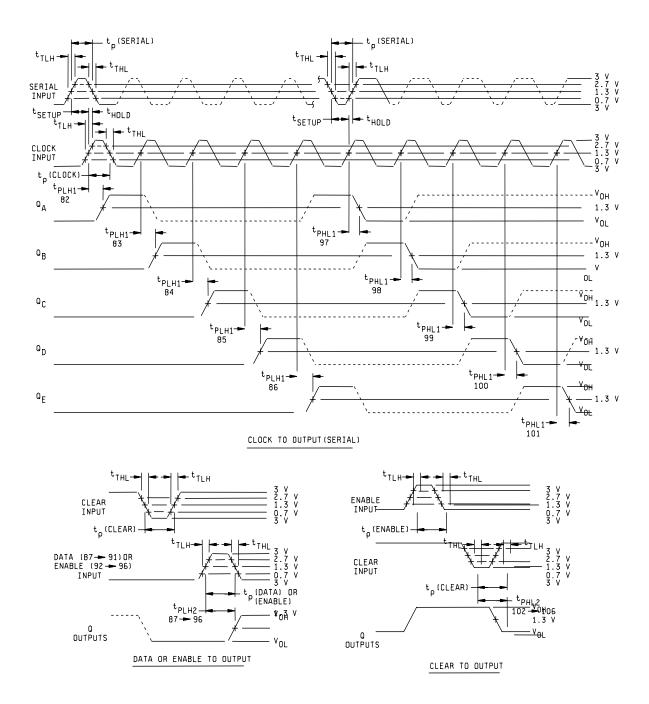


FIGURE 7. Switching test circuit and waveforms for device type 04 - Continued.

MIL-M-38510/306E

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 25 ns.
- 2. Serial data pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, $t_p = 30$ ns.
- 3. Clear, data, and enable pulse characteristics: $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p = 30 ns.
- 4. C_L = 50 pF ±10 percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 7. <u>Switching test circuit and waveforms for device type 04</u> - Continued.

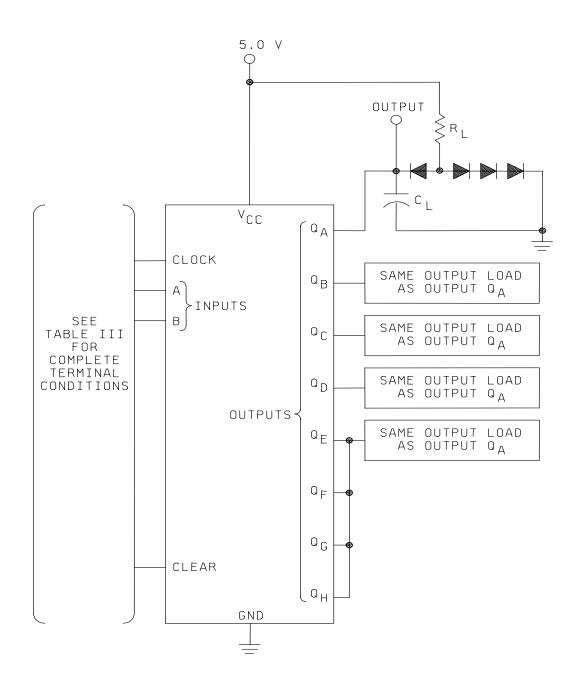


FIGURE 8. Switching test circuit and waveforms for device type 05.

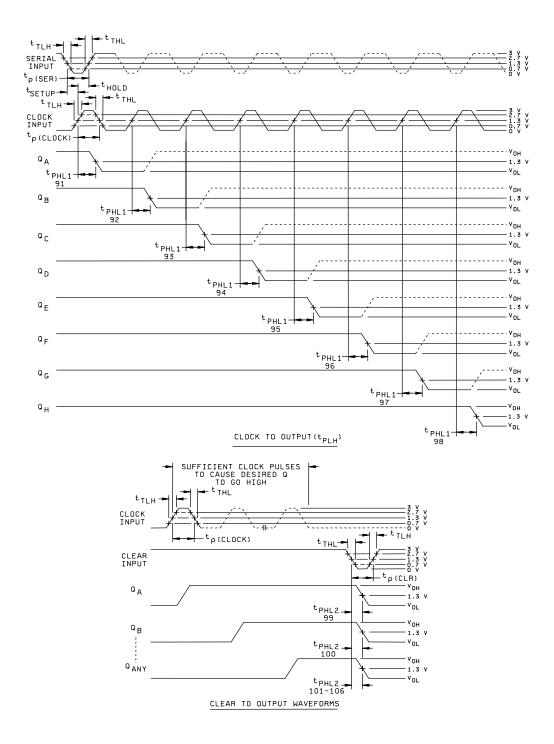
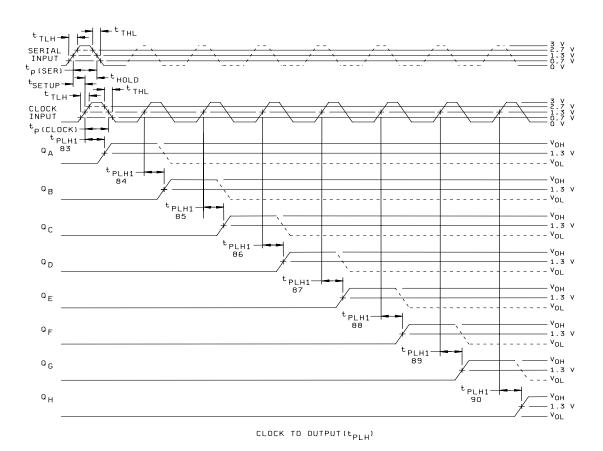



FIGURE 8. <u>Switching test circuit and waveforms for device type 05</u> - Continued.

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 20 ns.
- 2. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (clear) = 30 ns.
- 3. Serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 4. C_L = 50 pF ±10 percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 5. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 6. All diodes are 1N3064, 1N916 or equivalent.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 8. Switching test circuit and waveforms for device type 05 - Continued.

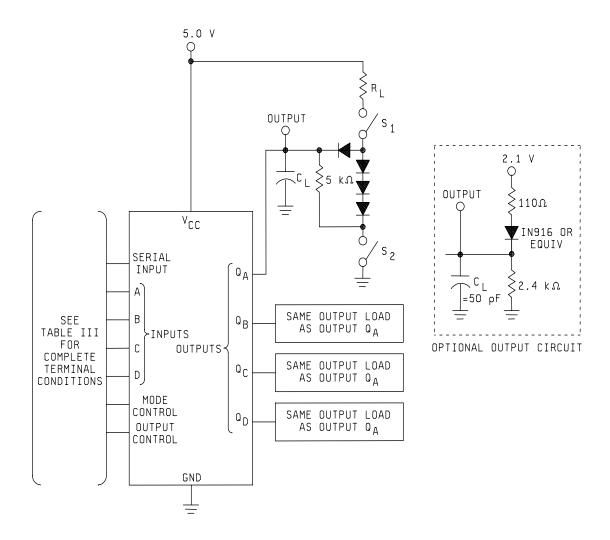


FIGURE 9. Switching test circuit and waveforms for device type 06.

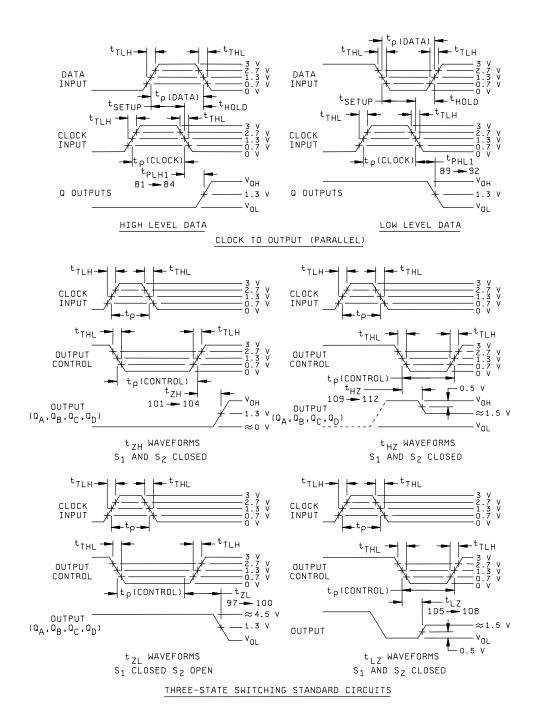
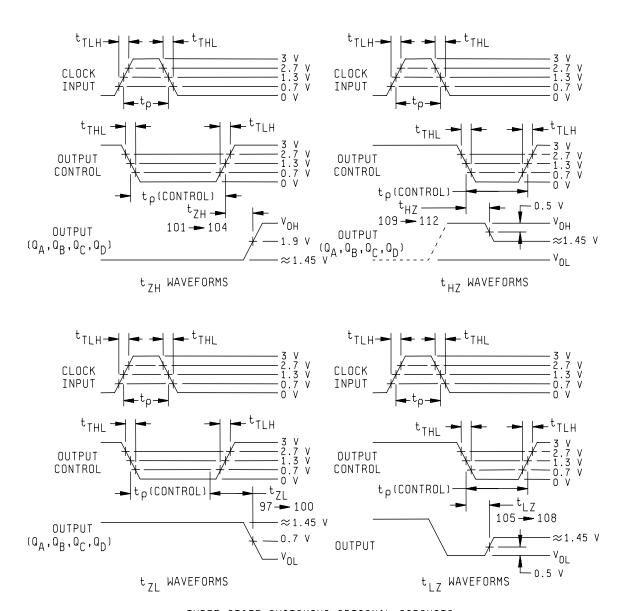
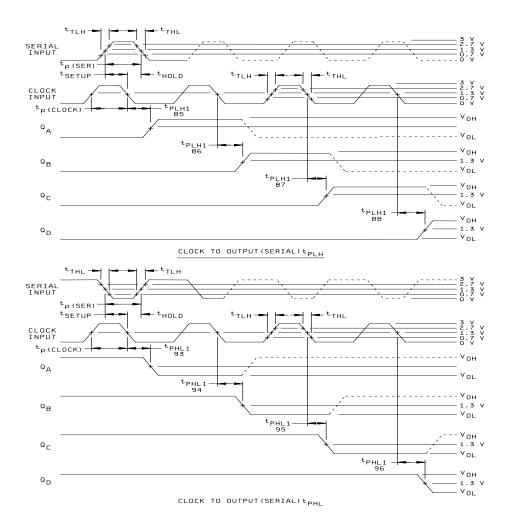




FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

THREE-STATE SWITCHING OPTIONAL CIRCUITS

FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_{p} (clock) \geq 25 ns.
- 2. Data or serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) or t_p (data) = 40 ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 20$ ns.
- 3. Output control characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (control) ≥ 100 ns, except when optional load is used, $C_L = 50$ pF \pm 10% for all tests.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ for propagation delay, t_{ZL} , t_{ZH} , and $C_L = 15 \text{pF}$ minimum for t_{HZ} , t_{LZ} except when optional load is used, $C_L = pF \pm 10\%$ for all tests. C_L includes scope probe, wiring, and stray capacitance without package in test fixture. All diodes are 1N3064, 1N916, or equivalent.
- 6. $R_L = 680 \Omega \pm 5\%$.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

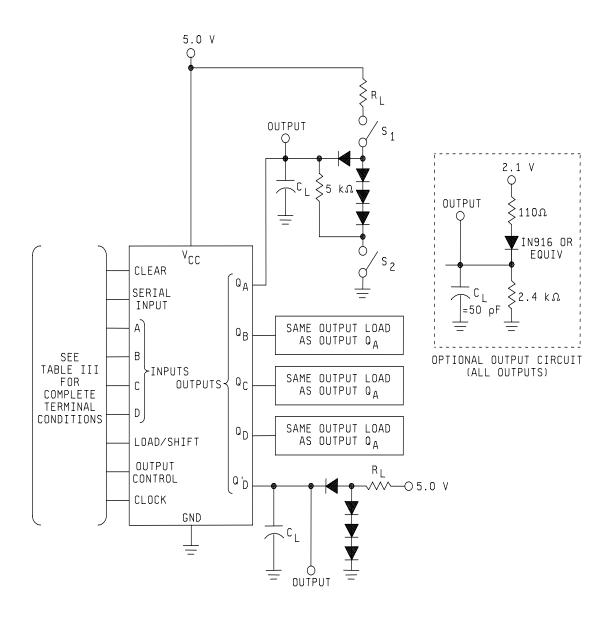
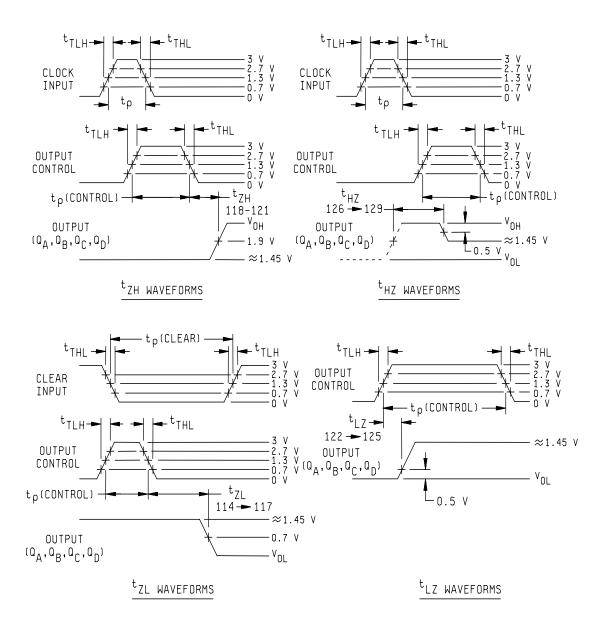
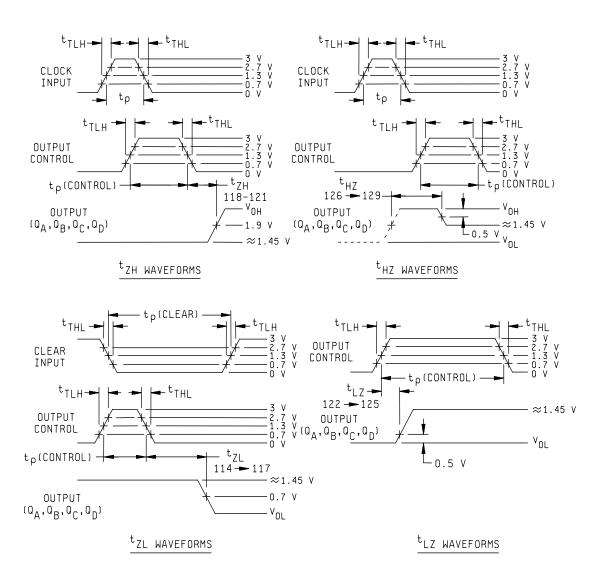




FIGURE 10. Switching test circuit and waveforms for device type 07.

THREE-STATE OPTIONAL CIRCUITS

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

THREE-STATE OPTIONAL CIRCUITS

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

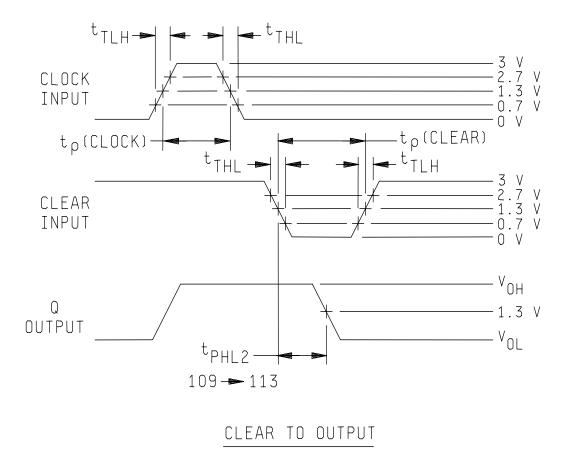
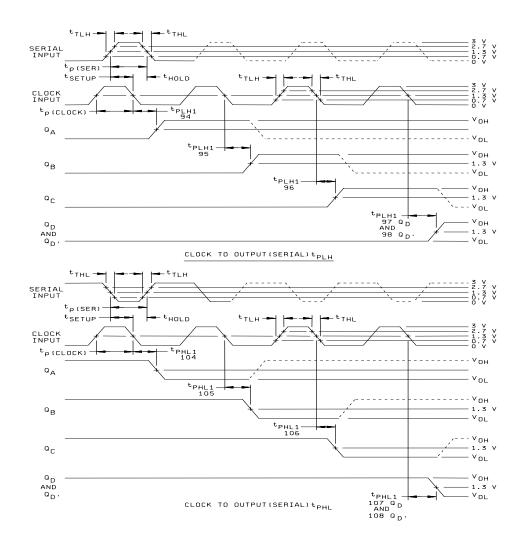



FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p (clock) \geq 20 ns.
- 2. Data or serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) or t_p (data) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 3. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (clear) = 25 ns, except ≥ 200 ns for t_{ZL} test.
- 4. Output control pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (control) ≥ 100 ns.
- 5. C_L = 50 pF ±10% for propagation delay, t_{ZH} , t_{ZL} test, and C_L = 15 pF minimum (all except Q_D ,) for t_{HZ} , t_{LZ} tests except when optional load is used, C_L = 50 pF ±10% for all tests. C_L includes scope probe, wiring, and stray capacitance without package in test fixture.
- 6. All diodes are 1N3064, 1N916, or equivalent.
- 7. R_L = 680 Ω ± 5% except for Q_D , R_L = 2 $k\Omega$ ±5%.
- 8. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

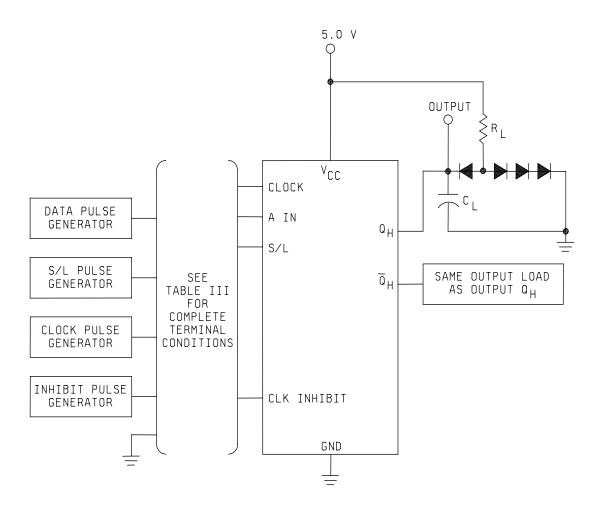


FIGURE 11. Switching test circuit and waveforms for device type 08.

