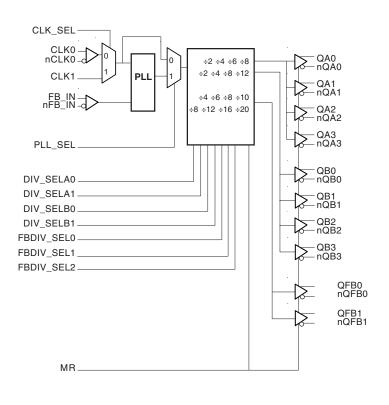


Low Voltage, Low Skew, 3.3V LVPECL **Clock Generator**

DATA SHEET

GENERAL DESCRIPTION

The ICS8732I-01 is a low voltage, low skew, 3.3V LVPECL Clock Generator. The ICS8732I-01 has two selectable clock inputs. The CLKO, nCLK0 pair can accept most standard differential input levels. The single ended clock in-


put accepts LVCMOS or LVTTL input levels. The ICS8732I-01 has a fully integrated PLL along with frequency configurable outputs. An external feedback input and outputs regenerate clocks with "zero delay".

The ICS8732I-01 has multiple divide select pins for each bank of outputs along with 3 independent feedback divide select pins allowing the ICS8732I-01 to function both as a frequency multiplier and divider. The PLL_SEL input can be used to bypass the PLL for test and system debug purposes. In bypass mode, the input clock is routed around the PLL and into the internal output dividers.

Features

- Ten differential 3.3V LVPECL output pairs
- Selectable differential CLK0, nCLK0 or LVCMOS/LVTTL CLK1 inputs
- CLK0, nCLK0 supports the following input types: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- CLK1 accepts the following input levels: LVCMOS or LVTTL
- · Maximum output frequency: 350MHz
- VCO range: 250MHz to 700MHz
- External feedback for "zero delay" clock regeneration with configurable frequencies
- Cycle-to-cycle jitter: CLK0, nCLK0, 50ps (maximum), CLK1, 80ps (maximum)
- Output skew: 75ps (maximum)
- Static phase offset: -100ps to 200ps
- Full 3.3V supply mode
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

