

PART NUMBER UA733M^BIA-ROC

Rochester Electronics Manufactured Components

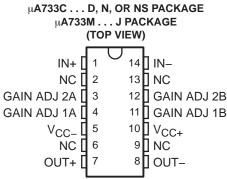
Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

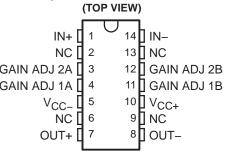
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)


 Rochester is a critical supplier to DLA and meets all industry and DLA standards.


Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- 200-MHz Bandwidth
- 250-kΩ Input Resistance

- Selectable Nominal Amplification of 10, 100, or 400
- **No Frequency Compensation Required**

 μ A733M . . . U PACKAGE (TOP VIEW) 10**∏** IN− GAIN ADJ 2A 9 GAIN ADJ 2B GAIN ADJ 1A ☐ 3 8 GAIN ADJ 1B 7 🛮 V_{CC+} V_{CC}-6∏OUT-OUT+

NC - No internal connection

description/ordering information

The µA733 is a monolithic two-stage video amplifier with differential inputs and differential outputs. Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads, and all stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.

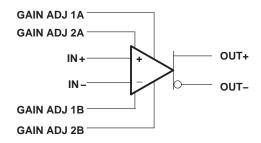
Fixed differential amplification of 10 V/V, 100 V/V, or 400 V/V may be selected without external components, or amplification may be adjusted from 10 V/V to 400 V/V by the use of a single external resistor connected between 1A and 1B. No external frequency-compensating components are required for any gain option.

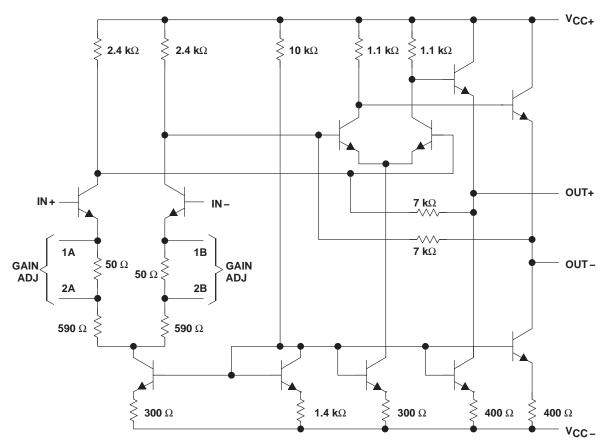
The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general-purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The μA733C is characterized for operation from 0°C to 70°C; the μA733M is characterized for operation over the full military temperature range of -55°C to 125°C.

ORDERING INFORMATION

TA	PACKAGE	<u>:</u> †	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	P-DIP (N)	Tube of 25	UA733CN	UA733CN	
0°C to 70°C	2010 (7)	Tube of 50	UA733CD	1147000	
0 0 10 70 0	SOIC (D)	Reel of 2500	UA733CDR	UA733C	
	SOP (NS)	Reel of 2000	UA733CNSR	UA733	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

symbol

schematic

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		μ Α733 C	μ Α733 Μ	UNIT
Supply voltage V _{CC+} (see Note 1)		8	8	V
Supply voltage V _{CC} (see Note 1)		- 8	- 8	V
Differential input voltage		± 5	± 5	V
Common-mode input voltage		± 6	± 6	V
Output current		10	10	mA
Continuous total power dissipation				
	D package	86		
Package thermal impedance, θ _{JA} (see Notes 2 and 3)	N package	80		°C/W
	NS package	76		
Maximum junction temperature, TJ		150		°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or U package		300	°C
Storage temperature range, T _{Stg}		- 65 to 150	- 65 to 150	°C

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential input voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is PD = $(T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

	PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
Γ	J (μΑ733M)	500 mW	11.0 mW/°C	104°C	500 mW	269 mW