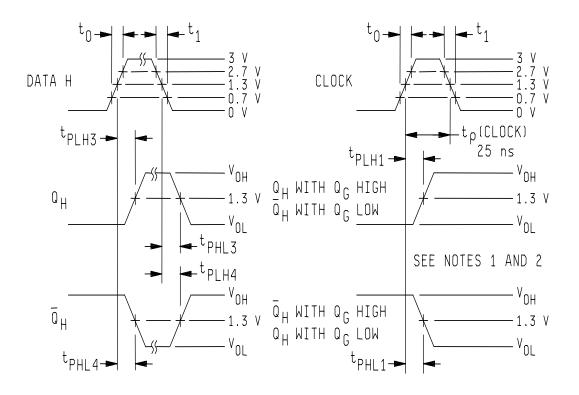
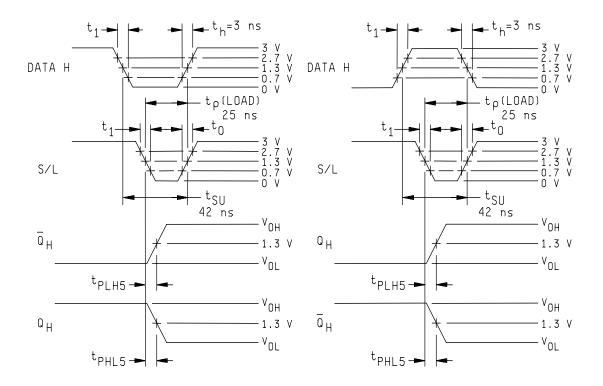



FIGURE 11. Switching test circuit and waveforms for device type 08 - Continued.

- For t_{PHL2} measurements, internal output G must be set to a low and Q_H to a high prior to tests
- 2. For $t_{\text{PHL}2}$ measurements, internal output G must be set to a high and Q_{H} to a low prior to test.
- 3. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 4. $C_L = 50 \text{ pF} \pm 10\%$, which includes probe, and jug capacitance.
- 5. All pulse generators have the following characteristics: $Z_{OUT} \approx 50\Omega$, $t_0 \le 15$ ns, $t_1 \le 6$ ns and PRR ≤ 1 MHz.
- 6. All diodes 1N3064 or equivalent.

FIGURE 11. Switching test circuit and waveforms for device type 08 - Continued.

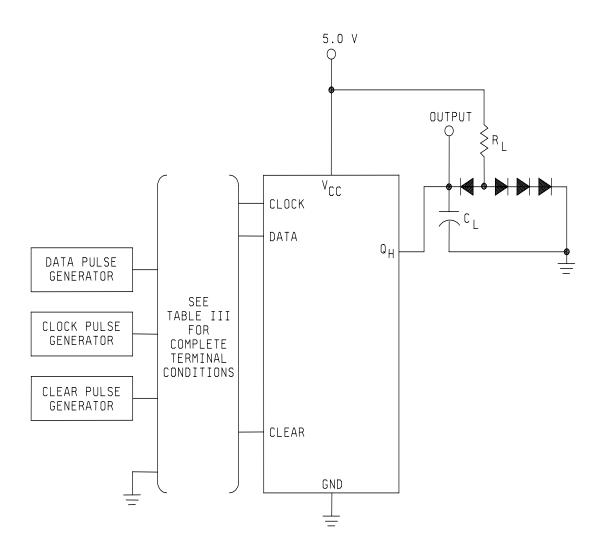
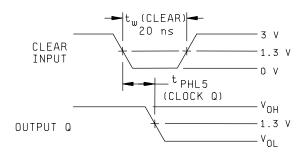
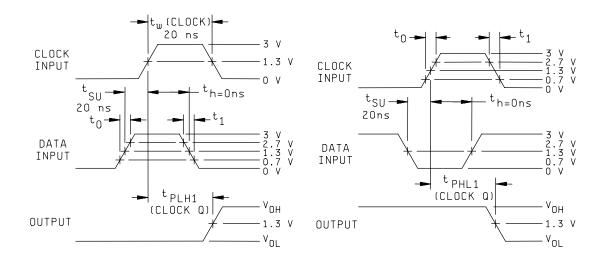




FIGURE 12. Switching test circuit and waveforms for device type 09.

CLEAR TO OUTPUT WAVEFORM

CLOCK TO OUTPUT WAVEFORMS

- 1. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 2. $C_L = 50 \text{ pF} \pm 10\%$, which includes probe, and jug capacitance.
- 3. All pulse generators have the following characteristics: $Z_{OUT} \approx 50\Omega$, $t_0 \le 15$ ns, $t_1 \le 6$ ns and PRR ≤ 1 MHz.
- 4. All diodes 1N3064 or equivalent.

FIGURE 12. Switching test circuit and waveforms for device type 09 - Continued.

MIL-M-38510/306E

TABLE III. Group A inspection for device type 01.

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Group 71 mopoducit for dottice type c.i.	
Terminal conditions (nine no	t designated may be high > 2.0 ; or low $< 0.7 \text{ V}$; or open)	

		MIL-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te	st	l
Subgroup	Symbol	STD-	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lim	its	Unit
		883 method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	V_{CC}	terminal	Min	Max	
1	V_{OH}	3006	1	Α	GND	2.0 V	GND	GND	GND	GND	GND	4.5 V	4.5 V	A <u>1</u> /				4 mA	4.5 V	QA	2.5		V
c = 25°C			2	"	"	GND	2.0 V	GND	GND	"	"	"	"	"			4 mA		"	QB	"		"
			3	"	"	"	GND	2.0 V	GND	"	"	"	"	"		4 mA			"	QC	ıı		"
			4	"	"	-	"	GND	2.0 V	=	"	"	-	"	4 mA				"	QD	"		"
			5	"	2.0 V		"	GND	GND	-	"	-	0.7 V	"				4 mA	"	QA	"		
			6	"	GND	"	"	GND	GND	2.0 V	"	0.7 V	4.5 V	"	4 mA				"	QD	"		"
			7	"	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	"	4.5 V	GND	"				4 mA	- "	QA			
	V_{OL}	3007	8	"	4.5 V	0.7 V	4.5 V	4.5 V	4.5 V	4.5 V	- "	- "	4.5 V	"				4 mA		QA		0.4	
			9	"	- "	4.5 V	0.7 V	4.5 V	4.5 V	"		- "	- "	<u> </u>			4 mA			QB		- :	
			10	"	- "	- "	4.5 V	0.7 V	4.5 V		- "	- "			4 Λ	4mA				QC		-	"
			11	"	0.7.1/	- "		4.5 V	0.7 V		- "	- "	0.7.1/	- "	4 mA			4 Λ	- "	QD			
			12 13	"	0.7 V 4.5 V	-		4.5 V 4.5 V	4.5 V 4.5 V	0.7 V	-	0.7 V	0.7 V 4.5 V	-	4 mA	-		4 mA	-	QA QD		"	
	1/		14	-18 mA	4.5 V			4.5 V	4.5 V	0.7 V	"	0.7 V	4.5 V		4 IIIA					CLR		-1.5	
	V _{IC}		15	-10 IIIA	-18 mA						"									S/R		-1.5	"
			16		-10 IIIA	-18 mA					"			1					-	A _{IN}			"
			17			-101117	-18 mA				"								"	B _{IN}		"	"
			18				1011171	-18 mA			"								"	C _{IN}		"	"
			19					10 1117 (-18 mA		"			1						D _{IN}		"	"
			20						10	-18 mA	"								"	S/L		"	"
			21								"	-18 mA							"	S ₀		"	"
			22								"		-18 mA						"	S ₁		"	"
			23								"			-18 mA					"	CLK		"	"
	I _{IH1}	3010	24	2.7 V							"								5.5 V	CLR		20	μΑ
			25		2.7 V						"	GND	4.5 V						"	S/R			"
			26			2.7 V					"	"	GND						"	A _{IN}		-	"
			27				2.7 V				"	-	-						"	B _{IN}		"	"
			28					2.7 V			"	"							"	C _{IN}		-	"
			29						2.7 V		"	"	"						"	D _{IN}		=	"
			30							2.7 V	"	4.5 V	"						"	S/L		"	
			31								"	2.7 V							"	S ₀		"	
			32	0115							- "		2.7 V	0 = 1/						S ₁			
			33	GND							- "		5.5.1	2.7 V						CLK		100	.
	I _{IH2}		34	5.5 V	V						- "	OND	5.5 V						-	CLR		100	
			35		5.5 V	F F \ '					- "	GND	4.5 V	1	1	1	-			S/R		-	
			36 37			5.5 V	5.5 V				"	GND "	GND "	1	-	-			-	A _{IN} B _{IN}			- "
			38			1	5.5 V	5.5 V			"	"		+					"	C _{IN}			"
			39					J.J V	5.5 V		"	."	"	1					-	D _{IN}			"
			40						3.5 V	5.5 V	"	4.5 V	"	1					-	S/L		"	"
			41		-					J.J V	"	5.5 V	"	 		 			"	S ₀			"
			42			-					"	J.J V	5.5 V	1					"	S ₁		"	"
			43	GND	<u> </u>	 					"		0.0 V	5.5 V	 	1			"	CLK		"	"

See footnotes at end of device types 01.

TABLE III. Group A inspection for device type 01 - Continued.

						Те	rminal coi	nditions (p		signated				≤ 0.7 V; o									
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			1
		method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	1
1	I _{IL1}	3009	44	0.4 V							GND								5.5 V	CLR	2/	<u>2</u> /	mA
Tc = 25°C	I_{IL2}		45		0.4 V						"	4.5 V	GND						"	S/R	"	"	"
			46			0.4 V					"	"	4.5 V						"	A _{IN}	"	"	"
			47				0.4 V				"	"	-						"	B _{IN}	"		"
			48					0.4 V			"	"	-						"	C _{IN}	"	"	"
			49						0.4 V		"	"	-						"	D _{IN}	"		"
			50							0.4 V	"	GND	=						-	S/L		"	"
	I_{IL3}		51								"	0.4 V							-	S_0		"	"
	I_{IL3}		52								"		0.4 V							S ₁		"	-
	I_{IL4}		53	4.5 V							"			0.4 V					-	CLK		"	-
	I _{os}	3011	54	Α		4.5 V	GND	GND	GND		"	4.5 V	4.5 V	A <u>1</u> /				GND	-	QA	-15	-100	"
			55	=		GND	4.5 V	GND	GND		"	-	=	"			GND		-	QB		"	"
			56	=		-	GND	4.5 V	GND		"	"	=	"		GND			-	QC		"	"
			57	"		"	GND	GND	4.5 V		"	"	"	"	GND				"	QD	"	"	"
	I _{cc}	3005	58	5.5 V	5.5 V	"	GND	GND	GND	5.5 V	"	5.5 V	5.5 V	"					"	V _{cc}		23	"

2 Same tests, terminal conditions and limits as subgroup 1, except T_C = 125°C, and V_{IC} tests are omitted. 3

Same tests, terminal conditions and limits as subgroup 1, except T_C = -55°C, and V_{IC} tests are omitted.

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued.

T : 1 ::: /					
Terminal conditions (p	ine na	hatennisah t	may he high	> ソ ハ・ヘr	10W < 0 / V or open

										ot design													
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test	Limits	
Subgroup	Symbol	883 method	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
• .	,	memod	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	Vcc	terminal	Min	Max	-
7	Truth	3014	59	C	B B	B	B	B	B	B B	GND	C	C	C	L	L	L	L	5.0V	All	IVIIII	IVIdX	1
	table	3014	60		В		"		"	В	GIND	C	C	В	-	-	-	-	3.00				
$\Gamma_{\rm C} = 25^{\circ}{\rm C}$																		-		outputs			
	test		61	-	В		-			В	-	С	С	С	-		-	-	-	-			
			62	-	C	-	-			C	-	B	В	С	-	-		-					
			63											В									
			64		"			"						С									
			65	В	"			"				"		С						"			
			66		"			"						В	Н	Н	Н	Н					
			67					"						С	Н	Н	Н	Н					
			68		В	С	С	С	С	В				С	Н	Н	Н	Н					
			69		"									В	L	L	L	L					
			70		"			"						С				L					
			71										С	С				L					
			72					"				"		В				Н					1
			73		"							"		С									1
			74		"							"		В			Н						1
			75		"			"				"		С			Н			"			1
			76		"			"				"		В		Н	Н			"	Se	e B, C, D, a	and E
			77		"			"				"		C		Н				"		1	1
			78		"			"						В	Н								
			79		"									C									
			80		С	В	В	В	В	С				č									
			81		"	-	-	"	"	Ť				В				L					
			82											C									
			83											В			L	1					
			84											C			-						
			85			-								В									
			86											C		-		-					
			87			-	-	,	-	-				В	L	-	-	-	-				
			88	-						-			-	C	L				-				
			89		В	С	С	С	С	В		C	В	С	L								
			90			-	- :							В	Н								
			91				-							С	-								
-			92				-							В		Н							
			93		"			"				"		С						"			
			94		"			"						В			Н			"			
			95		"									С									
			96		"			"						В				Н					
			97									"		С						"			1
			97A									"	С	С									1
			97B					"				"	С	В						"			1
			97C		"							"	С	С						"			1
			98	"	С	В	В	В	В	С		"	В	С			"	-	"	"			
			99		"			"				"		В	L								1
			100		"			"	"			"		С					"	"			1
			101		"	"		"	"			"		В		L	"		"	"			1
			102		"			"				"		С						"			1
			103		"			"						В			L						1
			104		"			"				"		C			Ī		-	"			
			105		"									В				L					1
			106											C				-		"			
			107										С	C									1
			108										- i	В				-					
			109			-								C				-					1
			110			C	С	С	С					C					-				1
				-	-							-			-		-	-					1
		l	111	-		С	С	С	С	_	_		_	В	_			_				1	1

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued.

						Termin	al condit	ions (pi	ns not d	esignate	ed may b	e high ≥	2.0; or	$low \le 0.$	7 V; or op	oen).							
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
	Subgroup Symbol 883																						
8	Same te	sts, terminal	conditions, a	nd limits	as subg	roup 7, e	except T _C	= 125°C	and -55°	С													
9 T _C = 25°C	See F	(Fig. 4)	112	G		IN					GND	G	G	IN				OUT	5.0 V	CLK to QA	22		MHz
	(Fig. 4) 114 " IN " " " " " OUT " CLK TO QB " 115 " IN " " " " OUT " CLK TO QC "															5	27	ns					
	(Fig. 4) 114 " IN " " " " OUT " CLK TO QB															"	"	"					
	115 " IN " " " " OUT " CLK TO QC 116 " CLK TO QC															"	=	"					
	115														"	-							
	115															"							
	tphl.1 3003 (Fig. 4) 113 " IN " " " " " " " " " CLK TO QA 5 114 " IN " " " " " OUT " CLK TO QB " 115 " IN " " " OUT " CLK TO QC " 116 " IN " " " OUT " CLK TO QD " 117 " IN " " GND G " OUT " CLK TO QD " tphl.1 119 " IN " G " " OUT CLK TO QA "															"	•						
	See F and J See F and J															"	31						
	tpHL1 3003 (Fig. 4) 113 " IN "																"						
								IN					- "		OUT	OUT			- "				
					INI				IIN				CNID		001			OUT			-	-	
					IIN					INI		CND	_		OUT			001					
	t			INI		G				IIN	"	_		"	001			OUT			"	35	"
	PHL2					-	G				"	"	"	"			OUT	001	"		"	"	"
				"				G			"	"	"	"		OUT	001		"		"	"	"
				"					G		"	"	"	"	OUT				"		"		"
10 T _C = 25°C	See F		129		•						- and toru	ainal aan	liki ana aa	for out or							20		MHz
	t _{PHL1}		130 to 135						S	arne test	s and terr	ninai cond	iiiions as	ior subgr	oup 9						5	41	ns
	t _{PHL1}		136 to 141																		5	47	ns
	t _{PHL2}		142 to 145																		5	53	ns
11	Same te	sts, terminal	conditions, a	nd limits	as subg	roups 10	, except	T _C = -55°	C.														