BLOCK DIAGRAM

PIN ASSIGNMENT

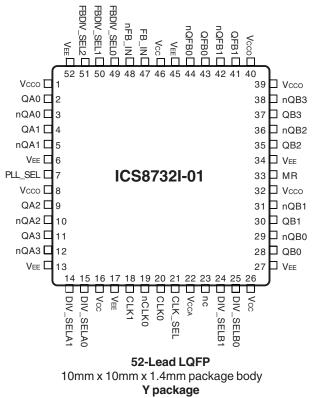


TABLE 1. PIN DESCRIPTIONS

Number	Name	Ty	/pe	Description
1, 8, 32, 39, 40	V _{cco}	Power		Output supply pins.
2, 3, 4, 5	QA0, nQA0, QA1, nQA1	Output		Differential output pair. LVPECL interface levels.
6, 13, 17, 27, 34, 45, 52	V_{EE}	Power		Negative supply pins.
7	PLL_SEL	Input	Pullup	Selects between the PLL and reference clock as the input to the dividers. When LOW, selects reference clock. When HIGH, selects PLL. LVCMOS / LVTTL interface levels.
9, 10, 1 1, 12	QA2, nQA2, QA3, nQA3	Output		Differential output pairs. LVPECL interface levels.
14	DIV_SELA1	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
15	DIV_SELA0	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
16, 26, 46	V _{cc}	Power		Core supply pins.
18	CLK1	Input	Pulldown	LVCMOS / LVTTL reference clock input.
19	nCLK0	Input	Pullup	Inverting differential clock input.
20	CLK0	Input	Pulldown	Non-inverting differential clock input.
21	CLK_SEL	Input	Pulldown	Clock select input. When LOW, selects CLK0, nCLK0. When HIGH, selects CLK1. LVCMOS / LVTTL interface levels.
22	V _{CCA}	Power		Analog supply pin.
23	nc	Unused		No connect.
24	DIV_SELB1	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
25	DIV_SELB0	Input	Pulldown	Determines output divider valued in Table 3. LVCMOS / LVTTL interface levels.
28, 29, 30, 31	QB0, nQB0, QB1, nQB1	Output		Differential output pairs. LVPECL interface levels.
33	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
35, 36, 37, 38	QB2, nQB2, QB3, nQB3	Output		Differential output pairs. LVPECL interface levels.
41, 42, 43, 44	QFB1, nQFB1, QFB0, nQFB0	Output		Differential feedback output pairs. LVPECL interface levels.
47	FB_IN	Input	Pulldown	Feedback input to phase detector for regenerating clocks with "zero delay".
48	nFB_IN	Input	Pullup	Feedback input to phase detector for regenerating clocks with "zero delay".
49	FBDIV_SEL0	Input	Pulldown	Selects divide value for differential feedback output pairs. LVCMOS / LVTTL interface levels.
50	FBDIV_SEL1	Input	Pulldown	Selects divide value for differential feedback output pairs. LVCMOS / LVTTL interface levels.
51	FBDIV_SEL2	Input	Pulldown	Selects divide value for differential feedback output pairs. LVCMOS / LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

TABLE 3A. CONTROL INPUT FUNCTION TABLE FOR QAO:QA3 OUTPUTS

		Inputs		Outputs
MR	PLL_SEL	DIV_SELA1	DIV_SELA0	QA0:QA3, nQA0:nQA3
1	Х	Х	X	Low
0	1	0	0	fVCO/2
0	1	0	1	fVCO/4
0	1	1	0	fVCO/6
0	1	1	1	fVCO/8
0	0	0	0	fREF_CLK/2
0	0	0	1	fREF_CLK/4
0	0	1	0	fREF_CLK/6
0	0	1	1	fREF_CLK/8

TABLE 3B. CONTROL INPUT FUNCTION TABLE FOR QB0:QB3 OUTPUTS

		Inputs		Outputs
MR	PLL_SEL	DIV_SELB1	DIV_SELB0	QB0:QB3, nQB0:nQB3
1	Х	Х	X	Low
0	1	0	0	fVCO/2
0	1	0	1	fVCO/4
0	1	1	0	fVCO/8
0	1	1	1	fVCO/12
0	0	0	0	fREF_CLK/2
0	0	0	1	fREF_CLK/4
0	0	1	0	fREF_CLK/8
0	0	1	1	fREF_CLK/12

TABLE 3C. CONTROL INPUT FUNCTION TABLE FOR QFB0, QFB1

		Input	s		Outputs
MR	PLL_SEL	FBDIV_SEL2	FBDIV_SEL1	FBDIV_SEL0	QFB0, QFB1 nQFB0, nQFB1
1	Х	X	X	X	Low
0	1	0	0	0	fVCO/4
0	1	0	0	1	fVCO/6
0	1	0	1	0	fVCO/8
0	1	0	1	1	fVCO/10
0	1	1	0	0	fVCO/8
0	1	1	0	1	fVCO/12
0	1	1	1	0	fVCO/16
0	1	1	1	1	fVCO/20
0	0	0	0	0	fREF_CLK/4
0	0	0	0	1	fREF_CLK/6
0	0	0	1	0	fREF_CLK/8
0	0	0	1	1	fREF_CLK/10
0	0	1	0	0	fREF_CLK/8
0	0	1	0	1	fREF_CLK/12
0	0	1	1	0	fREF_CLK/16
0	0	1	1	1	fREF_CLK/20

