

PART NUMBER 54H52JC-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54H52

Expandable 4-Wide AND-OR-Gates

These devices contain expandable 4-wide AND-OR gates. In the J and N packages they perform the Boolean function Y = AB + CDE + FG + HI + X and in the W package Y = AB + CD + EF + GHI + X with X = output of SN54H61/SN74H61.

The SN54H52 is characterized for operation over the full military temperature range of -55°C to 125°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

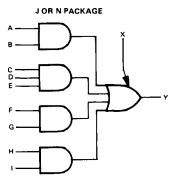
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

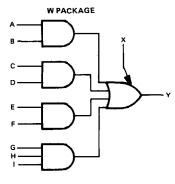
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

TYPES SN54H52, SN74H52 EXPANDABLE 4-WIDE AND-OR GATES

REVISED DECEMBER 1983

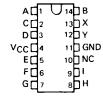

- Package Options Include Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


description

These devices contain expandable 4-wide AND-OR gates. In the J and N packages they perform the Boolean function Y=AB+CDE+FG+HI+X and in the W package Y=AB+CD+EF+GHI+X with X= output of SN54H61/SN74H61.

The SN54H52 is characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN74H52 is characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

logic diagrams



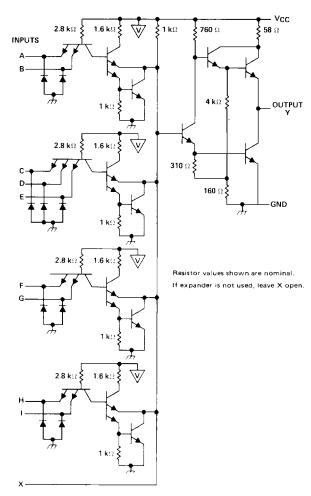
SN54H52 . . . J PACKAGE SN74H52 . . . J OR N PACKAGE (TOP VIEW)

_		
ΑU	U 14	□vcc
B [2	13	ום
C □3	12	Эн
D []4	11] G
EΠ	10] F
NC□€	9	ΣX
	8	ŊΥ

SN54H52 . . . W PACKAGE (TOP VIEW)

NC - No internal connection

3


L DEVICES

PRODUCTION DATA

This document contains information current as of publication date. Products conform to specifications per the terms of Fexa Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	***************************************	7 V
	SN54H52	o 125°C
	SN74H52	to 70°C
Storage temperature range		

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54H52			SN74H52		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
VIH High-level input voltage	2			2			٧
VIL Low-level input voltage			0.8			8.0	V
IOH High-level output current			- 0.5			- 0.5	mΑ
IOL Low-level output current			20			20	·mA
TA Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		SN54H52			SN74H52			UNIT
	TEST CONDITIONS [†]	MIN	TYP \$	MAX	MIN	TYP‡	MAX	UNIT
VIK	VCC = MIN, II = -8 mA			- 1.5			1.5	V
Voн	V _{CC} = MIN, V _{IH} = 2 V, I _{OH} = -0.5 mA	2.4	3.4		2.4	3.4		V
VOL	V _{CC} = MIN, V _{IL} = 0.8 V, I _{OL} = 20 mA		0.2	0.4		0.2	0.4	٧
	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
Чн	V _{CC} = MAX, V _{IH} = 2.4 V			50			50	μА
III.	V _{CC} = MAX, V _{IL} = 0.4 V			– 2			- 2	mA
los§	V _{CC} = MAX	- 40		- 100	- 40		~ 100	mA
ГССН	V _{CC} = MAX, See Note 2		20	31		20	31	mA
ICCL	V _{CC} = MAX, V _I = 0 V		15.2	24		15.2	24	mA
Ix▲	$V_X = 1 \text{ V}, \qquad I_{OH} = -0.5 \text{ mA}$	- 2.7		- 4.5	- 2.9		- 5.3 5	mA
VoH♣	V _X = 1 V, I _{OH} = -0.5 mA	2.4	3.4		2.4	3.4		٧
V _O L▲	Ix = -0.3 mA, IQI = 20 mA, TA = MAX		0.2	0.4		0.2	0.4	V

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	S	MIN TYP	MAX	UNIT
tPLH			R _L = 280 Ω,	C _L ≈ 25 pF	10.6	15	ns
tPHL		Any Y	Expander pins open	n CL - 25 pr		15	ns
tPLH	Ally		$R_L = 280 \Omega$, $C_1 = 25 pF$,	C ₁ = 25 pF. C = 15 pF	14.8		ns
tPHL		Ground to X	о <u>г</u> 20 рг., о торг	9.8		n\$	

NOTE 3: See General Information Section for load circuits and voltage waveforms.

For conditions shown as with or MAA, use the appropriate value specified office recommended operating conditions. $^{+}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ} \text{ C}$, $^{\circ}$ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. NOTE 2: All inputs of one AND gate at 4.5 V, all others at GND.

 $[\]Delta$ Using expander inputs, $V_{CC} = MIN$, $T_A = MIN$ (unless otherwise noted).