See footnotes at end of device type 01.

63

- A. Apply input pulse: _____ ___ 2.5 V minimum/5.5 V maximum 0 V
- B. $V_{IN} = 2.5 \text{ V}$.
- C. $V_{IN} = 0.4 \text{ V}$.
- D. Test numbers 59 through 111 shall be run in sequence.
- E. Output voltages shall be either: (1) H≥2.5 V minimum and L≤0.4 V maximum when using a high speed checker double comparator: (2) H≥1.5 V and L≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the clock input frequency. The input frequency on the A_{IN} data shall be one-half of the clock input frequency and the A_{IN} shall be shifted such that the A_{IN} and \downarrow are coincident with the clock \downarrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- J. At the manufacturer's option, the following alternate procedure may be used to guarantee f_{MAX}. Serial mode f_{MAX} for the serial mode shall be guaranteed by clocking the device four times (after reset) at f_{MAX} and looking for the Q_D output to toggle within three periods (3 x 1/ f_{MAX}) plus allowed propagation delay. Two tests are performed, depending on the state of the data input, to guarantee both LH and HL transition of the output pulse.
- 1/ This pulse must occur after the clear pulse.
- 2/ I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	Α	В	С	D	E	F	G
I_{IL1}	CLR	16/4	11/35	16/4	12/35	12/36	12/36	16/4
I _{IL2}	S/R, A _{IN} , B _{IN}	"	11/35	"	16/4	105/345	"	"
	C _{IN} , D _{IN} , S/L							
I _{IL3}	S ₀ , S ₁	"	03/3	"	12/36	12/36	"	"
III a	CLK	"	03/3	20/44	12/36	12/36	"	15/38

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te	st	i
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lim	its	Unit
		method	Test no.	CLR	J	x	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift Load	CLK	QD	QD	QC	QB	QA	V _{CC}	terminal	Min	Max	
1 Tc = 25°C	V _{OH}	3005	1	В	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	0.7 V	GND	0.7 V	B <u>1</u> /	4 mA					4.5 V	QD	2.5		V
			2		"	"	"	"	"	2.0 V	"	"			4 mA				"	QD	"		"
			3		"	"	"	"	"	"		"				4 mA			"	QC	"		"
			4	"	"	"	"	"	"	"	"	"	"				4 mA		"	QB	"		"
			5		"	"	"	"	"	"	"	"	"					4 mA	"	QA	"		"
	V _{OL}	3007	6	"	=	"	0.7	0.7	0.7	"	=	"	=	4 mA					"	QD		0.4	"
			7	"	-	"	"	"	"	0.7	-	"	"		4 mA				"	QD		"	"
			8	"	-	"	"	"	"	"	-	"	"			4 mA			"	QC		"	"
			9	-	=	"	"	"	"	-		"					4 mA		"	QB			"
			10	-		"	"	-	"	-		-	-					4 mA	-	QA		"	"
	V_{IC}		11	-18 mA							-								-	CLR		-1.5	"
			12		-18 mA						"								"	J		"	"
			13			-18 mA					"								"	ĸ		"	. "
			14				-18 mA				"								"	A _{IN}		"	"
			15					-18 mA											-	B _{IN}		"	"
			16						-18 mA		-								"	C _{IN}		"	"
			17							-18 mA									"	D _{IN}		"	"
			18								=	-18 mA							=	Shift load		"	
			19										-18 mA							CLK		"	
	I _{IH1}	3010	20	2.7 V							"								5.5 V	CLR		20	μΑ
			21		2.7 V						"	GND	Α						"	J		"	"
			22			2.7 V					"	GND							"	ĸ		"	ı "
			23				2.7 V				"	4.5 V							"	A _{IN}		"	"
			24					2.7 V			"	"							"	B _{IN}		"	"
			25						2.7 V											C _{IN}		"	"
			26							2.7 V	=									D _{IN}		"	"
			27								=	2.7 V							-	Shift load		=	
			28								"		2.7 V						"	CLK		"	
	I_{IH2}		29	5.5 V							"								"	CLR		100	"
			30		5.5 V						"	GND	Α							J		"	
			31			5.5 V					"	GND							"	ĸ		"	. "
			32				5.5 V				"	4.5 V							"	A _{IN}		"	"
			33					5.5 V			"	"							"	B _{IN}		"	"
			34						5.5 V		-									C _{IN}		"	"
			35							5.5 V	=	=							=	D _{IN}		"	"
			36									5.5 V							=	Shift load		"	-
			37								"		5.5 V						"	CLK		"	"

See footnotes at end of device types 02.

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLR	J	ĸ	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift Load	CLK	Q D	QD	QC	QB	QA	V _{CC}		Min	Max	
1	I _{IL1}	3009	38	0.4 V							GND								5.5 V	CLR	<u>2</u> /	<u>2</u> /	mA
Tc = 25°C			39	В	0.4 V							4.5 V								J	"	"	"
			40	В		0.4 V					"	4.5 V	<u>1</u> / A or B						"	ĸ	"	"	"
			41				0.4 V				=	GND								A _{IN}	"	"	"
			42					0.4 V			=	-							=	B _{IN}	"	"	"
			43						0.4 V		=	-							=	C _{IN}	"	"	"
			44							0.4 V	-	"							-	D _{IN}	-	"	"
			45								=	0.4 V							-	Shift load	"	"	"
			46								=		0.4 V						•	CLK	"	"	"
	I _{0S}	3011	47	GND							"	4.5 V	4.5 V	GND					"	QD	-15	-100	mA
			48	4.5 V			4.5 V	4.5 V	4.5 V	4.5 V	"	GND	В		GND				"	QD	"	"	"
			49	=			"	-	-	=	=	-	"			GND			=	QC	"	"	"
			50	-			"	-	-	=	=	-	"				GND		=	QB		"	"
			51	=			"	"	"	=	=	"	"					GND		QA	-	"	"
	Icc	3005	52	В			"	"	"	-	-	"	4.5 V						•	V _{CC}		21	"
		3005	53	4.5 V			"	"	"	"	=	"	В						"	V _{cc}		21	,,
2	Same te	sts, termina	al conditions a	ınd limits a	as subgro	oup 1, exc	ept T _C =	125°C, a	ind V _{IC} te	sts are or	nitted.												
3	Same te	sts, termina	al conditions a	ınd limits a	as subgro	oup 1, exc	ept T _C =	-55°C, aı	nd V _{IC} tes	sts are on	nitted.												

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

т	erminal	conditions	Inine not	designated r	may he high	> 2 0 or	$low \le 0.7 \text{ V: or open)}.$	
- 1	CIIIIIIIII	COHUIDIO	TOILIS HOL	uesiunateu i	Hav De Hillin	< Z.U. UI	$10W \ge 0.7 V. 01 0000111.$	

Subgroup															≤ 0.7 V; c								
Subgroup		MIL-STD- 883	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te		i
	Symbol	method	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lim	nits	Unit
			Test no.	CLR	J	ĸ	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift Load	CLK	Q۵	QD	QC	QB	QA	Vcc	terminal	Min	Max	
7	Truth	3014	54	D	С	С	С	С	С	С	GND	D	D	Н	L	L	L	L	5.0V	All			
$T_C = 25^{\circ}C$	table		55		D	С					-	D	-		-					outputs			l
	test		56 57		D	D	-		- :	- :	- :	D C	- :		- :					:			l
			58	С			"					C											l
			59	Ÿ			"					D		"						"			l
			60							"		·	С	L	Н	Н	Н	Н		"			l
			61			"	"			"			D	L	Н	Н	Н	Н		"			l
			62		C	С	D	D	D	D			D	L	Н	Н	Н	Н					i
			63	-			"				-:-	- :	C	Н	L	L	L	L					l
			64	-	-		"				-		D D		-	-		L	-				l
			65 66				"					C	C					H					l
			67				"						D	"				- 1		"			l
			68							"			C				Н			"			l
			69		"	"	"	"	"	"			D	"			"			"			i
			70		"	"	"	"					С	"		Н	"			"			1
			71	-			"	- :	-:-	-:-	- :	- :	D	ı.		-		-	- :		Sei	e C, D, E, a	ind F
			72 73	-							-	-	C D	L	H	-	"	-	-	"			l
			74		D	D	С	С	С	С			D										i
			75		"	"	Ÿ	"	"	"			C	"			"	L					i
			76			"	"						D	"			"						l
			77				"						С	"			L			"			l
			78									-:-	D					- :	-				i
			79 80	-	-			-		-	-	-	C D	-	-	Ļ	-	-	-				l
			81										C	Н	L								l
			82				"						D	H	-					"			l
			83		С		D	D	D	D			D	"			"			"			l
			84				"						С	"				Н		"			l
			85		"	"	"	"					D	"			"	Н		"			l
			86		-				- :	- :	- :	- :	C	-	- :		Н	L		- :			l
			87 88				"						D C			Н	H	L H					l
			89							"			D			H	L	Н		"			l
			90				"	"	"				Č	L	Н	Ë	H	ï		"			i
			91			"	"			"			D	L	Н	L	Н	L		"			l
			92				"	-					С	Н	L	Н	L	Н		"			l
			93		-						-:-	-:-	D	Н:	L	H	L	Н	- :	- :			i
			94 95	-	D "	C	C	C	C	C	-	-	D C	H L	L H	H	L H	-	-	"			l
			96							"			D	-	H	L		-		"			l
			97				"						C	H	Ë	H	"						l
			98			"	"						D	Н	L	Н	"						l
			99		"	"	"	"	"				С	L	Н	Н	"			"			<u> </u>
			ditions, and limits		p 7 except	T _C = 125°C																	
9	f _{MAX}	(Fig. 5)	100	J			IN				GND	GND	IN					OUT	5.0 V	QA	27		MHz
$T_C = 25^{\circ}C$	See G		101	-:-		1		IN	16.1		- :	-:-	-:-			OUT	OUT	ļ	-:-	QB			─ ः
I.			102 103	-		1			IN	INI			-		OUT	OUT	<u> </u>	 	- :	QC QD	-		
I.			103							IN IN				OUT	001		l						
I.			104				l					l		001						Q D			1

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; or low $\leq 0.7 \text{ V}$; or open).

										signated										•			
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol		Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLR	J	ĸ	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift load	CLK	QD	QD	QC	QB	QA	V _{CC}		Min	Max	
9	t _{PHL1}	3003	105	J	J	J					GND	J	IN					OUT	5.0 V	CLK to QA	5	27	ns
$T_C = 25^{\circ}C$		(Fig. 5)	106	"	See	See					"	"	"				OUT		"	CLK TO QB	-	"	"
					Fig. 5	Fig. 5																	
			107	"	"	"						"	- "			OUT				CLK TO QC	"	-	
			108 109	- :		- "							- "	OUT	OUT				"	CLK TO QD		اليبا	- "-
														001						CLK TO Q D			
			110				IN				"	GND	"					OUT	"	CLK TO QA	=	-	"
			111	"				IN			"	=	"				OUT		"	CLK TO QB	"	"	"
			112	"					IN		"	"	"			OUT			"	CLK TO QC	"	"	- "
			113							IN			- "	01.17	OUT				"	CLK TO QD		لـــّــا	- "
			114 115		CNID	OND				IN			- "	OUT				OUT	"	CLK TO QD		- 74	
	t _{PHL1}		115		GND See	GND See						J					OUT	OUT	"	CLK TO QA CLK TO QB		31	- "
					Fig. 5	Fig. 5											001						
			117	"	"	"					-		"			OUT			=	CLK TO QC	=	-	"
			118	"	"	"					"		"		OUT					CLK TO QD	"	"	"
			119	"	"	"					"	"	"	OUT						CLK TO Q D		"	"
			120	"			IN				"	GND	"					OUT	"	CLK TO QA	-	"	"
			121					IN			"	-	"				OUT		"	CLK TO QB	=	"	"
			122	"					IN		"		"			OUT			"	CLK TO QC	"	"	"
			123							IN			- "	01.17	OUT				"	CLK TO QD		لـــّــا	- "
			124	"						IN				OUT						CLK TO Q D			
	t _{PHL2}		125	IN			J				"	"	- "					OUT	"	CLK TO QA	"	35	
			126 127	- "				J								OUT	OUT		"	CLK TO QB CLK TO QC		⊢ ∷⊢	- "-
			127	"					J	J	"				OUT	001			"	CLK TO QC			-
	t _{PHL2}		129	"						J	"			OUT	001				"	CLR TO QD	"	"	"
10	f _{MAX}		130 to 134		1	<u> </u>	1	l .	1	l	l		1	l	1	l	1			CERTO QD	25		MHz
T _C = 125°C																							
	t _{PLH1}		135 to 144	Same t	ests and	terminal o	condition	s as for	subgrou	9											5	41	ns
	t _{PHL1}		145 to 154																		"	47	"
	t _{PHL2}		155 to 158																		"	53	"
	t _{PHL2}		159																		=	53	"
11	Same te	ests, termina	al conditions,	and limi	its as sul	paroups 10	0. excen	t T _C = -5!	5°C.												1		
• • • • • • • • • • • • • • • • • • • •	Jamote	,	a. conditions,	G. 1G 11111	40 541	-g.oupo 1	о, олоор		· •.														

MIL-M-38510/306E

See footnotes at end of device type 02.

- C. $V_{IN} = 2.5 \text{ V}.$
- D. $V_{IN} = 0.4 \text{ V}$.
- E. Test numbers 54 through 99 shall be run in sequence.
- F. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- G. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the parallel input shall be one-half of the clock input frequency and the parallel input shall be shifted such that the parallel input \uparrow and \downarrow are coincident with the clock \downarrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
- J. 3.0 V minimum/5.0 V maximum.
- 1/ This pulse must occur after the clear pulse.
- 2/ I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	Α	В	С	D	E	F	G
I _{IL1}	CLR	16/4	11/35	16/4	12/35	12/36	12/36	16/4
	J, K, A _{IN} ,	"	16/4	"	16/4	105/345	"	"
	B _{IN} , C _{IN} , D _{IN}							
	Shift load	"	08/3	"	12/36	12/36	"	"
	CLK	"	03/3	20/44	12/36	12/36	"	15/38

TABLE III. Group A inspection for device type 03 - Continued.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; or low $\leq 0.7 \text{ V}$; or open).

2 3 4 5 6 7 8 9 10 11 12

		MIL- STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Lin	nits	
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured			Unit
		method	Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V _{cc}	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V	GND	GND	GND	GND	0.7 V	GND	GND	Α				4 mA	4.5 V	QA	2.5		V
Tc = 25°C	* OH	0000	2	2.0 .	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	"	A	GND				4 mA	"	QA	"		"
			3			"	"	"	"	"	"	"			4 mA		"	QB			"
			4		"	"	"	"	"	"	"	"		4 mA			"	QC			"
			5		=	"	"	"	"		"	"	4 mA				"	QD	-		"
	V_{OL}	3007	6	0.7 V	4.5 V	4.5 V	4.5 V	4.5 V	0.7 V	"	GND	Α				4 mA	"	QA		0.4	"
			7		0.7 V	0.7 V	0.7 V	0.7	2.0 V	-	Α	GND				4 mA	"	QA			"
			8		=	"	"	"		-	"	"			4 mA		"	QB			"
			9		=		"	"		"	"	"		4 mA			"	QC		"	"
			10		"	"	"	"	"	"	"	"	4 mA				"	QD		"	"
	V _{IC}		11	-18 mA						"							"	Serial		-1.5	"
			12		-18 mA					"							"	A _{IN}		"	"
			13			-18 mA				"							"	B _{IN}		"	"
			14				-18 mA			- "								C _{IN}			"
			15					-18 mA										D _{IN}			"
			16						-18 mA	- "	40 4						- "	Mode		- "	"
			17							- "	-18 mA						"	CLK ₂		"	"
		3010	18 19	2.7 V					4.5 V	,		-18 mA					5.5 V	CLK ₁ Serial		20	
	I _{IH3}	3010		2.7 V	2.7 V				GND	-							5.5 V			20	μA "
			20 21		2.7 V	2.7 V			GND	,								A _{IN}		"	"
			22			2.7 V	2.7 V		"									B _{IN} C _{IN}			"
			23				Z.7 V	2.7 V										D _{IN}			"
			24					Z.1 V	4.5 V	"	2.7 V						"	CLK ₂		"	"
			25						4.5 V	"	Z.7 V	2.7 V					"	CLK ₁		"	"
	I _{IH4}		26	5.5 V					4.5 V	"							"	Serial		100	"
	*11 14		27	0.0 1	5.5 V				GND	"							"	A _{IN}		"	"
			28		0.0 1	5.5 V			"	"							"	B _{IN}		"	"
			29				5.5 V		"	"								C _{IN}		"	"
			30					5.5 V	"	"							"	D _{IN}		"	"
			31						4.5 V	"	5.5 V						"	CLK ₂		"	"
1			32						4.5 V	"		5.5 V					"	CLK ₁		"	"
	I _{IH7}		33						2.7 V	"	GND						"	Mode		40	"
	I _{IH8}		34						5.5 V	"	GND						"	Mode		200	"

MIL-M-38510/306E

See footnotes at end of device types 03.