TABLE 3D. Qx OUTPUT FREQUENCY W/FB_IN = QFB0 or QFB1

			Inputs				
ED IN	EDDIV CELO	FBDIV_SEL1	EBDIV CELO	Output Divider Mede	CLK1	(MHz)	fVCO
FB_IN	FBDIV_SEL2	LDDIA-2EF1	FBDIV_SEL0	IV_SEL0 Output Divider Mode		Maximum	
QFB	0	0	0	÷4	62.5	175 (NOTE 1)	fREF_CLK x 4
QFB	0	0	1	÷6	41.67	116.67	fREF_CLK x 6
QFB	0	1	0	÷8	31.25	87.5	fREF_CLK x 8
QFB	0	1	1	÷10	25	70	fREF_CLK x 10
QFB	1	0	0	÷8	31.25	87.5	fREF_CLK x 8
QFB	1	0	1	÷12	20.83	58.33	fREF_CLK x 12
QFB	1	1	0	÷16	15.62	43.75	fREF_CLK x 16
QFB	1	1	1	÷20	12.5	35	fREF_CLK x 20 (NOTE 2)

NOTE 1: The maximum input frequency that the phase detector can accept is 175MHz.

NOTE 2: VCO frequency range is 250MHz to 600MHz for fREF_CLK x 20.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{CC} 4.6V

Inputs, $V_{\rm l}$ -0.5V to $V_{\rm cc}$ + 0.5 V

Outputs, I_o

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, θ_{JA} 42.3°C/W (0 lfpm) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		3.135	3.3	3.465	V
V _{cco}	Output Supply Voltage		3.135	3.3	3.465	V
I _{cc}	Power Supply Current				165	mA
I _{CCA}	Analog Supply Current				15	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{cc} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
I _{IH}	Input High Current	CLK_SEL, MR, CLK1 DIV_SELAx, DIV_SELBx, FBDIV_SELx	V _{CC} = V _{IN} = 3.465V			150	μΑ
		PLL_SEL	$V_{CC} = V_{IN} = 3.465V$			5	μΑ
I _{IL}	Input Low Current	CLK_SEL, MR, CLK1 DIV_SELAx, DIV_SELBx, FBDIV_SELx	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μΑ
		PLL_SEL	$V_{CC} = 3.465V, V_{IN} = 0V$	-150			μΑ

Table 4C. Differential DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $TA = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	CLK0, FB_IN	$V_{CC} = V_{IN} = 3.465V$			150	μA
I 'IH		nCLK0, nFB_IN	$V_{CC} = V_{IN} = 3.465V$			5	μΑ
,	Input Low Current	CLK0, FB_IN	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μA
' _{IL}	Input Low Current	nCLK0, nFB_IN	$V_{CC} = 3.465V, V_{IN} = 0V$	-150			μA
V _{PP}	Peak-to-Peak Input Voltage; NOTE 1			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			V _{EE} + 0.5		V _{cc} - 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode voltage is defined as V_{IH}.

Table 4D. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cco} - 1.4		V _{cco} - 0.9	٧
V _{OL}	Output Low Voltage; NOTE 1		V _{cco} - 2.0		V _{cco} - 1.7	٧
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 $\!\Omega$ to ${\rm V_{cco}}$ - 2V.

Table 5. PLL Input Reference Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $TA = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{REF}	Input Reference Frequency				175	MHz

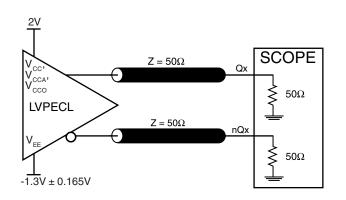
Table 6. AC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, Ta = -40°C to 85°C

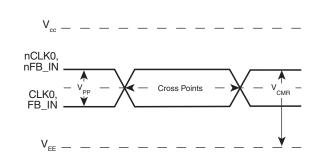
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					350	MHz
t(Ø)	Static Phase Offset; NOTE 1		PLL_SEL = 3.3V, fREF = 100MHz, fVCO = 400MHz	-100		200	ps
tsk(o)	Output Skew; NOTE 2, 3, 4		w/QFBx, nQFBx outputs			75	ps
tjit(cc)	Cycle-to-Cycle Jitter;	CLK0, nCLK0				50	ps
, ` ′	NOTE 3	CLK1				80	ps
t_	PLL Lock Time					10	ms
t _R /t _F	Output Rise/Fall Time		20% to 80%	200		700	ps
odc	Output Duty Cycle		fOUT ≤ 175MHz	48		52	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at f_{MAX} unless noted otherwise.

