Dual Output LCD Bias for Smartphones and Tablets ## **General Description** The RT4801H is a highly integrated Boost and LDO and inverting charge pump to generate positive and negative output voltage. The output voltages can be adjusted from $\pm 4V$ to $\pm 6V$ with 100mV steps by I²C interface protocols. With its input voltage range of 2.5V to 5.5V, RT4801H is optimized for products powered by single-cell batteries and symmetrical output currents up to 80mA. The RT4801H is available in the WL-CSP-15B 1.31x2.07 (BSC) package. ## **Ordering Information** #### Note: Richtek products are: - ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. - ▶ Suitable for use in SnPb or Pb-free soldering processes. ### **Features** - 2.5V to 5.5V Supply Voltage Range - Up to 90% Efficiency with Small Magnetics - Support Up to 80mA Output Current - Low 1μA Shutdown Current - Internal Soft-start Function - Short Circuit Protection Function - Over-Voltage Protection Function - Over-Current Protection Function - Over-Temperature Protection Function - Elastic Positive and Negative Voltage On/Off Control by ENP/ENN - Voltage Output from 4V to 6V per 0.1V - Low Input Noise and EMI - Output with Programmable Fast Discharge when IC Shutdown - Adjustable Output Voltage by I²C Compatible Interface - Available in the 15-Ball WL-CSP Package ## **Applications** - TFT-LCD Smartphones - TFT-LCD Tablets - General Dual Power Supply Applications ## **Simplified Application Circuit** Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. ## **Pin Configurations** (TOP VIEW) ## **Marking Information** 49: Product Code W: Date Code 49W WL-CSP-15B 1.31x2.07 (BSC) ## **Functional Pin Description** | Pin No. | Pin Name | Pin Function | |---------|----------|---| | A1 | ENN | Enable Control Input for VON. | | A2 | VON | Negative Terminal Output. | | А3 | CF2 | Negative Charge Pump Flying Capacitor Pin. | | B1 | ENP | Enable Control Input for VOP. | | B2 | SCL | Clock of I ² C. | | B3, E1 | PGND | Power Ground. | | C1 | VIN | Power Input. | | C2 | SDA | Data of I ² C. | | C3 | CF1 | Negative Charge Pump Flying Capacitor Pin. | | D1 | LXP | Switching Node of Boost Converter. | | D2 | GND | Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. | | D3, E2 | BST | Output Voltage of Boost Converter. | | E3 | VOP | Positive Terminal Output. | www.richtek.com ## **Function Block Diagram** ## **Operation** The RT4801H is a highly integrated Boost, LDO and inverting charge pump to generate positive and negative output voltages for LCD panel bias or consumer products. It can support input voltage range from 2.5V to 5.5V and the output current up to 80mA. Both positive and negative voltages can be programmed by a MCU through the dedicated I²C interface. The RT4801H provides Over-Temperature Protection (OTP) and Short Circuit Protection (SCP) mechanisms to prevent the device from damage with abnormal operations. When the EN voltage is logic low for more than $375\mu s$, the IC will be shut down with low input supply current less than $1\mu A$. ## **Absolute Maximum Ratings (Note 1)** | Supply Input Voltage V _{IN} Pin | 0.3V to 6V | |---|------------------| | Output Voltage VOP Pins | - −0.3V to 7V | | Output Voltage VON Pins | - −7V to 0.3V | | Others Pin to GND | 0.3V to 6V | | Power Dissipation, P_D @ T_A = 25°C | | | WL-CSP-15B 1.31x2.07 (BSC) | - 2.00W | | Package Thermal Resistance (Note 2) | | | WL-CSP-15B 1.31x2.07 (BSC), θ_{JA} | - 49.8°C/W | | • Lead Temperature (Soldering, 10 sec.) | - 260°C | | • Junction Temperature | - 150°C | | Storage Temperature Range | - −65°C to 150°C | | ESD Susceptibility (Note 3) | | | HBM (Human Body Model) | - 2kV | | MM (Machine Model) | - 200V | | Recommended Operating Conditions (Note 4) | | | Supply Input Voltage | - 2.5V to 5.5V | ## **Electrical Characteristics** $(V_{IN} = 3.7V, C_{IN} = C_{OP} = C_{F1} = 4.7 \mu F, C_{BST} = C_{ON} = 10 \mu F, L1 = 2.2 \mu H, T_A = 25 ^{\circ}C$, unless otherwise specified.) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |---|-------------------|-------------------------|------|-----|-----|--------| | Power Supply | | | | | | | | Input Voltage Range | V _{IN} | | 2.5 | | 5.5 | V | | Under Voltage Lockout | Vuvlo_h | V _{IN} Rising | | | 2.5 | \