TABLE III. Group A inspection for device type 03 - Continued Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open).

					I CITIIIII	ai conditi	ons (pins	s not acs	ignateu i	nay be n	igii = 2.0	V OI IOW	3 0.7 V 01	open).							
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V_{CC}		Min	Max	
1	I_{IL2}	3009	35	0.4 V					GND	GND							5.5 V	Serial	<u>1</u> /	<u>1</u> /	mΑ
Tc = 25°C			36		0.4 V				4.5 V	"							"	Α	"	"	"
			37			0.4 V			"								"	В	"	"	-
			38				0.4 V		"	"							"	С		"	
			39					0.4 V	"	"							"	D		"	
			40						0.4 V	=	4.5 V						"	Mode	"	"	=
	I_{IL4}		41						4.5 V	-	0.4 V							CLK ₂	-	"	=
			42						GND	"		0.4 V					"	CLK ₁	"	"	"
	I _{os}	3011	43		4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	"	Α	GND				GND	"	QA	-15	-100	"
			44		"	"	"	"	"	"	"	"			GND		"	QB	"	"	"
			45		"	-	-	"	"	-	=			GND			"	QC	"	"	=
			46		"	"	"	"	"	"	"	"	GND				"	QD	=	"	"
	I _{CC}	3005	47		GND	GND	GND	GND	5.5 V	"	"	Α					"	V_{CC}		21	"
2	Same te	sts, terminal o	onditions and	limits as s	ubgroup 1	, except T	c = 125°C	and V _{IC} to	ests are o	nitted.											
3	Same te	sts, terminal c	onditions and	limits as s	ubgroup 1	, except T	c = -55°C	and V _{IC} te	ests are on	nitted.											
7	Truth	3014	48	В	В	В	В	В	В	GND	В	С	Х	Х	Х	Х	5.0 V	All		\neg	
T _C = 25°C			49	В	В	В	В	В		"	C	"	H	Н	Н	Н	"	outputs		, ,	
.0 20 0	test		50	"	В	В	В	В													
			51							"	В		Н		Н	Н	"				
					С	С	С	С	"	"	B B	"	H	H	H	H	"	"			
			52	"	C	C	C	C C	"	"		"		Н			" "	"			
				"					" " C	"	В	" " B		Н			" " "	" " " " " " " " " " " " " " " " " " " "	See	B,C,D,	and E
			52	" "	C	C	C	C	" " C	" "	B C	" " B B		Н			" " " " " " " " " " " " " " " " " " " "	11 11	See	B,C,D,	and E
			52 53	" "	C B	C B	C B	C B	" C " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	B C "			Н			" " " " " " " " " " " " " " " " " " " "	11 11 11 11	See	B,C,D,	and E
			52 53 54	"""""""""""""""""""""""""""""""""""""""	C B	C B	C B	C B C	" C " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	B C "	В		Н		H L L	11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	See	B,C,D,	and E
			52 53 54 55	"" "" "" "" "" "" "" "" "" "" "" "" ""	C B	C B	C B C	C B C	" C " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	B C "	B C		Н		H L L	11 11 11 11 11 11 11 11 11 11 11 11 11	# # # # # # # # # # # # # # # # # # #	See	B,C,D,	and E
			52 53 54 55 56 57 58	11 11 11 11 11 11	C B	C B	C B C	C B C	" C " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	BC	B C B		Н	H L "	H L L	" " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	See	B,C,D,	and E
			52 53 54 55 56 57 58 59	11 11 11 11 11 11 11	C B	C B	C B C	C B C	" C " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11	B C "	B C B		H	H L "	H L L	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	See	B,C,D,	and E
			52 53 54 55 56 57 58	11 11 11 11 11 11 11 11	C B	C B	C B C	C B C	" C " " " " " " " " " " " " " " " " " "	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B C	B C B C		H	H L "	H L L	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	See	B,C,D,	and E

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued.

	1 1		Cases	1	1 ermina 2	ai conditio	ons (pins L 4	not desi	gnated if 6	ay be ni	gn ≥ 2.0 I 8	V; or low	<u>1 ≤ 0.7 V; 0</u>	or open).	12	13	14	Measured	Lir	nits	Unit
		MIL-STD-	A,B,C,D	'		3	4	5	0	'	0	9	10	11	12	13	14	terminal		IIIIS	Office
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CLK ₂	CLK₁	QD	QC	QB	QA	V _{CC}		Min	Max	1
7	Truth	3014	62	В	С	С	С	С	С	GND	С	В	Н	Н	Н	Н	5.0 V	All			
Tc = 25°C	table		63	С	В	В	В	В	"	"	В	В	"	-	"	Н	"	outputs			
	tests		64	"	"	"	"	"	"	"	"	С	"	-	"	L	"	"			
			65	"	"	"	"	"	"	"	"	В	"	-	"	=	"	"			
			66	=	"	"	"	"	"	"	"	С	"	-	L	-	-	"]		
			67	=	"	"	"	"	"	"	"	В	-	"	"	-	"	"]		
			68	-	"	"	"	"	"	"	"	С	"	L	"	"	"		See I	3,C,D,	and E
			69	"	"	"	"	"	"	"	"	В	"	"	"	"	"				
			70	-	"	"	"	"	"	"	"	С	L	"	"	"	"	=	Į		
			71	"	"	"	"	"	"	"	С	"	"	"	"	"	"		Į		
			72	"	"	"	"	"	В	"	С	"	"	"	"	"	"	"	Į		
			73	"	"	"	"	"	С	"	С	"	"	"	"	"	"	"			
			74	"	"	"	"	"	С	"	В	"	"	"	"	"	"	"	Į		
			75	"	"	"	"	"	В	"	В	"	"	"	"	"	"	"	Į		
			76	"	"	"	"	"	В	"	С	В	Н	Н	Н	Н	"	"	Į		
			77	"	"	"	"	"	С	"	С	"	"	"	"	"	"	"	Į		
			78	"	"	"	"	"	С	"	В	"	"	"	"	"	"	"	Į		
			79	"	"	"	"	"	В	"	В	"	"	"	"		"	"			
8	Same tes	sts, terminal o	conditions, and	limits as	subgroup	7 except T	_C = 125°C	and -55°	C.												
9	f _{MAX}	(Fig. 6)	80		IN				G	GND	IN					OUT	5.0 V	QA	22		MHz
$T_C = 25^{\circ}C$		(0)	81			IN			"	"	"				OUT		"	QB	"		"
0	,		82				IN		"	"	"			OUT				QC			"
			83					IN	"	"	"		OUT				"	QD	"		"
			84	IN					GND	"		IN				OUT		QA			"
	t _{PLH1}	3003	85		IN				G	"	IN					OUT	"	CLK to QA	5	32	ns
		(Fig. 6)	86			IN			"	"	"				OUT		"	CLK to QB	"	"	"
		, ,	87				IN		"	"	"			OUT			"	CLK to QC	"	-	"
			88					IN	"	"	"		OUT				"	CLK to QD	"	-	"
			89	IN					GND	"		IN				OUT	"	CLK to QA	"	-	"
			90	"					"	"		"			OUT		"	CLK to QB	"		"
			91	"					"	"		"		OUT				CLK to QC	"		"
			92	"					"	"		"	OUT				"	CLK to QD	"		"
	t _{PLH1}		93		IN				G	"	IN					OUT	"	CLK to QA	"	37	"
			94			IN			"	"	"				OUT		"	CLK to QB	"	"	
			95				IN		"	"	"			OUT			"	CLK to QC	"	"	"
			96					IN	"	"	"		OUT				"	CLK to QD	"	"	"
			97	IN					GND	"		IN				OUT	"	CLK to QA	"	"	"
			98	"					"	"		"			OUT		"	CLK to QB	"	"	"
			99	"					"	"		"		OUT			"	CLK to QC	"	"	"
	1		100	"					"	"			OUT				"	CLK to QD	"	=	"

See footnotes at end of device type 03.

			Cases	1	2	3	1	5	6	7	ρ	Q	10	11	12	13	14	Measured	Lin	nits	Unit
		MIL-STD-	A,B,C,D	'	2	3	7	3	O	,	O	9	10		12	13	14	terminal	LII	illo	Offic
Subgroup	Symbol	883	Cases 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V_{CC}		Min	Max	
10 Tc = 25°C	f _{MAX} See F,J	3003 (Fig. 6)	101 to 105																20		MHz
	t _{PLH1}	3003 (Fig. 6)	106 to 113	Same tes	ts and terr	minal cond	litions as f	or subgro	up 9.										5	48	ns
	t _{PHL1}	3003 (Fig. 6)	114 to 121																5	56	ns
11	Same tes	sts, terminal c	onditions as s	subgroup 1	0 except 1	Γ _C = -55°C	_														

Notes:

72

- A. Apply input pulse: 2.5 V minimum/5.5 V maximum 0 V
- B. $V_{IN} = 2.5 \text{ V}$.
- C. $V_{IN} = 0.4 \text{ V}$.
- D. Tests numbers 48 through 79 shall be run in sequence.
- E. Output voltages shall be either: (1) H ≥2.5 minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial input shall be one-half of the clock input frequency and the input shall be shifted such that the input \uparrow and \downarrow are coincident with the clock \uparrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- J. At the manufacturer's option, the following alternate procedures may be used to guarantee f_{MAX}:
 - a. Parallel mode. f_{MAX} for the parallel mode shall be guaranteed by performing propagation delay measurements with the clock pulse width at 1/2 x 1/f_{MAX}. In addition to the constraints on the clock pulse, the inputs are set to the worst-case condition for the t_{set-up} and t_{hold} requirements. Both positive and negative clock pulse widths shall be tested. The five tests to justify each JAN f_{MAX} requirement shall be used to test all possible input/output combinations. A failing limit or nontoggle will indicate that the device fails to function at f_{MAX} and/or the propagation delay from input to output has exceeded the allowed limit.
 - b. Serial mode. f_{MAX} for the serial mode shall be guaranteed by clocking the device four times (after reset) at f_{MAX} and looking for the Q_D output to toggle within three periods (3 x 1/f_{MAX}) plus allowed propagation delay. Two tests are performed, depending on the state of data input, to guarantee both LH and HL transition of the output pulse.

$\underline{1}$ / I_L limits (mA) min/max values for circuits shown:

Parameter	Terminal	Α	В	С	D	E
I _{IL2}	Serial A,	16/4	11/35	16/4	105/345	12/35
	B, C, D					
I _{IL4}	Mode	"	06/6	30/75	24/72	"
	CLK _{2,}	"	03/3	20/44	12/36	"
	CLK₁					

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Lir	nits	
group	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	CLK	A_{IN}	B _{IN}	C _{IN}	V_{CC}	D _{IN}	E _{IN}	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR	terminal	Min	Max	
1	V_{OH}	3006	1	2.0 V	2.0 V	2.0 V	2.0 V	4.5 V	2.0 V	2.0 V	2.0 V	2.0 V			GND			4 mA	2.0 V	QA	2.5		V
= 25°C			2	"	"	"	"	"	"	"	"	"			"		4 mA		"	QB	"		
			3	"	"	"	"	"	"	"	"	"			"	4 mA			"	QC	"		
			4	•	"	"	"	-	"	"	"	"		4 mA					-	QD	"		"
			5	"	"		"		"	"	"	"	4 mA							QE	-		
	V_{OL}	3007	6	- "	- "	"	- "	- "	"	"	0.7 V				- "	ļ		4 mA	0.7 V	QA	ļ	0.4	- "
			7	"		- "	- "	- :	- "	- "	-				- "		4 mA		"	QB			- "
			8			- "	- "	- :	<u> </u>		"			L		4 mA				QC			- -
			9		- "	- "		- "	- "	- "			4 4	4 mA	- "					QD		-	
	V		10			- "							4 mA		-				- "	QE CLK			-
	V _{IC}		11 12	-18 mA	10 m A										-							-1.5	-
			13		-18 mA	-18 mA										-				A _{IN} B _{IN}	1		-
			14			-16 IIIA	-18 mA									-				C _{IN}	1		-
			15				-10 IIIA		-18 mA											D _{IN}			-
			16						-10 IIIA	-18 mA					"					E _{IN}		"	-
			17							10 111/1	-18 mA				"					Enable		"	-
			18								10 111/1	-18 mA								Serial		"	-
			19					"				10 1117							-18 mA	CLR			"
	I _{IH5}		20	2.7 V	GND	GND	GND	5.5 V	GND	GND	GND	GND			"				GND	CLK		20	μA
	-1115		21	GND	2.7 V	GND	GND	"	"	"	"	"							"	A _{IN}		"	"
			22	"	GND	2.7 V	GND	"	"	"	"	"			"				"	B _{IN}		"	"
			23	"		GND	2.7 V	"	"	"	"	"			"				"	C _{IN}		"	"
			24	"	"	"	GND	"	2.7 V	"	"	"			"				"	D _{IN}		"	"
			25	"	"	"	"	"	GND	2.7 V	"	"			"				"	E _{IN}		"	"
			26		"	"	"	-	"	GND	"	2.7 V								Serial		"	
			27	=	"	"	"	=	"	"	"	GND			"				2.7 V	CLR		"	"
	I _{IH6}		28	5.5 V	"	-	-	=	"	"	-	-			"				GND	CLK		100	"
			29	GND	5.5 V	"	-	=	"	"	"				-				=	A _{IN}		-	
			30	"	GND	5.5 V	"	"	"	"	"	"			"				"	B _{IN}		"	"
			31	"	"	GND	5.5 V	"	"	"	"	"			"				"	C _{IN}		"	"
			32	=	"		GND	"	5.5 V		"	"			"					D _{IN}			
			33	"	"	"	-	"	GND	5.5 V	"	"			"				"	E _{IN}		"	- "
			34	- "	- "	"	-	- "	"	GND	"	5.5 V			- "	ļ				Serial	ļ	- "	- "
	I _{IH9}		35		"						"	GND							5.5 V	CLR			- "
			36		"	"	"	=	"	"	2.7 V	GND			"				GND	Enable		"	"
	I _{IH10}		37	"	"	"	"		-	"	5.5 V	GND			=				GND	Enable		500	"
	I _{IL3}	3009	38	0.4 V	4.5 V	4.5 V	4.5 V	"	4.5 V	4.5 V	4.5 V	4.5 V			"				4.5 V	CLK	<u>1</u> /	<u>1</u> /	mΑ
			39	4.5 V	0.4 V	4.5 V	"	"	"	"	"	"			"				"	A _{IN}	"	"	"
			40	"	4.5 V	0.4 V	"	"	"	"	"	"			"				=	B _{IN}	"	"	"
			41	=	"	4.5 V	0.4 V	"	"	"	"	"			"				"	C _{IN}	"	"	"
			42	"	"	4.5 V	4.5 V	"	0.4 V	"	"	"			"				"	D _{IN}	"	"	"

See footnotes at end of device types 04.