electrical characteristics, $V_{CC\pm}$ = ± 6 V, T_A = 25°C

		FIGURE TEST SOURITION		GAIN	ļ	ι Α733C		ļ	ι Α733 Μ		
PA	RAMETER	FIGURE	TEST CONDITIONS	OPTION†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	Large-signal			1	250	400	600	300	400	500	
A_{VD}	differential voltage	1	V _{OD} = 1 V	2	80	100	120	90	100	110	V/V
	amplification			3	8	10	12	9	10	11	
				1		50			50		
BW	Bandwidth	2	$R_S = 50 \Omega$	2		90			90		MHz
				3		200			200		
I _{IO}	Input offset current			Any		0.4	5		0.4	3	μΑ
I _{IB}	Input bias current			Any		9	30		9	20	μΑ
VICR	Common-mode input voltage range	1		Any	±1			±1			V
Voc	Common-mode output voltage	1		Any	2.4	2.9	3.4	2.4	2.9	3.4	V
.,	Output offset			1		0.6	1.5		0.6	1.5	.,
V ₀₀	voltage	1		2 & 3		0.35	1.5		0.35	1	V
VOPP	Maximum peak- to-peak output voltage swing	1		Any	3	4.7		3	4.7		V
				1		4			4		
rį	Input resistance	3	V _{OD} ≤ 1 V	2	10	24		20	24		kΩ
				3		250			250		igsquare
r _o	Output resistance					20			20		Ω
Ci	Input capacitance	3	V _{OD} ≤ 1 V	2		2			2		pF
CMDD	Common-mode		$V_{IC} = \pm 1 \text{ V},$ f \leq 100 kHz	2	60	86		60	86		٩D
CMRR	rejection ration	4	$V_{IC} = \pm 1 \text{ V},$ f = 5 MHz	2		70			70		dB
kSVR	Supply voltage rejection ratio (ΔV _{CC} /(ΔV _{IO})	1	$\Delta V_{CC\pm} = \pm 0.5 \text{ V}$	2	50	70		50	70		dB
V _n	Broadband equivalent input noise voltage	5	BW = 1 kHz to 10 MHz	Any		12			12		μV
			$R_S = 50 \Omega$	1		7.5			7.5		
^t pd	Propagation delay time	2	Output voltage	2		6.0	10		6.0	10	ns
			step = 1 V	3		3.6			3.6		
			$R_S = 50 \Omega$,	1		10.5			10.5		
t _r	t _r Rise time 2	2	2 Output voltage			4.5	12		4.5	10	ns
		step = 1 V			2.5			2.5			
I _{sink(max)}	Maximum output sink current			Any	2.5	3.6		2.5	3.6		mA
Icc	Supply current		No load, No signal	Any		16	24		16	24	mA

[†]The gain option is selected as follows:

Gain Option 3: All four gain-adjust pins are open.

Gain Option 1: Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2: Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

electrical characteristics, V_{CC \pm} = ± 6 V, T_A = 0°C to 70°C for μ A733C, – 55°C to 125°C for μ A733M

	DADAMETED	FIGURE	TEST CONDITIONS	GAIN	μ Α7 :	33C	μ Α7 3	LINIT	
	PARAMETER	FIGURE	TEST CONDITIONS	OPTION†	MIN	MAX	MIN	MAX	UNIT
				1	250	600	200	600	
AVD	Large-signal differential voltage amplification	1	V _{OD} = 1 V	2	80	120	80	120	V/V
	voltago amplilioation			3	8	12	8	12	
lo	Input offset current			Any		6		5	μΑ
I _{IB}	Input bias current			Any		40		40	μΑ
VICR	Common-mode input voltage range	1		Any	±1		±1		V
.,	Outside West will also	_		1		1.5		1.5	V
V00	Output offset voltage	1		2 & 3		1.5		1.2	V
V _{OPP}	Maximum peak-to-peak output voltage swing	1		Any	2.8		2.5		V
rį	Input resistance	3	V _{OD} ≤ 1 V	2	8		8		kΩ
CMRR	Common-mode rejection ratio	4	V _{IC} = +1 V, f ≤ 100 kHz	2	50		50		dB
ksvr	Supply voltage rejection ratio (ΔV _{CC} /(ΔV _{IO})	1	$\Delta V_{CC\pm} = \pm 0.5 \text{ V}$	2	50		50		dB
I _{sink(max)}	Maximum output sink current			Any	2.5		2.2		mA
Icc	Supply current		No load, No signal	Any		27		27	mA

[†]The gain option is selected as follows:

Gain Option 1: Gain-adjust pin 1A is connected to pin 1B, and pins 2A and 2B are open.

Gain Option 2: Gain-adjust pin 1A and pin 1B are open, pin 2A is connected to pin 2B.

Gain Option 3: All four gain-adjust pins are open.