\ | | Threshold Voltage | Vuvlo_L | V _{IN} Falling | | | 2.3 | V | | Over-Temperature Protection | T _{OTP} | (Note 5) | | 140 | | °C | | Over-Temperature Protection
Hysteresis | Totp_Hyst | (Note 5) | | 15 | | °C | | Shutdown Current | I _{SHDN} | ENP = ENN = 0V | | | 1 | μΑ | | Boost Converter | | | | | | | | Boost Voltage Range | V _{BST} | | 4.15 | | 6.2 | V | | Peak Current Limit | IOCP | | | 1 | | Α | | Boost Switching Frequency | fosc_p | | 0.8 | 1 | 1.2 | MHz | # **RT4801H** | Parame | ter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|----------------|-----------------------|--|-----|-----|-----|------| | LDO | | | 1 | | | | 1 | | Positive Output Vo | ltage Range | V _{OP} | | 4 | | 6 | V | | Positive Output Vo
Range | oltage Setting | VOP_SET | per step | | 100 | | mV | | Positive Output Vo
Accuracy | ltage | V _{OP_ACC} | | -1 | | 1 | % | | Positive Output Cu
Capability | ırrent | I _{OP_MAX} | | | | 80 | mA | | Dropout Voltage | | VOP_DROP | $V_{BST} = 5.4V, V_{OP} = 5.4V, I_{OP} = 100mA$ | | | 150 | mV | | Line Regulation | | ΔVLINE_OP | V _{IN} = 2.5 to 5.5V, I _{OP} = 40mA | | 2 | | mV | | Load Regulation | | ΔV_{LOAD_OP} | $\Delta IOP = 80 \text{mA}$ | | 3 | | %/A | | Fast Discharge Re | esistance | RDISP | | | 70 | | Ω | | Negative Charge | Pump | | | | | | | | Negative Output V
Range | 'oltage | Von | | -4 | | -6 | V | | Negative Output V
Setting Range | 'oltage | Von_set | per step | | 100 | | mV | | Negative Output V
Accuracy | oltage | V _{ON_ACC} | | -1 | | 1 | % | | Negative Output C
Capability | Current | I _{ON_MAX} | | | | 80 | mA | | Negative Charge F
Switching Frequer | | f _{OSC_N} | | 0.8 | 1 | 1.2 | MHz | | Line Regulation | | ΔV _{LINE_ON} | $V_{IN} = 2.5 \text{ to } 5.5 \text{V}, I_{ON} = 40 \text{mA}$ | | 10 | | mV | | Load Regulation | | ΔVLOAD_ON | $\Delta I_{ON} = 80 \text{mA}$ | | 6 | | %/A | | Fast Discharge Re | esistance | RDISN | | | 20 | | Ω | | Logic Input (ENP | ENN, SCL, S | SDA) | | | | | | | Input Threshold | Logic-High | V _{IH} | V _{IN} =2.5V to 5.5V | 1.2 | | | V | | Voltage | Logic-Low | V _{IL} | V _{IN} =2.5V to 5.5V | | | 0.4 | V | | ENP, ENN Pull-do | wn | R _{EN} | | | 200 | | kΩ | | SDA, SCL Sink Cu | ırrent | Іін | V _{SDA} , V _{SCL} = 3V | | 0.5 | | μΑ | | SDA, SCL Logic | Low-Level | Vscl_L | | | | 0.4 | V | | Input Voltage | High-Level | V _{SCL_H} | | 1.2 | | | v | | SCL Clock Freque | ncy | f _{CLK} | | | | 400 | kHz | | Output Fall Time | | t _{FL2} COUT | | | | 250 | ns | | Bus Free Time Be
Stop/Start | tween | tBUF | | 1.3 | | | μS | ## **RT4801H** | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--------------------------------|---------------------|-----------------|-----|-----|-----|------| | Hold Time Start Condition | t _{HD,STA} | | 0.6 | | | μS | | Setup Time for Start Condition | tsu,sta | | 0.6 | | | μS | | SCL Low Time | tLOW | | 1.3 | | | μS | | SCL High Time | tHIGH | | 0.6 | | | μS | | Data Setup Time | t _{SU,DAT} | | 100 | | | ns | | Data Hold Time | thd,dat | | 0 | | 900 | ns | | Setup Time for Stop Condition | tsu,sto | | 0.6 | | | μS | - Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. - Note 2. θ_{JA} is measured at $T_A = 25$ °C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package. - Note 3. Devices are ESD sensitive. Handling precaution recommended. - Note 4. The device is not guaranteed to function outside its operating conditions. - **Note 5.