TABLE III. Group A inspection for device type 04 - Continued

						Termin					may be h				or oper	າ)							
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test L	imits	Ur
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	A _{IN}	B _{IN}	C _{IN}	V _{CC}	D _{IN}	E _{IN}	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	İ
1	I_{IL3}	3009	43	4.5 V	4.5 V	4.5 V	4.5 V	5.5 V	4.5 V	0.4 V	4.5 V	4.5 V			GND				4.5 V	E _{IN}	1/	1/	m
c = 25°C	120		44	"	"	"	"	"		4.5 V	"	0.4 V			"				4.5 V	Serial	-	-	-
			45	"	"	"	"	"	"	"	"	4.5 V			"				0.4 V	CLR		"	-
	I _{IL5}		46	"	"	"	"	"	"	"	0.4 V	"			"				4.5 V	Enable	"	"	
	Ios	3011	47	"	"	"	"		"	"	4.5 V	"			"			GND	"	QA	-15	-100	-
	.03		48	"	"	"	"	"	"	"	"				"		GND		"	QB	"	"	
			49	"	"	"	"	"		"	"	"			"	GND			"	QC	"	"	
			50	"	"	"	"	"	"	"	"	"		GND	"				"	QD	"	"	
			51	"	"	"	"	"	"	"	"	"	GND		"				"	QE	"	"	'
	I _{cc}	3005	52					"							"				GND	V _{cc}		20	'
2	Same te	sts, termina	l conditions, a	ınd limits	as subg	roup 1, ex	cept T _C =	125°C and	d V _{IC} tests	are omit	ted.						l	I	1	I		ı	
3			I conditions, a																				
7	Truth	3014	53	В	A	A	A	5.0 V	Α	Α	В	В	L	L	GND	L	L	L	В	All			
Γ _C = 25°C	table		54	Α	"	"	"	"	"	"	В	Α	L	L	"	L	L	L	В	outputs			
-	test		55	В	"	"	"	"	"	"	В	В	L	L	"	L	L	L	В	"			
			56	"	"	"	"	"	"	"	Α	"	Н	Н	"	Н	Н	Н	Α	"	1		
			57	"	В	В	В	"	В	В	"	"	Н	Н	"	Н	Н	Н	Α	"			
			58	"	"	"	"	"	"	"	"	"	L	L	"	L	L	L	В	"			
			59	=	"	"	"	"	-	"	В	=	"	"	"		-	L	Α	"			
			60	"	"	"	"	"	-	"	"	Α	-	"	"	=	-	L	"	"			
			61	Α	"	"	"	"	-	"	"	"	-	"	"	-	-	Н	"	"			
			62	В	"	"	"	"	"	"	"	"	"	"	"		"	"	"	"	See A	,B,C, a	and
			63	Α	"	"	"	"	"	"	"	"	"	"	"		Н	"	"	"			
			64	В	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"			
			65	Α	"	"	"	"	"	"	"	"	-	"	"	Н	"	"	"	"			
			66	В	"	"	"	"	"	"	"	"	-	"	"	=	"	"	"	"			
			67	Α	"	"	"	"	"	"	"	"	-	Н	"	-	"	"	"	"			
			68	В	"	"	"	"	"	"	"	"	"	"	"	-	"	"	"	"			
			69	Α	"	"	"	"	"	"	"	"	Η	"	"	-	"	"	"	"			
			70	В	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"			
			71	В	Α	Α	Α	"	Α	Α	"	В	"	"	"	-	"	"	"	"			
			72	Α	"	"	"	"	"	"	"	"	"	"	"	"	"	L	"	"			
			73	В	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"			
			74	Α	"	"	"	"	"	"	"	"	-	"	"		L	"	"	"			
			75	В	"	"	"	"	"	"	"	"	"	"	"		"	"	"	"			
			76	Α	"	"	"	"	"	"	"	"	"	"	"	L	"	"	"	"			
			77	В	"	"	"	"		"	"	"	-	"	"	-		"	"	"			
			78	Α	"	"	"	"	"	"	"	"	"	L	"	"	"	"	"	"			
			79	В	"	"	"	"	"	"	"	"	"	L	"	"	"	"	"	"			
	l		80	Δ					"			"			"	"					1	1	1

See footnotes at end of device type 04.

TABLE III. <u>Group A inspection for device type 04</u> - Continued. Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	v; or ope 12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			1
		method	Test no.	CLK	A _{IN}	B _{IN}	C _{IN}	V _{CC}	D _{IN}	E _{IN}	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	
8	Same te	sts, terminal	conditions, an	nd limits a	s subgro	up 7, exc	ept T _C =	125°C an	d -55°C														
9	f _{MAX}	(Fig. 7)	81	IN				5.0 V			GND	IN			GND			OUT	F	QA	20		MHz
c = 25°C	see note E																						
	t _{PLH1}	3003	82	"				"			"	IN			"			OUT	"	CLK TO QA	5	45	ns
		(Fig. 7)	83	"				"			"	See figure 7			"		OUT		"	CLK TO QB		"	"
			84	"				"			"				"	OUT			"	CLK TO QC	"		"
			85	"				"			"			OUT	"				"	CLK TO QD	"	"	"
			86	"				"			"		OUT						"	CLK TO QE	-		"
	t _{PLH2}		87	GND	IN			"			F				"			OUT	IN	A _{IN} TO QA	=	40	"
			88	"		IN		"			"				"		OUT		"	B _{IN} TO QB	=	=	"
			89	"			IN	"			-				"	OUT			"	C _{IN} TO QC	=	=	"
			90	"				"	IN					OUT	"				"	D _{IN} TO QD	"		"
			91	"				"		IN	"		OUT		"				"	E _{IN} TO QE	"	"	"
			92	"	F			"			IN				"			OUT	"	Enable to QA	"	•	. "
			93	"		F		"			"				"		OUT		"	Enable to QB	=	"	"
			94	"			F	"			"				"	OUT			"	Enable to QC			"
			95	"				"	F		"			OUT	"				"	Enable to QD	"	=	"
			96	"				"	"	F	"		OUT		"				"	Enable to QE	"	"	"
	t _{PHL1}		97	IN				"			GND	IN			"			OUT	F	CLK TO QA	"	45	
	11121		98	"				"			"				"		OUT		"	CLK TO QB	=	"	
			99	"				"			"				"	OUT			"	CLK TO QC	"	"	
			100	"				"			"			OUT	"				"	CLK TO QD	"	-	
			101	"				"			"		OUT		"				"	CLK to QE	"	"	
	t _{PHL2}		102	GND	F			"			IN				"			OUT	IN	CLR to QA	"	60	
			103	"		F		"			"				"		OUT		"	CLR to QB	"	"	
			104	"			F	"			"				"	OUT			"	CLR to QC	"	"	
			105	"				"	F		"			OUT	"				"	CLR to QD	"		
			106	"				"		F	"		OUT		"				"	CLR to QE	=	"	1

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$ or low $\leq 0.7 \text{ V}$ or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test L	imits.	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	A _{IN}	B _{IN}	C _{IN}	Vcc	D _{IN}	E _{IN}	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	
10 Tc = 25°C	f _{max} See E	(Fig. 7)	107																		17		MHz
	t _{PLH1}	3003 (Fig, 7)	108 to 112	Same te	sts and t	erminal	conditio	ns as for	subgrou	p 9.											5	68	ns
	t _{PLH2}		113 to 122																		"	60	"
	t _{PHL1}		123 to 127																		"	68	"
	t _{PHL2}		128 to 132																		"	90	"
11	Same te	sts, terminal	conditions, ar	nd limits a	as subgro	oup 10,	except T	_C = -55°C	D		•	<u> </u>	•						<u> </u>				

Notes:

- A. $V_{IN} = 2.5 \text{ V}$.
- B. $V_{IN} = 0.4 \text{ V}$.
- C. Tests numbers 53 through 80 shall be run in sequence.
- D. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- E. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial data shall be one-half of the clock input frequency and the serial shall be shifted such that the serial ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- 1/ I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	Α	В
I _{IL3}	CLK	16/40	16/40
	A _{IN,} B _{IN} , C _{IN} D _{IN} , E _{IN} , CLR	16/40	12/36
	Serial	10/34	10/34
I _{IL5}	Enable	8/-2.0	6/-1.8

F. 3.0 V minimum/5.0 V maximum.

TABLE III. Group A inspection for device type 05.

Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

		MIL-STD-	Cases	1	2	3	nditions (4	5	6	7	8	9	10	11	12	13	14		Te	est	
Subgroup	Symbol	883 method	A,B,C,D Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured	Lin	nits	Unit
0 1	,		Test no.	A _{IN}	B _{IN}	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{CC}	terminal	Min	Max	
1	V_{OH}	3006	1	2.0 V	2.0 V	4 mA				GND	J 1/	2.0 V					4.5 V	QA	2.5		V
Tc = 25°C			2	"	"		4 mA			-	" <u>2</u> /	"					"	QB			"
			3	"	"			4 mA		-	" 3/	"					"	QC			"
			4	"	"				4 mA	"	" <u>4</u> /	"					"	QD	"		"
			5	"	"					"	" <u>5</u> /	"	4 mA				"	QE	"		"
			6	"	"					=	" <u>6</u> /	"		4 mA			"	QF	"		"
			7	"	"					=	" <u>7</u> /	-			4 mA		"	QG	=		
			8	"	"					=	" 8/	-				4 mA	"	QH	=		
	V_{OL}	3007	9			4 mA				=		0.7 V					"	QA		0.4	
			10				4 mA			=		-					"	QB		"	
			11					4 mA		=		-					"	QC		"	-
			12						4 mA	"		"					"	QD		"	"
			13							=		-	4 mA				"	QE		"	
			14							"		"		4 mA			"	QF		"	"
			15							"		"			4 mA		"	QG		"	"
			16							"		"				4 mA	"	QH		"	=
	V_{IC}		17	-18 mA						"							"	A _{IN}		-1.5	"
			18		-18 mA					"							"	B _{IN}		"	"
			19							"	-18 mA						"	CLK		"	"
			20							=		-18 mA					"	CLR		"	"
	I _{IH1}	3010	21	2.7 V	GND					"							5.5 V	A _{IN}		20	μΑ
			22	GND	2.7 V					"							"	B _{IN}		"	"
			23							-	2.7 V						"	CLK		"	"
			24							=		2.7 V					"	CLR		"	"
	I _{IH2}		25	5.5 V	GND					"							"	A_{IN}		100	"
			26	GND	5.5 V					"							"	B _{IN}		"	
			27							"	5.5 V						"	CLK		"	
			28							=		5.5 V					"	CLR		-	
	I_{IL1}	3009	29	0.4 V	4.5 V					=							"	A _{IN}	<u>10</u> /	<u>10</u> /	mA
			30	4.5 V	0.4 V					=							"	B _{IN}	"	"	"
			31							=	0.4 V						"	CLK	"	"	"
			32		<u> </u>					=	<u></u>	0.4 V	<u> </u>	<u> </u>	<u> </u>		"	CLR	"	"	"

MIL-M-38510/306E

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$ or low $\leq 0.7 \text{ V}$ or open).

													≤ 0.7 V or		1			,			
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test I	_imits	Uni
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	A _{IN}	B _{IN}	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{cc}		Min	Max	1
1	Ios	3011	33 <u>9</u> /	4.5 V	4.5 V	GND				"	A <u>1</u> /	4.5 V					5.5 V	QA	-15	-100	m/
Tc = 25°C			34 "	"	"		GND			"	" <u>2</u> /	"						QB	"	"	"
			35 "	"	"			GND		"	" <u>3</u> /	"						QC	"		"
			36 "	"	"				GND	"	" <u>4</u> /	"						QD	"	"	"
			37 "	"	-					-	" <u>5</u> /	-	GND	GND	ļ		-	QE QF	-		
			38 "		-						" <u>6/</u> " 7/		-	GND	GND		-	QF QG	-	-	+ ;
			40 "							"	" 8/				GND	GND		QH			-
		3005	41	GND	GND						5.5 V	J				CIVE		V _{CC}		27	
	I _{cc}										3.5 V	J 3						VCC		21	
3			nditions and limit																		
7	Truth	3014	nditions and limit	B B	B B	L I _C = 125	C and v _{IC} te	esis are omi	llea L	GND	С	С		1 1	1 1		5.0 V	All	1	1	
T _C = 25°C	table	3014	43	"	"	"	-	"	-	"	В	C	-	-	-	-	J.U V	outputs			
20 0	test		44	"			"		"		C	C		"		"		"	1		
			45	"	"	"	"	"	"	"	"	В		"		"		"	1		
			46	С	С	"	"	"	"	"	"			"		"		"			
			47	В	В	"	"	-	-	"	-	-		"	-	"	-	"			
			48	"		Н		"			В			"	"	"		"			
			49			- '-	- "				С					<u> </u>	-:-	"	4		
			50 51		-	- "	H	-		- "	B C	-		- "	-	- "			C	I B,C,D a	
			52					Н			В					"		"	See	Б,С,D а 	and E
			53			"				"	C			"		"		"	1		
			54		"	"		"	Н	"	В			"		"		"			
			55	"	"	"	"	"	"	"	С			"		"		"			
			56			"		"	"	"	В		Н	"		"		"			
			57		- "						С	- "			-:-	- "		"			
			58	-			-	-	-		В			H	-		-:-	"			
			59 60								C B				Н	"		"	-		
			61			"				"	C			"		"		"			
			62	"		"		"	"	"	В			"		Н		"			
			63	"	"	"	"	"	"	"	С	"		"		"		"			
			64	С	"	"	"	"	"	"	С			"		"		"			
			65	"		L	"	"	"	"	В		"	"		"		"			
			66				- "		- "		С	-:-		- "	-:-	<u> </u>	-:-	- "	4		
			67 68			- "	L L		-	- "	B C	- :		- "	 -	- "	-:-				
			69		С						C			"		"		"	-		
			70		"			L			В			"		"		"	1		
			71	"		"		-	"	"	C			"		"		"			
			72	"	"	"	"	"	L	"	В			"		"	"	"			
			73	"	"	"	"	"	"	"	С	"	"	"	"	"	"	"			
			74	В	"	"	"	"	"	"	С	"		"	"	"		"]		1
			75	- "	- "	- "	- "			- "	В		L	"	- "	- "		"	4		
		l	76		— :—				-		C B	- :		L L	-	- "		- :	4		
			77	-	-									-		"		"			
			78			"	"	"	"		С	"	"		"	"	"	"			
				"	"	"	"	"	"	"		"	"	" "	" L	"	"	"			

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued.

												≥ 2.0 V; c			open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	A _{IN}	B _{IN}	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{CC}		Min	Max	•
8	Same te	sts, terminal c				ıp 7 excei	ot T _C = 1	25°C and	-55°C.								1 00		ı		
9	f _{MAX}	(Fig. 8)	82	IN	G	OUT	Ī			GND	IN	G	1	1		1	5.0 V	QA	22	1	MHz
T _C = 25°C	See note F		02							CILD							0.0 1				141112
	t _{PLH1}	3003	83	IN	G	OUT				"	"	"					"	CLK TO QA	5	32	ns
		(Fig. 8)	84	See fig. 8	See fig. 8		OUT				"	"					"	CLK TO QB	"	"	"
			85	-	"			OUT		"	"	-					-	CLK TO QC	"	"	"
			86	-	"				OUT	"	"	-						CLK TO QD		"	"
			87	"	"					"	"	"	OUT				"	CLK TO QE	"	"	"
			88	"	"					"	"	"		OUT			"	CLK TO QF	"	"	"
			89	"	"					"	"	"			OUT		"	CLK TO QG	"	"	"
			90	-	"					"	"	"				OUT	"	CLK TO QH	"	"	"
	t _{PHL1}		91	"	"	OUT				"	"	"					"	CLK TO QA	"	37	ns
			92	"	"		OUT			"	"	"					"	CLK TO QB	"	"	"
			93	"	"			OUT		"	"	"					"	CLK TO QC	"	"	"
			94	"	"				OUT	"	"	"					"	CLK TO QD	"	"	"
			95	"	"					"	"	"	OUT				"	CLK TO QE	"	"	"
			96	"	"					"	"	"		OUT			"	CLK TO QF		"	"
			97	"	"					"	"	"			OUT		"	CLK TO QG	_ "	"	
			98	"	"					"		"				OUT	"	CLK TO QH	"		
	t _{PHL2}		99	G	G	OUT				"	"	IN					"	CLK TO QA	"	41	
			100	- "	"		OUT				- "	-					"	CLK TO QB	- "	"	
			101	- "				OUT		- "		- "					- "	CLK TO QC	<u>"</u>	"	
			102	- "					OUT	- "		- "					- "	CLK TO QD	<u>"</u>	"	
			103	- "	- "					- "		- "	OUT	0.1.		ļ	<u> </u>	CLK TO QE	<u> </u>		⊢ "
			104							"	"	- "		OUT	07:-			CLK TO QF	- "		<u> </u>
			105 106	- "	- "					- "	- "				OUT	OUT	- "	CLK TO QG	-	- "	- "
								l	1				l			001	1	CLK TO QH	-	ļ	-
10 T _C = 125°C	f _{MAX} See F	(Fig. 8)	107																20		MHz
	t _{PLH1}	3003 (Fig. 8)	108 to 115																5	48	ns
	t _{PHL1}	3003 (Fig. 8)	116 to 123																5	66	ns
	t _{PHL2}	3003 (Fig. 8)	124 to 131																5	62	ns
11	Same te	sts, terminal c	onditions, and	limits as	subgrou	ир 10, exc	ept T _C =	-55°C.													

See footnotes at end of device type 05.

FOOTNOTES:

A. Apply input pulse: 2.5 V minimum/5.5 V maximum.

- B. $V_{IN} = 2.5 \text{ V}.$
- C. $V_{IN} = 0.4 \text{ V}.$
- D. Test numbers 42 through 81 shall be run in sequence.
- E. Output voltages shall be either: (1) H≥2.5 V minimum and L≤0.4 V maximum when using a high speed checker double comparator; (2) H≥1.5 V and L≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the A_{IN} data shall be one-half of the clock input frequency and the A_{IN} shall be shifted such that the A_{IN} and are coincident with the clock. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.