PARAMETER MEASUREMENT INFORMATION

test circuits

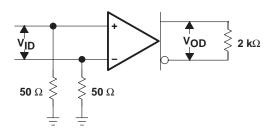


Figure 1

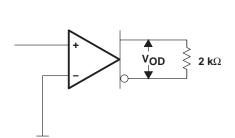


Figure 3

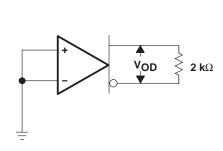


Figure 5

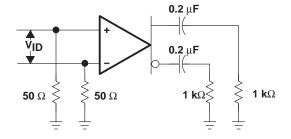


Figure 2

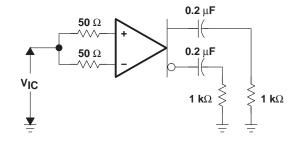
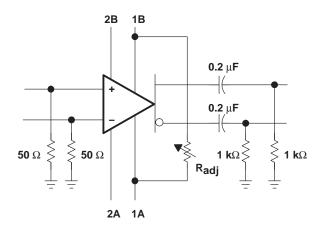



Figure 4

VOLTAGE AMPLIFICATION ADJUSTMENT

Figure 6

TYPICAL CHARACTERISTICS

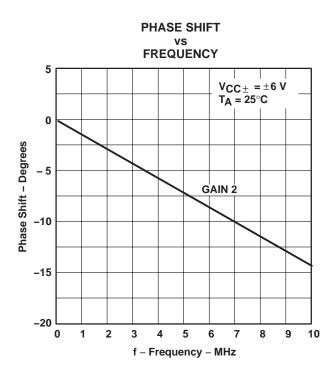


Figure 7

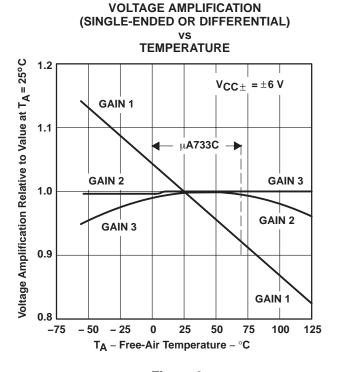


Figure 9

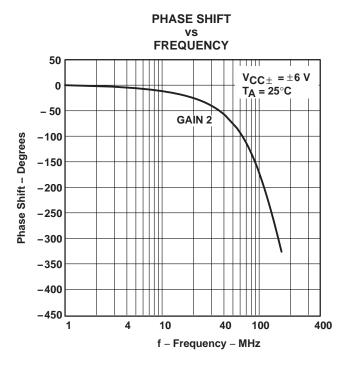
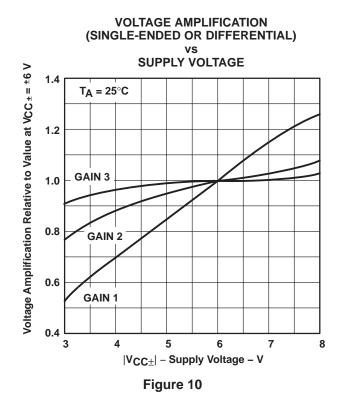



Figure 8

TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION vs RESISTANCE BETWEEN G1A AND G1B

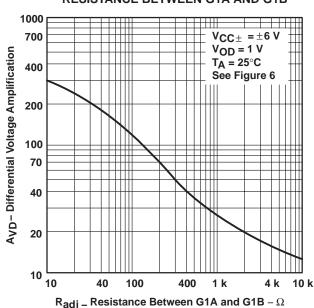


Figure 11

. .ga. . . .