** Totp, Totp Hyst are guaranteed by design. ## **Typical Application Circuit** **Table 1. Component List of Evaluation Board** | Reference | Qty. | Part Number | Description | Package | Supplier | |------------------------------------|------|--------------------|--------------------------|-----------------------|----------| | CIN, COP, CF1 | 1 | GRM188R61C475KAAJ | 4.7μF/16V/X5R | 0603 | Murata | | C _{BST} , C _{ON} | 1 | GRM188R61C106KAAL | 10μF/16V/X5R | 0603 | Murata | | L1 | 1 | 1269AS-H-4R7N = P2 | $2.2 \mu H/130 m \Omega$ | 2.5mm x 2.0mm x 1.0mm | Toko | # I²C Interface May 2016 # I²C Command #### **Slave Address** | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 = LSB | |-------|-------|-------|-------|-------|-------|-------|-------------| | 1 | 1 | 1 | 0 | 0 | 1 | 1 | R/W | #### **Write Command** (a) Write single byte of data to Register | | | | | Sla | ave A | ddre | SS | | | | | Regi | ster | Addr | ess | | | | | Data I | rom | Mas | ster | | | | |------|---|---|---|-----|-------|------|----|---|---|-----------------|----|------|------|------|-----|----|----|-----------------|----|--------|-----|-----|------|----|------|-------------------| | Star | t | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Slave
ACK R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | Slave
ACK D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO S | Slave
ACK Stop | (b) Write multiple bytes of data to Registers (n + 1)_{th} Data From Master Last Data From Master D7 D6 D5 D4 D3 D2 D1 D0 Slave ACK Stop #### **Read Command** (a) Read single byte of data from Register (b) Read multiple bytes of data from Registers | | | Sla | ave A | Addre | ess | | | | n_{th} | Data | Fror | n Ma | ster | | | | | | Last | Dat | a Fro | om N | laste | r | | | |----|---|-----|-------|-------|-----|---|---|---------|----------|------|------|------|------|----|----|---------------|--------|----|------|-----|-------|------|-------|----|---------------------|--| | Re | 1 | 1 | 0 | 0 | 1 | 1 | 1 | Slave D | 7 D6 | D5 | D4 | D3 | D2 | D1 | D0 | Master
ACK |
D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Master
NACK Stop | | Start : Start command ACK : Acknowledge = L active R7 to R0 : Register Address. D7 to D0 : Write data when WRITE command or read VOP : Register address = 0X00h data when READ command VON : Register address = 0X01h Stop : Stop command DISP: Register address = 0x03h DISN: Register address = 0x03h APPS: Register address = 0x03h R/W: Read active (R/W = H) or Write active (R/W = L) Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS4801H-00 May 2016 www.richte ### **Registers Map** **Table 2. VOP Voltage Selection** | Name | Register
Address | DATA | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | VOP(V) | |------|---------------------|------|----------|----------|----------|------|------|------|------|------|--------| | VOP | 00h | 00h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 0 | 0 | 4 | | VOP | 00h | 01h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 0 | 1 | 4.1 | | VOP | 00h | 02h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 1 | 0 | 4.2 | | VOP | 00h | 03h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 1 | 1 | 4.3 | | VOP | 00h | 04h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 0 | 0 | 4.4 | | VOP | 00h | 05h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 0 | 1 | 4.5 | | VOP | 00h | 06h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 1 | 0 | 4.6 | | VOP | 00h | 07h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 1 | 1 | 4.7 | | VOP | 00h | 08h | Reserved | Reserved | Reserved | 0 | 1 | 0 | 0 | 0 | 4.8 | | VOP | 00h | 09h | Reserved | Reserved | Reserved | 0 | 1 | 0 | 0 | 1 | 4.9 | | VOP | 00h | 0Ah | Reserved | Reserved | Reserved | 0 | 1 | 0 | 1 | 0 | 5 | | VOP | 00h | 0Bh | Reserved | Reserved | Reserved | 0 | 1 | 0 | 1 | 1 | 5.1 | | VOP | 00h | 0Ch | Reserved | Reserved | Reserved | 0 | 1 | 1 | 0 | 0 | 5.2 | | VOP | 00h | 0Dh | Reserved | Reserved | Reserved | 0 | 1 | 1 | 0 | 1 | 5.3 | | VOP | 00h | 0Eh | Reserved | Reserved | Reserved | 0 | 1 | 1 | 1 | 0 | 5.4 | | VOP | 00h | 0Fh | Reserved | Reserved | Reserved | 0 | 1 | 1 | 1 | 1 | 5.5 | | VOP | 00h | 10h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 0 | 0 | 5.6 | | VOP | 00h | 11h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 0 | 1 | 5.7 | | VOP | 00h | 12h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 1 | 0 | 5.8 | | VOP | 00h | 13h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 1 | 1 | 5.9 | | VOP | 00h | 14h | Reserved | Reserved | Reserved | 1 | 0 | 1 | 0 | 0 | 6 | ## **Table 3. VON Voltage Selection** | | | | | | _ | | | | | | | |------|---------------------|------|----------|----------|----------|------|------|------|------|------|--------| | Name | Register
