
SN74LVC540 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS297B - JANUARY 1993 - REVISED JULY 1995

- EPIC™ (Enhanced-Performance implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Package Options include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

DB, DW, OR PW PACKAGE (TOP VIEW)

description

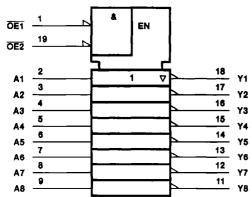
This octal buffer/driver is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVC540 is ideal for driving bus lines or buffer memory address registers. The device features inputs and outputs on opposite sides of the package that facilitate printed-circuit-board layout.

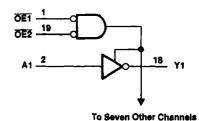
The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVC540 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE

	INPUTS	OUTPUT	
OE1	OE2	A] Y
L	L	L	н
<u> </u> L	L	Н	L
Н	X	Х	z
X	Н	X	z


EPIC is a trademark of Texas instruments incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS, TEXAS 76286

logic symbol†

logic diagram (positive logic)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	~0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Output voltage range, VO (see Notes 1 and 2)	
Input clamp current, $I_{ K }(V_1 < 0)$	–50 mA
Output clamp current, IOK (VO < 0 or VO > VCC)	±50 mA
Continuous output current, IO (VO = 0 to VCC)	
Continuous current through V _{CC} or GND	
Maximum power dissipation at $T_A = 55$ °C (in still air) (see Note 3): DB package	
DW package	1.6 W
PW package	
Storage temperature range, T _{sto}	-65°C to 150°C

^{\$\}footnote{\text{Stresses}}\$ beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage		2.7	3.6	٧
V _{IH}	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		٧
VIL	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	٧
VI	Input voltage		0	5.5	٧
۷o	Output voltage		0	VCC	٧
	High-level output current	V _{CC} = 2.7 V		-12	mA
ЮН		V _{CC} = 3 V		-24	""
1	Lavidavat autorit avinont	V _{CC} = 2.7 V		12	mA
lOL	Low-level output current	V _{CC} = 3 V		24	ША
Δt/ΔV	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

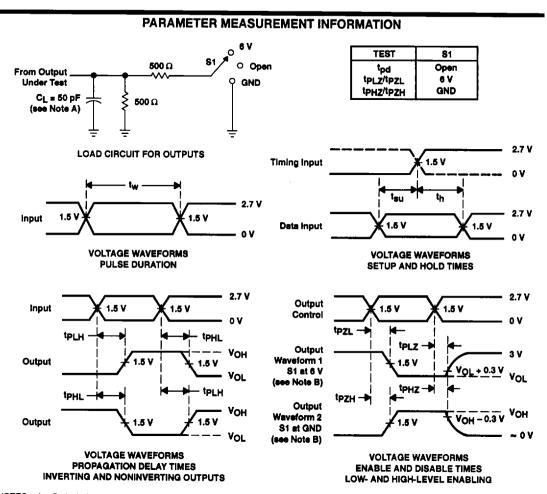
NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcct	MIN TYP#	MAX	UNIT	
	I _{OH} = -100 μA	MIN to MAX	V _{CC} -0.2			
Vou	love 12 må	2.7	2.2		v	
∨он	IOH = - 12 mA	3	2.4	•	ľ	
	I _{OH} = -24 mA	3	2			
	I _{OL} = 100 μA	MIN to MAX		0.2		
VOL	I _{OL} = 12 mA	2.7		0.4	V	
	I _{OL} = 24 mA	3		0.55		
lj .	V _I = 5.5 V or GND	3.6		±5	μА	
loz	VO = VCC or GND	3.6		±10	μΑ	
lcc	$V_1 = V_{CC}$ or GND, $I_0 = 0$	3.6	-	20	Aμ	
ΔICC	One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V		500	μA	
Ci	V _I = V _{CC} or GND	3.3	5.5		рF	
Co	VO = VCC or GND	3.3	5.8		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	
t _{pd}	Α	ΥΥ	1.5	7.5		8.5	ns
ten	OE	Υ	1.5	8		9	ns
^t dis	ŌĒ	Y	1.5	7.5		8.5	ns

 $^{^\}ddagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCAS297B - JANUARY 1993 - REVISED JULY 1995

operating characteristics, $V_{CC} = 3.3 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

PARAMETER		TEST CO	TYP	UNIT	
C _{pd}	Power dissipation capacitance per buffer/driver	Outputs enabled	C _L = 50 pF, f = 10 MHz	27	
		Outputs disabled		1 = 10 MHZ	2.4

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten-
 - G. tplH and tpHL are the same as tod.

Figure 1. Load Circuit and Voltage Waveforms