J. Apply input pulse: 2.5 V minimum/5.5 V maximum 0 V

- 1/ One pulse minimum.
- 2/ Two pulses minimum.
- 3/ Three pulses minimum.
- 4/ Four pulses minimum.
- 5/ Five pulses minimum.
- 6/ Six pulses minimum.
- 7/ Seven pulses minimum.
- 8/ Eight pulses minimum.
- 4t the manufacturer's option, I_{OS} tests 33 through 40, the following alternate procedure may be used; apply 2.75 volts @; test 33, QA, test 34, QB, test 35, QC, test 36, QD, test 37, QE, test 38, QF, test 39, QG, test 40, QH, and min/max limits of -7.5/-50 mA.
- 10/ I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D	E	F	G
I _{IL1}	A _{IN} , B _{IN}	0/34	10/34	16/40	16/40	135/370	12/36	16/40
	CLK	0/4	16/4	12/36	20/44	п	"	"
	CLR	0/4	16/4	12/36	16/40	п	н	н

TABLE III. Group A inspection for device type 06. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).

		MIL-STD- 883	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Liı	mits	
Subgroup	Symbol	method	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured			Unit
			Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V_{CC}	terminal	Min	Max	
1	V_{OH}	3006	1	2.0 V					0.7 V	GND	4.5 V	Α				-1.0 mA	4.5 V	QA	2.4		V
c = 25°C			2		2.0 V				2.0 V	"	"	"				-1.0 mA	"	QA	"		"
			3			2.0 V			"	"	"	"			-1.0 mA		"	QB	"		"
			4				2.0 V		"	=	"	=		-1.0 mA			"	QC	"		"
			5					2.0 V	"	=	"	=	-1.0 mA				-	QD	"		"
	V_{OL}	3007	6	0.7 V					0.7 V		"	-				12 mA	"	QA		0.4	"
			7		0.7 V				2.0 V	"	"					12 mA	"	QA		"	"
			8			0.7 V			"	-	"				12 mA		"	QB		"	"
			9				0.7 V		"	"	"	"		12 mA			"	QC		"	"
			10					0.7 V	"	"	"	"	12 mA				"	QD		"	"
	V _{IC}		11	-18 mA						"							"	Serial		-1.5	"
			12		-18 mA					"							"	A _{IN}			"
			13			-18 mA											"	B _{IN}			
			14				-18 mA											C _{IN}			"
			15					-18 mA	40. 4									D _{IN}			"
			16						-18 mA		10 1							Mode			- "
			17								-18 mA	40 4						CONT			- "
		0040	18	0.71/					4.5.77			-18 mA					· ·	CLK			<u> </u>
	I _{IH1}	3010	19	2.7 V	0.7.1/				4.5 V								5.5 V	Serial		20	μA "
			20		2.7 V	0.71/			GND									A _{IN}			- "
			21 22			2.7 V	2.7 V										- "	B _{IN}			"
			23				2.7 V	2.7 V		,							-	C _{IN}		-	"
			24					Z.7 V	2.7 V	"							"	D _{IN} Mode		-	
			25						Z.1 V		2.7 V						"	CONT		"	"
			26							,	Z.7 V	2.7 V					"	CLK		"	
	I _{IH2}		27	5.5 V					4.5 V	"		Z.1 V					"	Serial		100	"
	IIH2		28	3.5 V	5.5 V				GND	"							"	A _{IN}		"	"
			29		0.0 V	5.5 V			UIVD	"							"	B _{IN}		"	"
			30			0.0 .	5.5 V		"	"							"	C _{IN}		"	"
			31				0.0 1	5.5 V	"	"							"	D _{IN}		"	"
			32					0.0 1	5.5 V	"							"	Mode		"	"
			33						0.0 .	"	5.5 V						"	CONT		"	"
			34								0.0 1	5.5 V					"	CLK		"	"
	I _{OZH}		35		0.7 V				4.5 V	"	0.7 V	A				2.7 V	"	QA		20	"
	0211		36			0.7 V			"	"	"	"			2.7 V		"	QB		"	"
			37				0.7 V		"	"	"	"		2.7 V			"	QC		"	"
			38					0.7 V	"	"	"	"	2.7 V				"	QD		"	"
	I _{OZL}		39		2.0 V				"	"	"	"				0.4 V	"	QA		-20	"
			40			2.0 V			"	"	"	"			0.4 V		"	QB		"	"
			41				2.0 V		"	"	"			0.4 V			"	QC		"	"
			42					2.0 V	"	"	"	"	0.4 V				"	QD		"	"

See footnotes at end of device types 06.

MIL-M-38510/306E

TABLE III. <u>Group A inspection for device type 06</u> - Continued. Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

									acorginat			-,		·, ·. · · ·							
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test	Limits	Unit
Subgroup	Symbol	_	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{cc}		Min	Max	
1	I _{IL1}	3009	43	0.4 V					GND	"							5.5 V	Serial	1/	<u>1</u> /	mA
Tc = 25°C			44		0.4 V				4.5 V	"							=	A _{IN}	"		
			45			0.4 V			"	"							"	B _{IN}	"	"	-
			46				0.4 V		"	"							"	C _{IN}	"	"	-
			47					0.4 V	"	"							"	D _{IN}	"	"	-
			48						0.4 V	"							"	Mode	"	"	=
			49							=	0.4 V						"	CONT	"	"	-
			50							=		0.4 V					"	CLK	"	"	"
	I _{os}	3011	51		4.5 V				4.5 V	=	4.5 V	Α				GND	"	QA	<u>2</u> /	<u>2</u> /	"
			52			4.5 V			-	=	-	=			GND		-	QB	"	"	"
			53				4.5 V		"	=	=	=		GND			"	QC	"	"	"
			54					4.5 V	-	-	-	=	GND				-	QD	"	"	"
	I_{CC}	3005	55	5.5 V	GND	GND	GND	GND	5.5 V	"	5.5 V	"					"	V_{CC}		27	"
	Icc	3005	56	5.5 V	GND	GND	GND	GND	5.5 V	"	GND	GND					"	V_{CC}		29	"
2	Same te	sts, terminal c	conditions and	limits as s	ubgroup	1 except T	_C = 125°C	and V _{IC} t	ests are o	mitted.											
3	Same to	ests, terminal	conditions and	limits as s	subgroup	1 except	T _C = -55°C	and V _{IC} t	ests are o	mitted.	•		•		•	•	•				_

See footnotes at end of device type 06.

											ce type 0										
	1									_			≤ 0.7 V; c		1.0						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V_{CC}		Min	Max	
7	Truth	3014	57	В	В	В	В	В	В	GND	В	В	Χ	Х	Χ	X	5.0 V	All			
Tc = 25°C	table		58	=	В	В	В	В	"	"	=	С	Н	Н	Н	Н	"	outputs			
	tests		59	"	В	В	В	В	"	"	"	В	Н	Н	Н	Н	"	"			
			60	"	С	C	С	С	"	"	"	В	Н	Н	Н	Н	"				
			61	"	"	- "		"			-	С	L	L	L	L					
			62	- "	- "	- :		"	- "			В	- "	-		L	- "				ا ا
			63 64	"	"		,	"	C "		"	B C		<u> </u>		L H			See	3,C,D, a	and E
			65									В						"			
			66	"	"	"	"	"	"	"	"	C	"	"	Н		"	"			
			67	"	"	"	"	"	"	"	"	В	"	"	"		"	"			
			68	"	"	"	"	"	"	"	"	C	"	Н	"		"	"			
			69	"	"	"	"	"	"	"	"	В	"	"	"	"	"	"			
			70		"			"	"	"	-	С	Н		"	"		"			
			71	"	"	"	"	"	"	"	"	В	"	"	"	"	"	=			
			72	С	В	В	В	В	"	"	"	В	"	"	"		"	=			
			73	"	"	=	"	"	"	"	"	С	"	"	"	L	"	"			
			74	"	"	"	"	"	"	"		В	"			"		=			
			75	- "	"	- :	- :	"				С	- "	- :	L L		- "				
			76	- "	"	- "	- "	"			"	В	"	<u> </u>	- "		- "				
			77 78	"	"			"			"	C B	"	L				"			
			78	"	"		,	"	"	"	"	С	L	L	"			"			
	0 1			P			10500	1 550				O	_	_	I						l
8		-	onditions, and	IIMITS AS	subgroup	except i	c = 125°C	and -55°		OND	0	INI		1	ı	OUT	5 O V	0.4	00		N 41 1-
9 T _C = 25°C	f _{MAX} See note F	(Fig. 9)	80	IIN					GND	GND	Ð	IN				001	5.0 V	QA	20		MHz
	t _{PLH1}	3003	81		IN				G	"	"	"				OUT	"	CLK to QA	6	35	ns
		(Fig. 9)	82			IN			"	"	=	"			OUT			CLK to QB		=	"
			83				IN		"	"	"			OUT			"	CLK to QC	=	=	"
			84					IN	"	"	"	"	OUT				"	CLK to QD	"	"	"
			85	IN					GND	"	"	"				OUT	"	CLK to QA	"	-	'
			86	See fig. 9					"	"		"			OUT		. "	CLK to QB	"		"
			87	See fig. 9					"	"	"	"		OUT			"	CLK to QC	"	"	"
			88	See					"	"	"	"	OUT				"	CLK to QD	"	"	"
	+		89	fig. 9	IN				G	"	"					OUT		CLK to QA		40	"
	t _{PHL1}		90		IIN	IN			"	"	"	"			OUT	001	"	CLK to QB		"	"
			91				IN		"	"	"	"		OUT	001			CLK to QC	"	"	"
			92					IN	"	"	"	"	OUT				"	CLK to QD			"
			93	IN					GND	"	"					OUT	"	CLK to QA	"	-	"
			94	See fig. 9					"	"	"	"			OUT		"	CLK to QB	"	"	"
			95	See					"	"	"	"		OUT			"	CLK to QC	"	"	"
			96	fig. 9 See					II II	ıı ı	"	"	OUT				"	CLK to QD	"	"	"
L				fig. 9					İ					1							

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued.

					Termin	al condit	ions (pin	s not de	signate	d may b	e high ≥	2.0 V; o	r low $≤ 0$.7 V; or	open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _N	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	Vcc		Min	Max	
9	t_{ZL}	(Fig. 9)	97		GND				G	GND	IN	IN				OUT	5.0 V	CONT to QA	5	35	ns
$T_C = 25^{\circ}C$			98			GND			"	"	"	"			OUT		-	CONT TO QB	-	"	"
			99				GND		"	"	"	"		OUT			-	CONT TO QC	"	"	"
			100					GND	"	"	"	"	OUT				"	CONT TO QD	=	-	"
	t_{ZH}		101		G				"	"	"	"				OUT	"	CLK TO QA	"	30	"
			102			G			"	"	"	"			OUT		"	CLK TO QB	"	"	"
			103				G		"	"	"	"		OUT			"	CLK TO QC	"	-	"
			104					G	"	"	"	"	OUT				"	CLK TO QD	"	"	"
	t_{LZ}		105		GND				"	"	"	"				OUT	"	CLK TO QA	"	55	"
			106			GND			"	"	"	"			OUT		"	CLK TO QB	"	"	"
			107				GND		-	"	"	-		OUT			=	CLK TO QC	-	"	"
			108					GND	-	"	"	-	OUT				=	CLK TO QD	-	"	"
	t_{HZ}		109		G				"	"	"	-				OUT	-	CLK TO QA	-	65	"
			110			G			-	"	"	-			OUT		=	CLK TO QB	-	"	"
			111				G		-	"	"	-		OUT			=	CLK TO QC	-	"	"
			112					G	"	"	"		OUT				-	CLK TO QD	"	"	"
10 T _C =125°C	f _{MAX} See F		113																18		MHz
	t _{PLH1}	3003 (Fig. 9)	114 to 121																5	46	ns
	t _{PHL1}		122 to 129						_										=	52	"
	t _{ZL}		130 to 133	Same	test and	terminal o	conditions	as subgr	oup 9.										=	45	"
	t _{ZH}		134 to 137																"	39	"
	t _{LZ}		138 to 141																=	71	"
	t _{HZ}		142 to 145																=	84	"
11	Same te	ests, termina	l conditions, a	nd limits	as for su	ubgroup 1	0, except	T _C = -55°	°C.												

See footnotes at end of device type 06.

FOOTNOTES:

- A. Apply input pulse: 2.5 V minimum/5.5 V maximum 0 V
- B. $V_{IN} = 2.4 \text{ V}$.
- C. $V_{IN} = 0.4 \text{ V}$.
- D. Test numbers 57 through 79 shall be run in sequence.
- E. Output voltages shall be either: (1) H≥2.5 V minimum and L≤0.4 V maximum when using a high speed checker double comparator; (2) H≥1.5 V and L≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial shall be one-half of the clock input frequency and the serial shall be shifted such that the serial ↑ and ↓ are coincident with the clock ↑. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- 1/ I_{IL} limits (mA) min/max values for circuits shown:

_			_	_	_	_
Parameter	Terminal	Α	В	С	D	E
I _{IL1}	Serial	075/250	16/40	16/40	105/345	12/36
	A _{IN} , B _{IN} ,	12/36	16/40	16/40	105/345	12/36
	C_{IN} , D_{IN}					
	Mode	16/40	15/38	03/3	12/36	12/36
	CONT	16/40	16/40	03/3	12/36	12/36
	CLK	16/40	20/44	03/3	12/36	12/36

2/ I_{OS} limits (mA) min/max values for circuit A: -30/-130. for circuits B, C, D, E: -15/-100.

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

1IL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<u> </u>	Test L	imits	
883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Un
method	Test no.	CLR	Serial	A_{IN}	B _{IN}	C _{IN}	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V_{CC}	terminal	Min	Max	
3006	1	2.0 V		2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	GND	0.7 V	Α					1 mA	4.5 V	QA	2.4		V
	2	=		=	"	=	-				"				1 mA		-	QB	"		"
	3	"		"	"	"	"	"	"	"	"			1 mA			"	QC	"		"
	4	"		=	-	"	"	"	"	"	=		1 mA				"	QD	"		"
	5	"		=	-	"	"	"	"	"	=	4 mA					"	QD'	2.5		"
3007	6	"		0.7 V	0.7 V	0.7 V	0.7 V	"	"	"	"					12 mA	"	QA		0.4	"
	7	"		=	-	"	"	"	"	"	=				12 mA		"	QB		"	'
	8	"		"	"	"	"	"	"	"	"			12 mA			"	QC		"	_
	9	"		"	"	"	"	"	"	"	"		12 mA				"	QD		"	_
	10	"		"	"	"	"	"	"	"	"	4 mA					"	QD'		"	_
	11	-18 mA							"								"	CLR		-1.5	'
	12		-18 mA						"								"	Serial		"	_
	13			-18 mA					"								"	A _{IN}		"	
	14				-18 mA	1	1		"				1		1	1	"	B _{IN}		"	1
j	15					-18 mA			"				<u> </u>				"	C _{IN}		"	
	16						-18 mA		"								"	D _{IN}		"	1
	17							-18 mA	"								"	Load		"	
	18								"	-18 mA							"	CONT		"	
	19								"	10	-18 mA						"	CLK		"	
3010	20	2.7 V							"		10 11 1						5.5 V	CLR		20	μ
00.0	21		2.7 V					4.5 V									"	Serial		"	
	22		Z.7 V	2.7 V				GND									"	A _{IN}		"	
	23			Z.1 V	2.7 V			UIVD "									"	B _{IN}		"	1
	24					2.7 V											"	C _{IN}		"	1
	25					Z.7 V	2.7 V	"	"								"	D _{IN}	——	"	╁
	26						Z.1 V	2.7 V	"				-				"	Load		"	1
	27							GND		2.7 V			-				"	CONT		"	1
	28							GND		Z.7 V	2.7 V		-				"	CLK		"	-
	29	5.5 V						OND	"		Z.1 V						"	CLR	——	100	╁
	30	J.J V	5.5 V					4.5 V	"				-				"	Serial		"	1
	31		J.J V	5.5 V				GND	-								"	A _{IN}		"	
	32			J.J V	5.5 V			UND	-								"	B _{IN}		"	
	33				J.J V	5.5 V		"	"				-				"	C _{IN}		"	1
	34					J.J V	5.5 V	"	-								"	D _{IN}		"	
	35						J.J V	5.5 V	-				 				"	Load		- "	
	36							GND	"	5.5 V							"	CONT		"	-
	37							GND		J.J V	5.5 V		1				"	CLK			\vdash
	38	2.0 V		0.7 V	0.7 V	0.7 V	0.7 V	2.0 V	"	2.0 V	3.5 V A					2.7 V	"	QA QA		20	
j	39	Z.U V		U.7 V	U.7 V	U.7 V	U.7 V	Z.U V		Z.U V			+		2.7 V	Z.1 V	"	QB		20	\vdash
		"		"							"		-	271/	Z.1 V		-			-	-
				"	"	-	-	"		,	"		271/	2.1 V	-		-			-	_
				0.014	0.01/	0.01/	0.01/		- "				2.1 V		1	0.417	-	QD			
				∠.U V	2.U V	2.U V	∠.U V	- "			-		1		0.41/	U.4 V	-	QA OB		-20	₩
							-		-					0.41/	0.4 V		- "	QB OC		-	
			ļ			<u> </u>							0.411	U.4 V	1	ļ				-	₩
		40 41 42 43 44	40 " 41 " 42 " 43 " 44 "	40 " 41 " 42 " 43 " 44 "	40 " " " 41 " 42 " 2.0 V 43 " " " " " " " " " " " " " " " " " "	40 " " " " " 41 " " 42 " 2.0 V 2.0 V 43 " " " " " 44 " " " " " "	40 " " " " " " 41 " 42 " 2.0 V 2.0 V 2.0 V 43 " " " " " " " " 44 " " " " " " " " "	40 " " " " " " " 41 " 42 " 2.0 V 2.0 V 2.0 V 2.0 V 43 " " " " " " " " " " " " " " " " " "	40 " " " " " " " " 41 " 42 " 2.0 V 2.0 V 2.0 V 2.0 V 43 " " " " " " " " " " " " " " " " " "	40 " " " " " " " " " " 41 " " 42 " 2.0 V 2.0 V 2.0 V 2.0 V " " 43 " " " " " " " " " " " " " " " "	40 " " " " " " " " " " " " " " " " " " "	40 " " " " " " " " " " " " " 41 " " " " "	40 " " " " " " " " " " " " " 41 " " " " "	40 " " " " " " " " " " " 2.7 V 41 " " " " " " " " " " " " " " " " 42 " 2.0 V 2.0 V 2.0 V 2.0 V " " " " " " " 43 " " " " " " " " " " "	40 " " " " " " " " " " " 2.7 V 41 " " " " " " " " " " " " " 2.7 V 42 " 2.0 V 2.0 V 2.0 V 2.0 V " " " " " " " 43 " " " " " " " " " " "	40 " " " " " " " " " " " 2.7 V 41 " 2.7 V 42 " 2.0 V 2.0 V 2.0 V 2.0 V " " " " " " 0.4 V	40 " " " " " " " " " " " 2.7 V 41 " 2.7 V 42 " 2.0 V 2.0 V 2.0 V 2.0 V " " " " " 43 " " " " " " " " " " " " "	40 " " " " " " " " " " " " 2.7 V	40 " " " " " " " " " " " " QC 41 " " 2.7 V " " QD 42 " 2.0 V 2.0 V 2.0 V 2.0 V " " " " " " " 0.4 V " QA 43 " " " " " " " " " " " " " " " QB 44 " " " " " " " " " " " " " " QC	40 " " " " " " " " " " " " " QC 41 " QD 42 " Q.0 V 2.0 V 2.0 V 2.0 V " " " QA 43 " " " " " " " " " " " " " " " " " QB 444 " " " " " " " " " " " " " " " " "	40 " " " " " " " " " " " " " 2.7 V " " QC " " 41 " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " QD " " QD " " QD " " QD " " " QD " " QD " " " QD " " " QD " " " QD " " " QD " " " QD " " " QD " " " QD " " " QD " " " "

See footnotes at end of device types 07.

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test	Limits	
Subgroup			Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
0 1	1	method	Test no.	CLR	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V_{CC}	terminal	Min	Max	ĺ
1	I_{IL1}	3009	46	0.4 V							GND								5.5 V	CLR	1/	<u>1</u> /	mA
Tc = 25°C			47	В	0.4 V					GND	"		Α						"	Serial	"	"	"
			48			0.4 V				4.5 V	"								"	A _{IN}	"	"	"
			49				0.4 V			"	"								"	B _{IN}	"	"	"
			50					0.4 V		"	"								"	C _{IN}	"	"	"
			51						0.4 V	"	"								"	D _{IN}		"	"
			52							0.4 V	"								-	Load	=		"
			53							4.5 V	"		0.4 V						-	CONT	=		"
			54							"	"			0.4 V					-	CLK	=		"
	los	3011	55	4.5 V	GND	4.5 V	4.5 V	4.5 V	4.5 V	"	"	GND	Α					GND	"	Q_A	<u>2</u> /	<u>2</u> /	"
			56	"	"	"	"	"	"	"	"	"	"				GND		"	Q_B	"	"	"
			57	"	"	"	"	"	"	"	"	"	"			GND			"	Q_{C}	"	"	"
			58	"	"	"	"	"	"	"	"	"	"		GND				"	Q_D	"	"	"
			59	"	"	"	"	"	"	"	"	"	"	GND					"	$Q_{D'}$	"	"	"
	Icc	3005	60	5.5 V	5.5 V	GND	GND	GND	GND	5.5 V	"	5.5 V	"						"	V _{CC}		34	"
	I_{CC}	3005	61	GND	5.5 V	GND	GND	GND	GND	5.5 V	"	GND	GND						"	V_{CC}		31	"
2	Same te	sts, termin	al conditions	and limit	s as sub	group 1,	except T	c = 125°C	and V _{IC}	tests are	omitted.												
3	Same te	sts, termin	al conditions	and limit	s as sub	group 1,	except T	c = -55°C	and V _{IC}	tests are o	mitted.												
7	Truth	3014	62	D	С	С	С	С	С	С	GND	D	С	L	L	L	L	L	5.0v	All	See	C,D,E,	and F
T _C = 25° C	table		63	D	D	D	D	D	D	D	"	"	D	"	"	"		"	"	outputs		1	
-	test		64	D	С	С	С	С	С	С	"	"	С	"	"	"	"	"	"	"			
			65	С	"		"	"	"	"	"	"	С	"	"	"		"	"	"			
			66	С	"		"	"	"	"	"	"	D	Н	Н	Н	Н	Н	"	"			
			67	С	"	-	"	"	"	"	"	"	С	Н	Н	Н	Н	Н	"	"			

See footnotes at end of device types 07.

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V_{CC}	1	Min	Max	
7	Truth	3014	68	С	С	D	D	D	D	С	GND	D	С	Н	Н	Н	Н	Н	5.0 V	All			
Tc = 25°C	table		69	=	"	"		=	"	С	=		D	L	L	L	L	L	"	outputs			
	tests		70	=	"	"	-	-	"	С	=	-	С	"	"	"	"	L	"	"	1		
			71	"	"	"	"		"	D	"	"	С	"	"		"	L	"	"	1		
		j	72	"	"	"	=	=	"	"	=	"	D	"	"	"	"	Н	"	"	j		
			73	-	-	"	=	=	"		=	=	С	-		=	"	"		"]		
			74	"	"	"		"	С	"	-	"	D	"	"	"	Н	"	"	"	See (C,D,E,	and F
			75	"	=	"	=	=	"	"	=	"	С	=	"	"	"	"	"	"]		
			76	"	"	"	"	"	"	"	-	"	D	"	"	Н	"	"	"	"]		
			77	=	=	"	=	=	"	"	=	"	С	"	"	"	"	"	"	"]		
			78	"	"	"	"	"	"	"	"	"	D	H	Н	"	"	"	"	"			
			79	"	"	"		"	"	"		"	С	- "	"	- "	"	"		"	1		
			80	- :	D	C	C	C	C	"			С	"	- "	-:-	- "		- "		4		
			81		"			- "	"				D			-		L	- "	-	4		
			82 83	-	"				"	"			C D		- "	-		"	- "	-	-		
			84	"				"	"	"			С	"			L "			,	-		
		,	85						"	"		"	D							"	┪		
			86	"	"		"	"	"	"		"	C			-	"	"		"	-		
			87	"	"	"	"		"	"	"	"	D	1	1	i i	"	"	"	"	1		
8	Same too	ete terminal	conditions, as	e eubaro	un 7 avca	nt T ₋ – 12	5°C and	-55°℃		ı								1	1	.1			
						pt 10 = 12	.5 0 4114	00 0.						1	1							1	
T _C = 25°C	f _{MAX} See G	(Fig. 10)	88	J	IN					GND	GND	GND	IN					OUT	5.0 V	QA	22		MHz
	t _{PLH1}	3003	89	"		IN				J	=		=					OUT	"	CLK to QA	5	37	ns
		(Fig. 10)	90	"			IN			"	"	"	"				OUT		"	CLK to QB	"	"	"
			91	"				IN		"	-	"	"			OUT			"	CLK to QC	"	"	"
			92	"					IN	"	"	"	"		OUT				"	CLK to QD	"	"	
			93						IN	"	"	"	"	OUT					"	CLK to QD'	"	- "	_ '
			94	- :	IN					GND		"	- "				O. 1.	OUT	- "	CLK to QA	- "-	<u>"</u>	- "
			95		See fig. 10					"		"	"				OUT			CLK to QB			
		•	96	"	"					"	"	"	"			OUT			"	CLK to QC	"	"	"
		Í	97	"	"					"	"		"		OUT				"	CLK to QD	"	"	"
		ĺ	98	"	"					"	"	"	"	OUT					"	CLK to QD'	"	"	"
Ī	t _{PHL1}		99	=		IN				J	=		"					OUT		CLK to QA	"	"	"
		j	100	"			IN			"	=	"	=				OUT		"	CLK to QB	"	"	"
			101	-				IN			=		-			OUT				CLK to QC	"	"	
			102	-					IN		=	=	-		OUT					CLK to QD	"	"	
1			103	"					IN	"	=	"	"	OUT					"	CLK to QD'	"	"	"
1			104	"	IN					GND	-	"	"					OUT	"	CLK to QA	"	"	"
			105	"	See (fig. 10)					"		"	"				OUT		"	CLK to QB	"	"	"
		;	106	"	(iig. 10)					"		"	"		1	OUT			"	CLK to QC	"	"	
		j	107	"	"					"	"	"	"		OUT	501			"	CLK to QC	-	"	-
			107												001					CLK to QD'	1		

See footnotes at end of device type 07.

TABLE III. <u>Group A inspection for device type 07</u> - Continued. Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$; or low $\le 0.7 \text{ V}$; or open).

		MU OTO	10							Signate		e high ≥					1 44	4.5					T 11.22
		MIL-STD-		1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	14	Measured	Lir	nits	Unit
Subgroup	Symbol		Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	Serial	A _{IN}	B _N	C _{IN}	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V_{CC}			Max	
9	t _{PHL2}	3003	109	IN		J				J	GND	GND	IN					OUT	5.0 V	CLR to QA	5	37	ns
$T_C = 25^{\circ}C$		(Fig. 10)	110	"			J			"	"	"	"				OUT		"	CLR to QB	=	"	"
			111	"				J		"	"	"	"			OUT			"	CLR to QC	"	"	"
			112	"					J	"	"	"	"		OUT				"	CLR to QD	"		
			113	"					J	"	"	"	"	OUT					"	CLR to QD'	-		
	t_{ZL}		114	"							"	IN						OUT	"	CONT to QA		35	└ ┊
			115	- "							- "	- "				01.17	OUT		"	CONT TO QB		-	لـــّــــا
			116	"								-			0117	OUT				CONT TO QC			اليبا
			117 118								"	"	INI		OUT			OUT		CONT TO QD			
	t _{ZH}		118	J "		J	J			J "		-	IN "				OUT	001		CONT TO QA			
			120				J	J				"				OUT	001			CONT TO QB			
			121					J	J		"				OUT	001				CONT TO QC	"		-
	t _{LZ}		122	GND					3		"	"			001			OUT	"	CONT TO QA	"		-
	LZ		123	"							"	"					OUT		"	CONT TO QB	"		-
			124	"							"	"				OUT	001		"	CONT TO QC	"		"
			125	"							"	"			OUT				"	CONT TO QD	"		"
	t _{HZ}		126	J		J				J	"	"	IN					OUT	"	CONT TO QA	"	"	"
			127	"			J			"	"	=					OUT		"	CONT TO QB	=		"
			128	"				J				-	-			OUT			-	CONT TO QC	=	-	"
			129	"					J	"	"	"	"		OUT				"	CONT TO QD	"	"	"
10 T _C = 125°C	f _{MAX} See G	(Fig. 10)	130																		20		MHz
	t _{PLH1}	3003 (Fig. 10)	131 to 140																		5	56	ns
	t _{PHL1}		141 to 150																		=	56	"
	t _{PHL2}		151 to 155	Same to	ests and	termina	l condition	ons as for	subgro	up 9.											=	56	"
	t_{ZL}		156 to 159																		"	53	"
	t_{ZH}		160 to 163																		"		"
	t_{LZ}		164 to 167																		"	"	"
	t _{HZ}		168 to 171																		=	=	"
11	Same te	sts, termina	l conditions, a	nd limits	as subg	roup 10	, except	T _C = -55°	С		_	_				_							

See footnotes at end of device type 07.

FO	റ	ΓNΙ	\cap T	ᇊ

2.5 V minimum/5.5 V maximum A. Apply input pulse:

B. Apply input pulse:

2.5 V minimum/5.5 V maximum.

C. $V_{IN} = 2.4V$.

D. $V_{IN} = 0.4 \text{ V}$.

E. Test numbers 62 through 87 shall be run in sequence.

F. Output voltages shall be either: (1) H≥2.5 V minimum and L≤0.4 V maximum when using a high speed checker double comparator: (2) H≥1.5 V and L≤1.5 V when using a high speed checker single comparator.

G. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the parallel input shall be one-half of the clock input frequency and the parallel input shall be shifted such that the parallel input ↑ and ↓ are coincident with the clock ↑. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.

MIL-M-38510/306E

J. 3.0 V minimum/5.0 V maximum.

1/ I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D
I _{IL1}	Serial	075/250	16/40	105/345	12/36
	A _{IN} , B _{IN} , C _{IN}	12/36	II .	105/345	12/36
	D _{IN}	16/40	"	16/40	105/345
	CLR, Load, CONT, CLK	16/40	03/30	12/36	12/36

2/ I_{oS} limits for circuit A for QA through QD are -30 to -130 mA, for QD' is -20 to -100 mA, and for circuits B, C, and D are -15 to -100 mA.

TABLE III. Group A inspection for device type 08 tions (pins not designated may be high $\geq 2.0 \text{ V}$; or low

						Termina	al condit	ions (pir	ns not de	esignate	d may	be high	≥ 2.0 V;	or low ≤	0.7 V;	or open)							
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test	Limits	
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	Shift Load	CLK	Е	F	G	Н	Q _H	GND	QH	Serial INP	Α	В	С	D	CLK INHB	V _{CC}	terminal	Min	Max	1
1	V_{OH}	3006	1	0.7 V					2.0 V		GND	4 mA							4.5 V	Q_H	2.5		V
Tc = 25°C		3006	2	"					0.7 V	4 mA	"								"	Q _H	2.5		"
	V_{OL}	3007	3	"					0.7 V		"	4 mA							"	Q_H		0.4	"
		3007	4	"					2.0 V	4 mA									"	Qн		0.4	"
	V_{IC}		5	-18 mA															"	S/L		-1.5 V	"
			6		-18 mA														"	CLK		"	
			7			-18 mA													"	E			"
			8				-18 mA												"	F			-
			9					-18 mA			"								"	G		"	"
			10						-18 mA		"								"	Н		"	"
			11								"		-18 mA						"	S/INP		"	"
			12								"			-18 mA					"	Α		-	"
			13								"				-18 mA				"	В		"	"
			14								"					-18 mA				С		"	"
			15								"						-18 mA			D		"	-
			16												1			-18 mA		CLK/INHB			
	I _{IL1}	3009	17		0.4 V														5.5 V	CLK	<u>1</u> /	<u>1</u> /	mA
	I _{IL6}		18	GND		0.4 V					"								"	E		"	"
			19	"			0.4 V				"								"	F		"	"
			20	"				0.4 V			"									G	"	"	
			21	"					0.4 V		"									Н	"	"	- "
			22	0110							- "		0.4 V	0.414						S/INP	-	- "	- "
			23	GND							- "			0.4 V	0.414					A		- "	
			24								- "				0.4 V	0.417				В		- "	
			25								- "				-	0.4 V	0.41/			C	<u> </u>	- "	
			26			<u> </u>										<u> </u>	0.4 V	l	.,	ט	.,		

MIL-M-38510/306E

See footnotes at end of device types 08.

TABLE III. Group A inspection for device type 08 - Continued Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$ or low $\leq 0.7 \text{ V}$ or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup			Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	Е	F	G	Н	Qн	GND	Q _H	Serial INP	Α	В	С	D	CLK INHB	V _{cc}		Min	Max	
1	I _{IL1}	3009	27								GND							0.4 V	5.5 V	CLK/INHB	<u>1</u> /	<u>1</u> /	mA
Tc = 25°C	I _{IL7}		28	0.4 V							"								"		<u>1</u> /	<u>1</u> /	mA
	I _{IH1}	3010	29		2.7 V						"								"	CLK		20	μΑ
			30			2.7 V					"								"	Е		"	
			31				2.7 V				"								"	F		"	"
			32					2.7 V			"								"	G		"	"
			33						2.7 V		=								-	Н		"	-
			34								-		2.7 V						=	S/INP			
			35								"			2.7 V					"	Α		"	"
			36								"				2.7 V				=	В		-	-
			37								"					2.7 V			"	С		"	"
			38								"						2.7 V		"	D		"	-
			39								"							2.7 V	"	CLK/INHB		"	"
	I _{IH11}		40	2.7 V							"								"	S/L		60	"
	I_{IH2}		41		5.5 V														-	CLK		0.1	mΑ
			42			5.5 V													=	Е		=	
			43				5.5 V												=	F		=	
			44					5.5 V			"								"	G			"
			45						5.5 V		"								"	Н		"	"
			46								"		5.5 V						"	S/INP		"	"
			47								"			5.5 V					"	Α			
			48								"				5.5 V				"	В			"
			49								"					5.5 V			"	С		"	"
			50								"						5.5 V			D			"
			51								"							5.5 V	"	CLK/INHB		"	
	I _{IH12}		52	5.5 V							"								"	S/L		0.3	"
	los	3011	53	GND					5.5 V		=	GND							-	Q_H	-15	-100	-
	los	3011	54	"					GND	GND	"								"	\overline{Q}_{H}	-15	-100	"
	Icc	3005	55	"	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V		-		4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	-	V _{cc}		36	-
	I _{CC}	3005	56	"	4.5 V	GND	GND	GND	GND		"		GND	GND		GND		4.5 V	"	V _{CC}		36	"
2	Same te	sts, termina	al conditions,	and limit	ts as sub	group 1, e	except T _C =	= 125°C a	ind V _{IC} tes	sts are on	nitted.												
3	Same te	sts. termina	al conditions,	and limit	ts as sub	aroup 1 e	except To a	= -55°C a	nd V _{IC} tes	ts are om	itted.												
_		0.0, .01111111	a. 00ditiono,	a	o ac oub	g. 5 ap 1, 6	moopt it	55 0 u	10 100														

MIL-M-38510/306E

See footnotes at end of device type 08.

TABLE III. Group A inspection for device type 08 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; or low $\leq 0.7 \text{ V}$; or open).

	1	LAUL OTD											or low ≤				- 4	45	40			 -	
Subgroup	Symbol	MIL-STD- 883	Cases E, F Cases 2, X	2	3	<u>3</u>	4 5	5 7	6 8	7	8 10	9 12	10 13	11 14	12 15	13 17	14 18	15 19	16 20	Measured terminal	LII	mits	Unit
Subgroup	Symbol									-										terriiriai	L	لـــــــا	l
		method	Test no.	Shift	CLK	Е	F	G	Н	Qн	GND	Q_H	Serial	Α	В	С	D	CLK	V_{CC}		Min	Max	
7 <u>2</u> /	Trustle	3014	57	Load B	В	В	^	В	Λ.		GND	- 11	INP	В	Λ.	D	^	INHB					<u> </u>
Tc = 25°C	Truth table	3014	58	A	В	B	A	B	A	L .	GND "	H	A A	D "	Α "	B	Α "	B "	5.0 V	1		, ,	l
10 = 25°C	tests		59	A	A		"	"	"	Н		П .	A		"		"			1		, ,	l
	lesis		60		В		"	"	"	Н	"	-	В							1		, ,	l
			61	"	A	"	"	"	"	- ''	"	Н	"	"	"		"		"			, ,	l
			62		В	"	"	"	"	ī	"	H	"	"	"		"					, ,	l
			63	"	A	"	"	"	"	H	"	Ĺ	"	"	"	"	"	"	"			, ,	l
			64	"	В	"	"	"	"	Н	"	L	"	"	"	"	"		"			, ,	l
			65	"	Α	"	"	"	"	L	"	Н	"	"	"	"	"	"	"	1		, ,	l
			66	"	В	"	"	"	"	L	"	Н	"	"	"		"	"	"			, ,	l
			67	=	Α	=	"	"	"	Н	-	L	"	=	"	-	=		"		<u>3</u> /	, ,	
			68	-	В	=	"	"	"	Н		L	"	-	"		-		"			, ,	
			69	"	Α	=	"	"	"	L	"	Н	"	"	"	"	"	"	"			, ,	
			70		В	-	"	"	"	L	"	Н	"	"	"	•	•		"			, ,	
			71	"	Α	"	"	"	"	Н	"	L	"	-	"	"	"	"	"			, ,	l
			72	"	В		"	"	"	H	"	L.	"	"	- "	"	- "	- "	"			, ,	
			73	"	A		"	"	"	L	"	H	"	"			- "	<u> </u>	- "			, ,	
			74 75	-	В			"		H	"	H	"									, ,	
			76		A B				"	H	"		Α					Α	-	1		, ,	
			77	"	A	"	"	"	"	H	"	<u> </u>	A	"	"		"	A	"			, ,	
8	Como to	oto tormino	l conditions, a	oo oubar		ont T _ 1	25°C and	L EE°C			Į			Į				,,,					
	Same le	sis, lemma	i conditions, a	as subgro	Jup / exc	ept i _C = i	125 C and	1-55 C.	1	1		1	1	1		1	1		Г	T			
9	f _{MAX} 4/		78	5.0 v	IN						GND	OUT	IN					GND	5.0 V	CLK to Q _H	25	ı	MHz
$T_C = 25^{\circ}C$	IMAX ±/		70	3.0 V	111						CIND	001	11 1					GIVE	3.0 V	CER IO QH	25	, ,	1011 12
	t _{PLH5}	3003	79	IN					IN		"	OUT							"	S/L to Q _H	5	40	ns
	t _{PHL5}	0	80	"					"	OUT	"								"	S/L to Q H	"	"	"
		See fig. 11	81						"	OUT					-			 			"		"
	t _{PLH5}	ilg. 11								001										S/L to \overline{Q}_H			
	t _{PHL5}		82	"					"		"	OUT							"	S/L to \overline{Q}_H	"	"	"
	t _{PLH1}		83	5.0 V	IN						"	OUT						GND	"	CLK to Q _H	"	45	-
	t _{PHL1}		84	"	"					OUT	"							"		CLK to Q H	"	"	"
			85	"	"					OUT	"										"	"	-
	t _{PLH1}									001	,,									CLK to Q _H		لـــــا	L
	t _{PHL1}		86	"	"						"	OUT								CLK to Q H	"	. " !	Ι "
	t _{PLH3}		87	GND					IN		"	OUT							"	H to Q _H	"	30	
	t _{PHL3}		88	"					"		"	OUT								H to Q _H	"	35	"
	t _{PLH4}		89	"					"	OUT	"								"	H to Q _H	"	35	"
	t _{PHL4}		90	"					"	OUT	"									H to $\overline{\mathbb{Q}}_{H}$	"	30	"
1	*PHL4		00								l		1	l	1			l	I	H to Q _H			1

See footnotes at end of device type 08.

TABLE III. Group A inspection for device type 08 - Continued.

Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; or low $\leq 0.7 \text{ V}$; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	E	F	G	Н	Qн	GND	Q _H	Serial INP	Α	В	С	D	CLK INHB	V _{CC}		Min	Max	
10 T _C = 125°C	f _{MAX}		91																		20		MHz
	t _{PLH5}	3003	92																		5	52	ns
	t _{PHL5}	See	93																		"	"	"
	t _{PLH5}	fig. 11	94																		"	"	"
	t _{PHL5}	_	95																		"		"
	t _{PLH1}		96	Same tes	sts and ter	minal con	ditions as	subarour	o 9. excer	ot $T_{\rm C} = 125$	5°C.										"	58	
	t _{PHL1}		97						,												"		"
	t _{PLH1}		98																		"		"
	t _{PHL1}		99																		"		"
	t _{PLH3}		100																		"	39	"
	t _{PHL3}		101																		"	46	"
	t _{PLH4}		102																		"	46	"
	t _{PHL4}		103																		"	39	"
	Same te	sts, terminal	conditions, ar	nd limits a	s subgrou	p 10, exc	ept T _C = -	55°C.														- 55	

NOTES:

- 2/A = 2.5 V and B = 0.4 V.
 - 3/ Output voltages shall be either:
 - (a) H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or,
 - (b) $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$ when using a high speed checker single comparator.
 - $\underline{4}'$ f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial shall be one-half of the clock input frequency and the serial shall be shifted such that the serial \uparrow and \downarrow are coincident with the clock \downarrow , but may be offset sufficiently to assure adequate t_{SETUP} and t_{HOLD} . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
 - 1/ I_{IL} limits (mA) min/max values for circuit shown:

Parameter	Terminal	Α	С	F
I _{IL1}	CLK, CLK/INHIB	001/150	12/38	005/72
I _{IL6}	A,B,C,D, E,F,G,H	120/360	12/38	12/38
	S/IN	100/340	12/38	12/38
I _{IL7}	S/L	001/150	36/-1.08	005/72

TABLE III. Group A inspection for device type 09- Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	≤ 0.7 V; 0	13	14	15	16		Test	Limits	
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	Ser. in	Α	В	С	D	CLK INHB	CLK	GND	CLR	Е	F	G	Q_H	Н	Shift load	V _{cc}	terminal	Min	Max	
1 Tc = 25°C	V _{OH}	3006	1						0.7 V	<u>1</u> /	GND					4 mA	2.0 V	0.7 V	4.5 V	Q _H	2.5		V
.0 20 0	V _{OL}	3007	2						0.7 V	<u>1</u> /	"					4 mA	0.7 V	0.7 V	"	Q _H		0.4	"
	V _{IC}		3	-18 mA																S/IN		-1.5	-
	V IC		4	1011111	-18 mA						"								"	A		"	"
			5			-18 mA					"								"	В			"
			6				-18 mA				"								"	C			"
			7					-18 mA			"								"	D		"	"
			8						-18 mA		"								"	CLK INHB		"	"
			9							-18 mA	"								"	CLK		"	"
			10								"	-18 mA							"	CLR		"	"
			11								"		-18 mA						"	E		"	"
			12								-			-18 mA					-	F		-	-
			13								"				-18 mA				"	G		-	"
			14								"						-18 mA		"	Н		-	"
			15								"							-18 mA	"	Shift load		"	"
	I_{IL6}	3009	16	0.4 V							"								5.5 V	S/IN	100	340	mA
			17		0.4 V						"							GND	"	Α	"	"	"
			18			0.4 V					"							"	"	В	"	"	"
			19				0.4 V				"							"	"	С	"	"	"
			20					0.4 V			"									D		"	
	I _{IL1}		21						0.4 V		- "									CLK INHB		150	
	I _{IL1}		22							0.4 V	- "	0.414							- "	CLK	001	150	<u> </u>
	I _{IL1}		23									0.4 V	0.417					0115	- "	CLR	001	150	<u> </u>
	I _{IL6}		24										0.4 V	0.4 V				GND	- "	E F	100	340	
			25 26								-			0.4 V	0.4 V			-				-	-
			27								-				0.4 V		0.4 V	-		G H			-
	I _{IL7}		28								"						0.4 V	0.4 V	"	Shift load	001	150	
	I _{IH1}	3010	29	2.7 V							"									S/IN		20	μА
			30		2.7 V						"									Α			"
			31			2.7 V					"									В			"
			32				2.7 V				"								"	С		"	"
			33					2.7 V			"								"	D		"	"
			34						2.7 V		"								"	CLK INHB			"
			35							2.7 V	"								"	CLK		"	"
			36								"	2.7 V							"	CLR		"	"
			37								"		2.7 V						"	Е		"	"
			38								"			2.7 V					"	F		"	"
			39								"				2.7 V				"	G		"	"
			40								"						2.7 V		"	Н		"	"
			41								"							2.7 V	"	Shift load		-	"

See footnotes at end of device types 09

TABLE III. Group A inspection for device type 09- Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test L	imits.	
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
	-	method	Test no.	Ser. in	Α	В	С	D	CLK	CLK	GND	CLR	Е	F	G	Q _H	Н	Shift	V_{CC}	terminal	Min	Max	I
									INHB									load					Į.
1	I _{IH2}	3010	42	5.5 V							GND								5.5 V	S/IN		0.1	mA
Tc = 25°C			43		5.5 V						"									Α		"	i
			44			5.5 V					"								=	В			"
			45				5.5 V				"								=	С			
			46					5.5 V			"								=	D			"
			47						5.5 V		"								=	CLK INHB			"
			48							5.5 V	"								=	CLK		-	-
			49								"	5.5 V							=	CLR			"
			50								"		5.5 V						=	E			"
			51								"			5.5 V						F			-
			52								"				5.5 V					G			"
		53 " 5.5 V " H " " 54 " Shift load " " "																					
		54 " 5.5 V " Shift load " "																					
	Ios	54															"						
	I _{CC}	SC 3000 30 4.3 GND GND GND GND GND GND GND GND GND GND																					
2	Same too	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = 125^{\circ}$ C and V_{IC} tests are omitted.																					
	Same les	oto, terrifica	conditions, ai	iu iiiiiis c	as subgro	Jup 1, 6	xcept 1	C = 123	C and v	C lesis a	re orrinte	u.											
			conditions, ar		as subgro		except T																
	Truth	3014	57	В	Α	В	Α	В	В	В	GND	В	Α	В	Α	L	Α		5.0 V				I
Tc = 25°C			58	"	"	"	"	"	"	В	"	Α	"	"	"	L	"	В					I
	test		59	=	-		"	"	"	Α	"	"	"	"	"	Н	"	В					I
			60	=	-		"	"	"	В	"	"	"	"	"	-	"	Α					I
			61	"	-		"	"	"	Α	"	"	"	"	"	-	"	-					I
			62	"		"	"	"	"	В	"	"	"	"	"		"	-	"		<u>3</u> /		i
			63	"	"	"	"	"	"	Α	"	"	"	"	"	L	"	"	"				i
			64	"	"	"	"	"	"	В	"	"	"	"	"	L	"	"	"				I
			65	"	-	"	"	"	"	Α	"	"	"	"	"	Н	"	-	"				I
			66	"	"	"	"	"	"	В	"	"	"	"	"	Н	"	"					i
			67	"	"		"		"	Α	"	"	"	"	"	L	-	"	-				I
			68	"	"	"	"	"	"	В	"	"	"	"	"	L	"	"	-				i
			69	"	"	"	"	"	"	Α	"	"	"	"	"	Н	"	"	"				I
			70	=	"	"	"	"	"	В	"	"	"	"	"	Н	"	"					i
			71		"	"	"	"	"	Α	"	"	"	"	"	L	"	"	"				1
			72	"		"	"	"	"	В	"	"	"	"	"	L	"	"	"				1
	73 " " " A " " " H " " "																						
			74	"	"		"	"	Α	В	"	"	"	"	"	Н	"	"	-				ı İ
			75	"	"	"	"	"	Α	Α	"	"	"	"	"	Н	"	"					
8	Same tes	sts, terminal	conditions, ar	nd limits a	as subgro	oup 7, e	except T	_C = 125°	C and -5	55°C.													

See footnotes at end of device types 09.

TABLE III.	Group A inspection for device type 09- Continued.
erminal conditions (pin	s not designated may be high > 2.0 V· or low < 0.7 V· or open).

						Termin	al condi	itions (p					≥ 2.0 V;	or low \leq	0.7 V; c	or open).							
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test L	_imits	
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	Ser. in	Α	В	С	D	CLK INHB	CLK	GND	CLR	Ш	F	G	Q _H	Τ	Shift load	V _{cc}	terminal	Min	Max	
9 <u>4</u> / Tc = 25°C	f _{MAX}	3003	76						GND	IN	GND	5.0 V				OUT	IZ	GND	5.0 V	CLK to Q _H	25		MHz
	t _{PHL5}	See fig. 12	77									IN				"			: :	CLR to Q _H	5 "	40	ns
	t _{PLH1} t _{PHL1}		78 79						GND GND	IZ IZ	"	5.0 V 5.0 V				"	ΖZ	GND GND	: :	CLR to Q _H CLR to Q _H	"	31 35	ns ns
10	f _{MAX}																				20		MHz
	t _{PHL5}		Same tests	and termi	nal as su	ubgroup 9	9, except	$T_{\rm C} = 123$	5°C.												5	52	ns
	t _{PLH1} t _{PHL1}																				5 5	40 46	ns ns
11	Same tes	sts, terminal	conditions, a	nd limits a	s subgr	oup 10, e	xcept T _C	= -55°C) .														

NOTES:

--- 2.5 V minimum, 5.5 V maximum to clock input prior to test.

2/A = 2.5 V and B = 0.4 V.

3/ Output voltages shall be either:

- a. H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or,
- b. $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$ when using a high speed checker single comparator.
- 4/ f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the "H" shall be one-half of the clock input frequency and the "H" shall be shifted such that the "H" ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤6 ns. Input peak voltage 3 to 5 volts.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's system Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-3853*5*, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
l _{IN}	Current flowing into an input terminal
V _{IC}	Input clamp voltage
V _{IN}	Voltage level at an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device			Generic					
type	Texas Instruments	Signetics Corp.	Raytheon Company	Advanced Micro Devices	Fairchild Semi- conductor	Motorola, Inc.	National Semi- conductor	Industry type
01, circuit	Α	В	С	D	E	F	G	54LS194A
02, circuit	Α	В	С	D	Е	F	G	54LS195A
03, circuit	А	В	С		D	Е		54LS95B
04, circuit	А	В						54LS96
05, circuit	Α	В	G	С	Е	F	D	54LS164
06, circuit	Α	C	В		D	Е		54LS295B
07, circuit	Α	В			С	D		54LS395A
08, circuit	А				С	F		54LS165A
09, circuit	А					F		54LS166

6.6 Change from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:

Army - CR

Navý - EC

Air Force - 11

DLA - CC

Preparing activity: DLA - CC

(Project 5962-1960)

Review activities:

Army - SM Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99