Address | DATA | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | VON(V) | | VON | 01h | 00h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 0 | 0 | -4 | | VON | 01h | 01h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 0 | 1 | -4.1 | | VON | 01h | 02h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 1 | 0 | -4.2 | | VON | 01h | 03h | Reserved | Reserved | Reserved | 0 | 0 | 0 | 1 | 1 | -4.3 | | VON | 01h | 04h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 0 | 0 | -4.4 | | VON | 01h | 05h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 0 | 1 | -4.5 | | VON | 01h | 06h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 1 | 0 | -4.6 | | VON | 01h | 07h | Reserved | Reserved | Reserved | 0 | 0 | 1 | 1 | 1 | -4.7 | | VON | 01h | 08h | Reserved | Reserved | Reserved | 0 | 1 | 0 | 0 | 0 | -4.8 | | VON | 01h | 09h | Reserved | Reserved | Reserved | 0 | 1 | 0 | 0 | 1 | -4.9 | | VON | 01h | 0Ah | Reserved | Reserved | Reserved | 0 | 1 | 0 | 1 | 0 | -5 | | VON | 01h | 0Bh | Reserved | Reserved | Reserved | 0 | 1 | 0 | 1 | 1 | -5.1 | | VON | 01h | 0Ch | Reserved | Reserved | Reserved | 0 | 1 | 1 | 0 | 0 | -5.2 | | Name | Register
Address | DATA | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | VON(V) | |------|---------------------|------|----------|----------|----------|------|------|------|------|------|--------| | VON | 01h | 0Dh | Reserved | Reserved | Reserved | 0 | 1 | 1 | 0 | 1 | -5.3 | | VON | 01h | 0Eh | Reserved | Reserved | Reserved | 0 | 1 | 1 | 1 | 0 | -5.4 | | VON | 01h | 0Fh | Reserved | Reserved | Reserved | 0 | 1 | 1 | 1 | 1 | -5.5 | | VON | 01h | 10h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 0 | 0 | -5.6 | | VON | 01h | 11h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 0 | 1 | -5.7 | | VON | 01h | 12h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 1 | 0 | -5.8 | | VON | 01h | 13h | Reserved | Reserved | Reserved | 1 | 0 | 0 | 1 | 1 | -5.9 | | VON | 01h | 14h | Reserved | Reserved | Reserved | 1 | 0 | 1 | 0 | 0 | -6 | ## **Table 4. VOP Active Discharge** | Name | Register
Address | DATA | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | VOP
Discharge | |------|---------------------|------|----------|------|----------|----------|----------|----------|------|------|------------------| | DISP | 03h | 00h | Reserved | APPS | Reserved | Reserved | Reserved | Reserved | 0 | DISN | W/O | | DISP | 03h | 02h | Reserved | APPS | Reserved | Reserved | Reserved | Reserved | 1 | DISN | W | ### **Table 5. VON Active Discharge** | Name | Register
Address | DATA | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | VON
Discharge | |------|---------------------|------|----------|------|----------|----------|----------|----------|------|------|------------------| | DISN | 03h | 00h | Reserved | APPS | Reserved | Reserved | Reserved | Reserved | DISP | 0 | W/O | | DISN | 03h | 01h | Reserved | APPS | Reserved | Reserved | Reserved | Reserved | DISP | 1 | W | ### **Table 6. Application** | Name | Register
Address | DATA | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Application | |------|---------------------|------|----------|------|----------|----------|----------|----------|------|------|-------------| | APPS | 03h | 00h | Reserved | 0 | Reserved | Reserved | Reserved | Reserved | DISP | DISN | Tablet | | APPS | 03h | 40h | Reserved | 1 | Reserved | Reserved | Reserved | Reserved | DISP | DISN | Smartphone | The Reserved bits are ignored when written and return either 0 or 1 when read. ## **Factory Default Register Value** | Name | Register Address | DATA | |------|------------------|------| | VOP | 00h | 0Ah | | VON | 01h | 0Ah | | DISP | 03h | 43h | | DISN | 03h | 43h | | APPS | 03h | 43h | Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. ## **Typical Operating Characteristics** Time (10µs/Div) Time (10µs/Div) ### **Load Transient** Time (100µs/Div) ## **Application Information** The RT4801H is a highly integrated Boost, LDO and inverting charge pump to generate positive and negative output voltages for LCD panel bias or consumer products. It can support input voltage range from 2.5V to 5.5V and the output current up to 80mA. The Vop positive output voltage is generated from the LDO supplied from a synchronous Boost converter, and VOP is set at a typical value of 5V. The Boost converter output also drives an inverting charge pump controller to generate V_{ON} negative output voltage which is set at a typical value of -5V. Both positive and negative voltages can be programmed by a MCU through the dedicated I²C interface and the available voltage range is from $\pm 4V$ to $\pm 6V$ with 100mV per step. ### **Input Capacitor Selection** Input ceramic capacitor with 4.7µF capacitance is suggested for applications. For better voltage filtering, select ceramic capacitors with low ESR, X5R and X7R types are suitable because of their wider voltage and temperature ranges. #### **Boost Inductor Selection** The inductance depends on the maximum input current. As a general rule, the inductor ripple current range is 20% to 40% of the maximum input current. If 40% is selected as an example, the inductor ripple current can be calculated according to the following equations: $$I_{IN(MAX)} = \frac{V_{OUT} \times I_{OUT(MAX)}}{\eta \times V_{IN}}$$ $$I_{RIPPLE} = 0.4 \times I_{IN(MAX)}$$ where η is the efficiency of the VOP Boost converter, $I_{IN(MAX)}$ is the maximum input current, and ΔI_L is the inductor ripple current. The input peak current can then be obtained by adding the maximum input current with half of the inductor ripple current as shown in the following equation: $$I_{PEAK} = 1.2 \times I_{IN(MAX)}$$ Note that the saturated current of the inductor must be greater than IPEAK. The inductance can eventually be determined according to the following equation: $$L = \frac{\eta \times \left(V_{IN}\right)^2 \times \left(V_{OUT} - V_{IN}\right)}{0.4 \times \left(V_{OUT}\right)^2 \times I_{OUT(MAX)} \times f_{OSC}}$$ where fosc is the switching frequency. For better system performance, a shielded inductor is preferred to avoid EMI problems. ### **Boost Output Capacitor Selection** The output ripple voltage is an important index for estimating IC performance. This portion consists of two parts. One is the product of ripple current with the ESR of the output capacitor, while the other part is formed by the charging and discharging process of the output capacitor. As shown in Figure 1, ΔV_{OUT1} can be evaluated based on the ideal energy equalization. According to the definition of Q, the ΔV_{OUT1} value can be calculated as the following equation: $$Q = I_{OUT} \times D \times \frac{1}{f_{SOC}} = C_{OUT} \times \Delta V_{OUT1}$$ $$\Delta V_{OUT1} = \frac{I_{OUT} \times D}{f_{SOC} \times C_{OUT}}$$ where fosc is the switching frequency and D is the duty cycle. Finally, taking ESR into consideration, the overall output ripple voltage can be determined by the following equation: $$\Delta V_{OUT} = \Delta V_{ESR} + \Delta V_{OUT1} = \Delta V_{SER} + \frac{I_{OUT} \times D}{f_{OSC} \times C_{OUT}}$$ where $\Delta VESR = ICrms x RCESR$ The output capacitor, Cout, should be selected accordingly. Figure 1. The Output Ripple Voltage without the Contribution of ESR ### **Under Voltage Lockout** To prevent abnormal operation of the IC in low voltage condition, an under voltage lockout is included which shuts down IC operation when input voltage is lower than the specified threshold voltage. ### Soft-Start The RT4801H employs an internal soft-start feature to avoid high inrush current during start-up. The soft-start function is achieved by clamping the output voltage of the internal error amplifier with another voltage source that is increased slowly from zero to near VIN during the soft-start period. #### **Output Voltage Setting** The output voltage of WL-CSP package can be programmed by a MCU through the dedicated I²C interface according to the Vop/Von Voltage