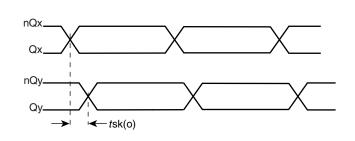
NOTE 1: Defined as the time difference between the input reference clock and the averaged feedback input signal when the PLL is locked and the input reference frequency is stable.

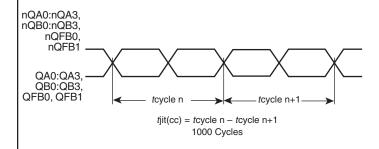

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.


Measured at the output differential cross points.

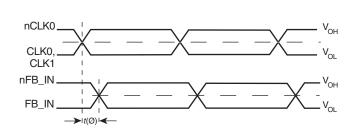
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

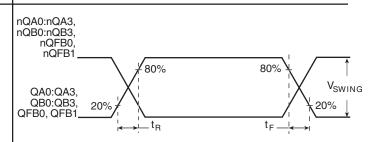
NOTE 4: All outputs in divide by 4 configuration.


PARAMETER MEASUREMENT INFORMATION

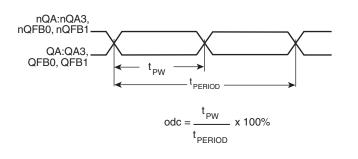


3.3V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL



OUTPUT SKEW


CYCLE-TO-CYCLE JITTER

STATIC PHASE OFFSET

OUTPUT RISE/FALL TIME

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The

ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{\rm CC}$ = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

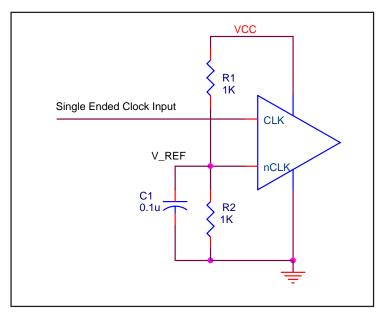


FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS8732I-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm CC}, V_{\rm CCA}$ and $V_{\rm CCO}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic $V_{\rm CC}$ pin and also shows that $V_{\rm CCA}$ requires that an additional10 Ω resistor along with a 10µF bypass capacitor be connected to the $V_{\rm CCA}$ pin.

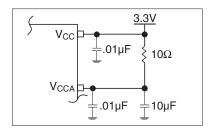


FIGURE 2. POWER SUPPLY FILTERING

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 3A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