Figure 13

SINGLE-ENDED VOLTAGE AMPLIFICATION vs

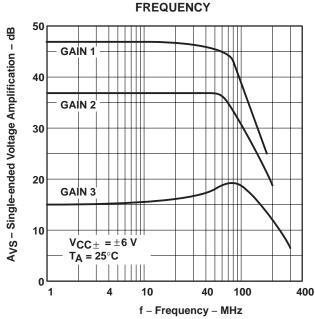


Figure 12

SUPPLY CURRENT vs SUPPLY VOLTAGE

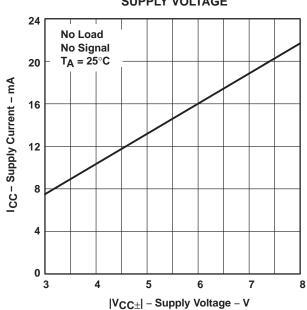


Figure 14

TYPICAL CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

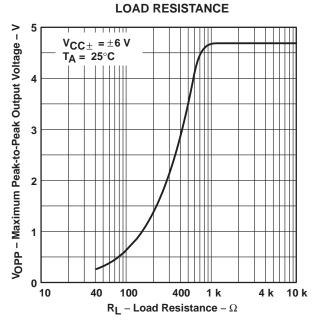


Figure 15

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

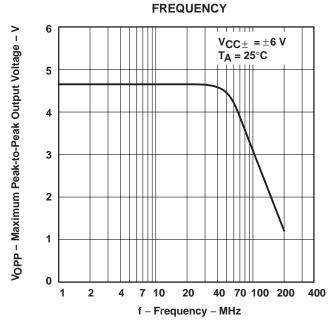


Figure 17

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VS SUPPLY VOLTAGE

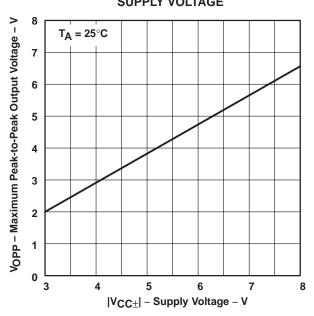
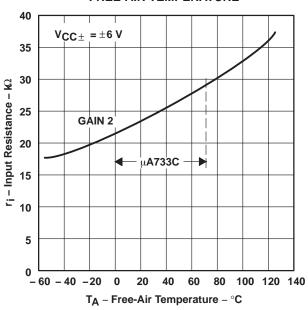



Figure 16

INPUT RESISTANCE vs FREE-AIR TEMPERATURE

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
UA733CD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733C	Samples
UA733CDR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733C	Samples
UA733CN	ACTIVE	PDIP	N	14	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	UA733CN	Samples
UA733CNSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	UA733	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

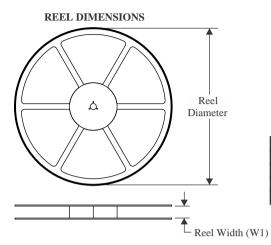
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

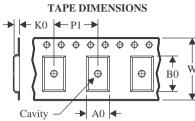
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

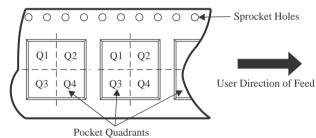
10-Dec-2020


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

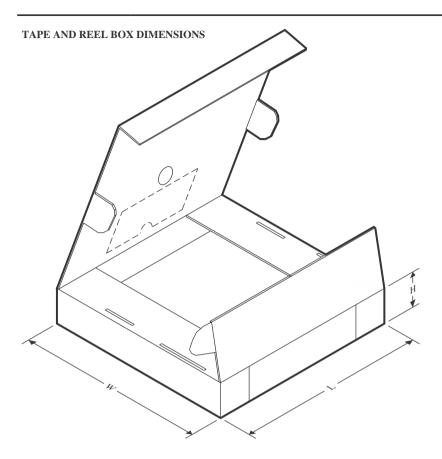
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

	-
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

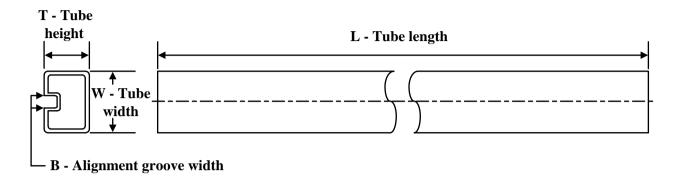


*All dimensions are nominal

	Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
I	UA733CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
	UA733CNSR	so	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


*All dimensions are nominal

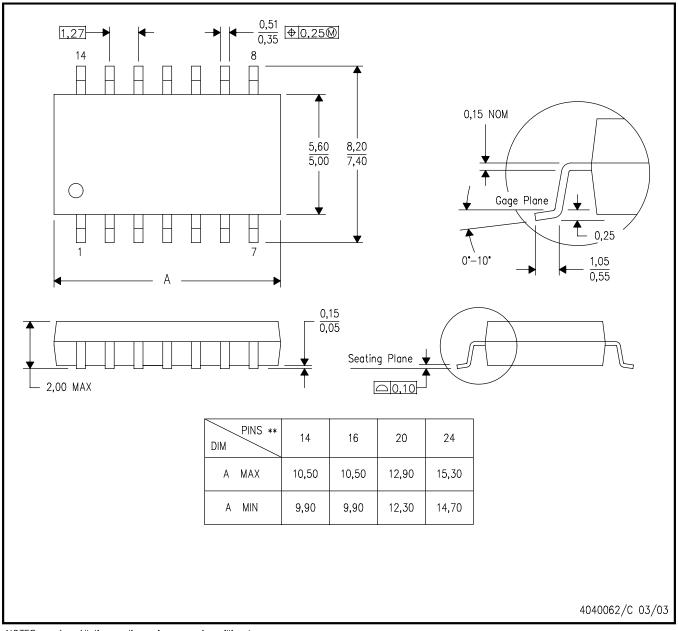
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA733CDR	SOIC	D	14	2500	356.0	356.0	35.0
UA733CNSR	SO	NS	14	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TUBE