Selection Table. ### **Shutdown Delay and Discharge** When the EN signal is logic low for more than $375\mu s$, the IC function will be shut down. The output V_{OP}/V_{ON} can be actively discharged to GND via discharge selection bit enabled. In shutdown mode, the input supply current for the IC is less than $1\mu A$. #### **Over Current Protection** The RT4801H includes a cycle-by-cycle current limit function which monitors the inductor current during each ON period. The power switch will be forced off to avoid large current damage once the current is over the limit level. #### **Short Circuit Protection** The RT4801H has an advanced output short-circuit protection mechanism which prevents the IC from damage by unexpected applications. VOP short to ground When the output voltage is under the limit level with 1ms (typ.) duration, the LCD bias function enters shutdown mode and can only re-start to normal operation after triggering the ENP/ENN pin. VON short to ground The output will keep current limit status without shutdown and re-start to normal operation once short condition removed. ### **Over Temperature Protection** The RT4801H equips an over temperature protection circuitry to prevent overheating due to excessive power dissipation. The OTP will shut down LCD bias operation when ambient temperature exceeds 140°C. Once the ambient temperature cools down by approximately 15°C, IC will automatically resume normal operation. To maintain continuous operation, the maximum junction temperature should be prevented from rising above 125°C. #### **Thermal Considerations** For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula: $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$ where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance. For recommended operating condition specifications, Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WL-CSP-15B 1.31x2.07 package, the thermal resistance, θJA, is 49.8°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated by the following formula: $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (49.8^{\circ}C/W) = 2W \text{ for}$ WL-CSP-15B 1.31x2.07 (BSC) package The maximum power dissipation depends on the operating ambient temperature for fixed T_{J(MAX)} and thermal resistance, θ_{JA} . The derating curve in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. Figure 2. Derating Curve of Maximum Power Dissipation ### **Layout Considerations** For the best performance of RT4801H, the following PCB layout guidelines should be strictly followed. - ▶ For good regulation, place the power components as close to the IC as possible. The traces should be wide and short especially for the high current output loop. - ▶ The input and output bypass capacitor should be placed as close to the IC as possible and connected to the ground plane of the PCB. - ▶ The flying capacitor should be placed as close to the CF1/CF2 pin as possible to avoid noise injection. - ▶ Minimize the size of the LXP node and keep the traces wide and short. Care should be taken to avoid running traces that carry any noise-sensitive signals near LXP or high-current traces. - ▶ Separate power ground (PGND) and analog ground (GND). Connect the GND and the PGND islands at a single end. Make sure that there are no other connections between these separate ground planes. Figure 3. PCB Layout Guide ## **Outline Dimension** | Symbol | Dimensions | In Millimeters | Dimensions In Inches | | | | |--------|-------------|----------------|----------------------|-------|--|--| | Symbol | Min. | Max. | Min. | Max. | | | | Α | 0.500 0.600 | | 0.020 | 0.024 | | | | A1 | A1 0.170 | | 0.007 | 0.009 | | | | b | 0.240 | 0.300 | 0.009 | 0.012 | | | | D | 2.020 | 2.120 | 0.080 | 0.083 | | | | D1 | 1.6 | 500 | 0.0 | 063 | | | | E | 1.260 | 1.360 | 0.050 | 0.054 | | | | E1 | 0.8 | 300 | 0.031 | | | | | е | 0.4 | 100 | 0.016 | | | | WL-CSP-15B 1.31x2.07 (BSC) ## **Richtek Technology Corporation** 14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries. Copyright © 2016 Richtek Technology Corporation. All rights reserved.