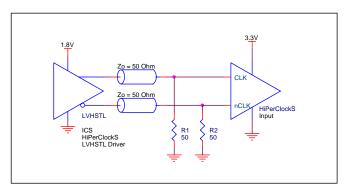


FIGURE 3A. CLK/nCLK INPUT DRIVEN BY AN IDT OPEN EMITTER LVHSTL DRIVER

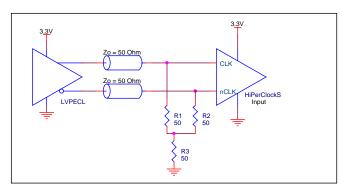


FIGURE 3B. CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

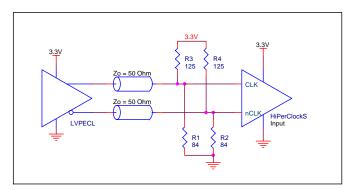


FIGURE 3C. CLK/nCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

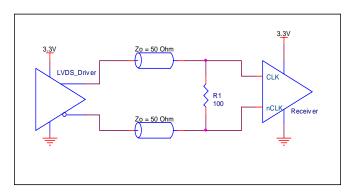


FIGURE 3D. CLK/nCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

FIGURE 3E. CLK/nCLK INPUT DRIVEN BY A 3.3V HCSL DRIVER

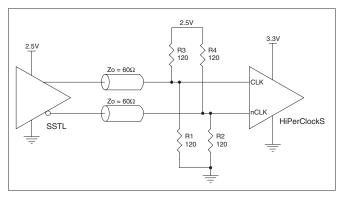


FIGURE 3F. CLK/nCLK INPUT DRIVEN BY A 2.5V SSTL DRIVER

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CLK INPUT

For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

CLK/nCLK INPUT

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

SELECT PINS

All select pins have internal pull-ups and pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVPECL OUTPUTS

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

TERMINATION FOR LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to

drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

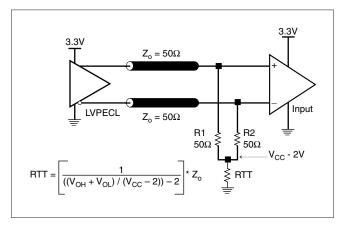


FIGURE 4A. LVPECL OUTPUT TERMINATION

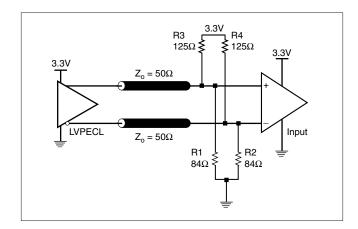


FIGURE 4B. LVPECL OUTPUT TERMINATION

LAYOUT GUIDELINE

Figure 5 shows a schematic example of the ICS8732I-01. In this example, the CLK0/nCLK0 input is selected. The decoupling capacitors should be physically located near

the power pin. For ICS8732I-01, the unused outputs can be left floating.

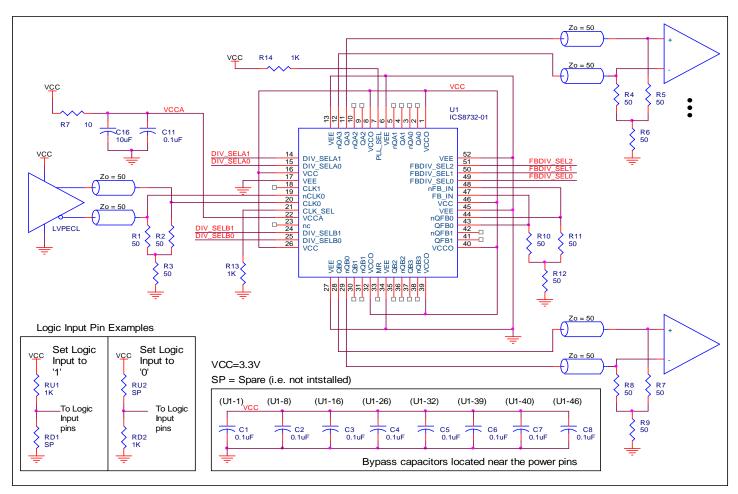


FIGURE 5. ICS8732I-01 LVPECL BUFFER SCHEMATIC EXAMPLE

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the ICS8732I-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8732I-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{CC MAX} * I_{EE MAX} = 3.465V * 165mA =$ **572mW**
- Power (outputs)_{MAX} = 30.2mW/Loaded Output pair
 If all outputs are loaded, the total power is 10 * 30.2mW = 302mW

Total Power MAX (3.465V, with all outputs switching) = 572mW + 302mW = 874mW

2. Junction Temperature.

Junction temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS[™] devices is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{10} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_{Δ} = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 36.4°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 0.874\text{W} * 36.4^{\circ}\text{C/W} = 116.8^{\circ}\text{C}$. This is below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance θ_{JA} for 52-pin LQFP, Forced Convection

θ_{JA} by Velocity (Linear Feet per Minute) 0 200 500 Single-Layer PCB, JEDEC Standard Test Boards 58.0°C/W 47.1°C/W 42.0°C/W Multi-Layer PCB, JEDEC Standard Test Boards 42.3°C/W 36.4°C/W 34.0°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

3. Calculations and Equations.

TThe purpose of this section is to calculate power dissipation on the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 6.



FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} = 2V$.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 1.0V$$

$$(V_{CCO_MAX} - V_{OH_MAX}) = 1.0V$$

• For logic low,
$$V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$$

$$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$

Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.

$$Pd_{-}H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 1V)/50\Omega] * 1V = 20.0mW$$

$$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW

RELIABILITY INFORMATION

Table 8. θ_{JA} vs. Air Flow Table for 52 Lead LQFP

θ_{AA} by Velocity (Linear Feet per Minute)

 0
 200
 500

 Single-Layer PCB, JEDEC Standard Test Boards
 58.0°C/W
 47.1°C/W
 42.0°C/W

 Multi-Layer PCB, JEDEC Standard Test Boards
 42.3°C/W
 36.4°C/W
 34.0°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS8732I-01 is: 4916

PACKAGE OUTLINE -Y SUFFIX FOR 52 LEAD LQFP

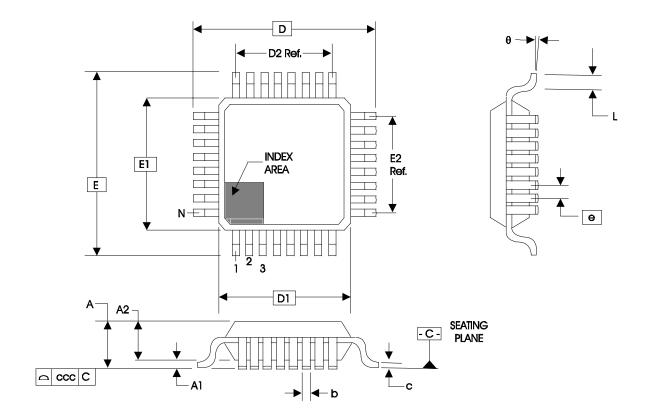


TABLE 9. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS							
SYMBOL	BCC						
	MINIMUM	NOMINAL	MAXIMUM				
N	52						
Α			1.60				
A1	0.05		0.15				
A2	1.35	1.40	1.45				
b	0.22	0.32	0.38				
С	0.09		0.20				
D&E	12.00 BASIC						
D1 & E1	10.00 BASIC						
D2 & E2	7.80 Reference						
е	0.65 BASIC						
L	0.45		0.75				
θ	0°		7°				
ccc			0.10				

Reference Document: JEDEC Publication 95, MS-026

TABLE 10. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8732AYI-01	ICS8732AYI-01	52 Lead LQFP	tray	-40°C to 85°C
8732AYI-01T	ICS8732AYI-01	52 Lead LQFP	500 tape & reel	-40°C to 85°C
8732AYI-01LF	ICS8732AYI01LF	52 Lead "Lead Free" LQFP	tray	-40°C to 85°C
8732AYI-01LFT	ICS8732AYI01LF	52 Lead "Lead Free" LQFP	500 tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change		
	T4C	6	Differential DC Characteristics Table - updated NOTES.		
	T6	6	AC DC Characteristics Table - added thermal note.		
		8	Updated Power Supply Filterning Techniques.		
		9	Updated Differential Clock Input Interface.		
		10	Updated Figures 4A & 4B, LVPECL Terminations diagrams.	11/9/09	
A	Т9	15	Updated Package Outline and Dimensions Table - added D2/E2 dimensions and corrected "ccc" dimension.	11/9/09	
	T10	16	Ordering Information Table - deleted ICS prefix from Part/Order Number, correct Temperature column, and added LF marking.		
			Updated header/footer of datasheet.		

6024 Silver Creek Valley Road San Jose, CA 95138 **Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Techical Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performace, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Techology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.