*All dimensions are nominal

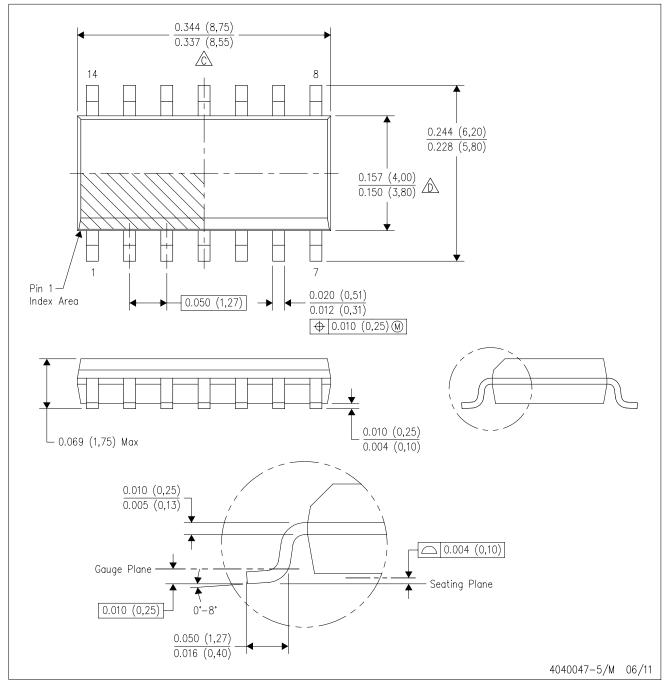

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
UA733CD	D	SOIC	14	50	506.6	8	3940	4.32
UA733CN	N	PDIP	14	25	506	13.97	11230	4.32

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

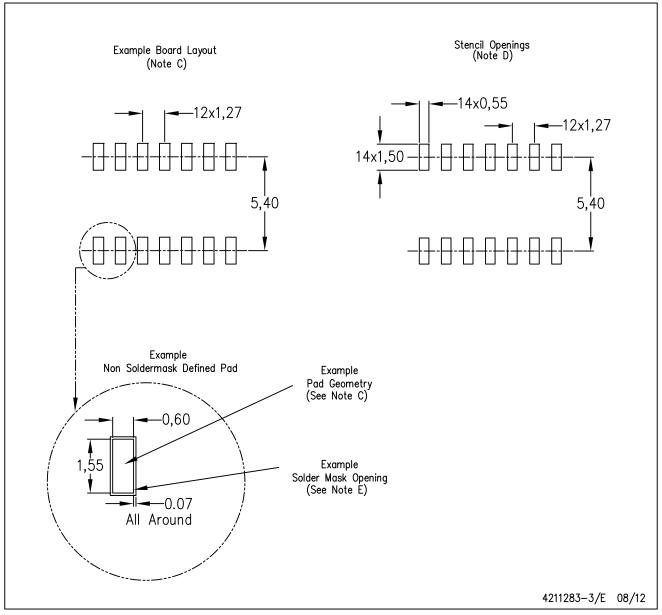
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

D (R-PDSO-G14)

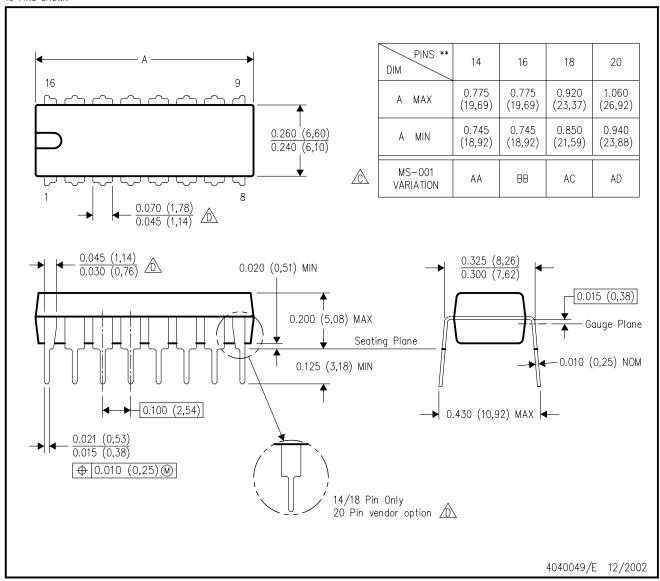
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated