

PART NUMBER MM74C901M-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MM74C901, MM74C902

Hex Inverting TTL Buffer, Hex Non-Inverting TTL Buffer

The MM74C901 and MM74C902 hex buffers employ complementary MOS to achieve wide supply operating range, low power consumption, and high noise immunity. These buffers provide direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced V_{CC} supply.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

October 1987 Revised January 1999

MM74C901 • MM74C902 Hex Inverting TTL Buffer • Hex Non-Inverting TTL Buffer

General Description

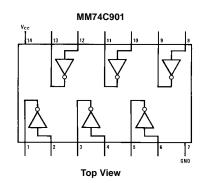
The MM74C901 and MM74C902 hex buffers employ complementary MOS to achieve wide supply operating range, low power consumption, and high noise immunity. These buffers provide direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced $\ensuremath{\text{V}_{\text{CC}}}$ supply.

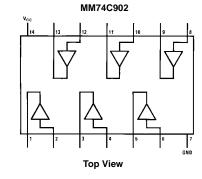
Features

■ Wide supply voltage range: 3.0V to 15V

■ Guaranteed noise margin: 1.0V
 ■ High noise immunity: 0.45 V_{CC} (typ.)

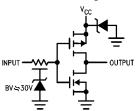
■ TTL compatibility: Fan out of 2 driving standard TTL

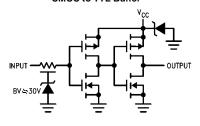

Ordering Code:


Order Number	Package Number	Package Description
MM74C901M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C901N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.300" Wide
MM74C902M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C902N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams


Pin Assignments for DIP and SOIC



Logic Diagrams

MM74C901
CMOS to TTL Inverting Buffer

MM74C902 CMOS to TTL Buffer

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin $$-0.3\mbox{V}$\ to \mbox{V}_{\mbox{CC}}$ + 0.3\mbox{V}$$

Voltage at Any Input Pin

MM74C901 -0.3V to +15V MM74C902 -0.3V to +15V

Storage Temperature Range (T_S)

Power Dissipation (P_D)

Dual-In-Line 700 mW
Small Outline 500 mW

 $-65^{\circ}C$ to $+150^{\circ}C$

Operating Temperature Range (T_A)

MM74C901, MM74C902, -40°C to +85°C

 $\begin{array}{ll} \text{Operating V}_{\text{CC}} \; \text{Range} & 3.0 \text{V to 15V} \\ \text{Absolute Maximum V}_{\text{CC}} & 18 \text{V} \end{array}$

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted

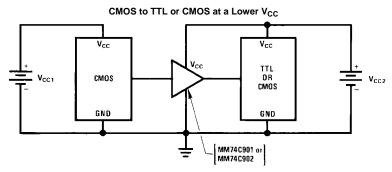
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS					•
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
		V _{CC} = 10V	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		V _{CC} = 10V			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	V _{CC} = 5.0V			0.5	V
		V _{CC} = 10V			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005		μА
I _{CC}	Supply Current	V _{CC} = 15V		0.05	15	μΑ
TTL TO CM	ios			J		ı
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
CMOS TO	ΓΤL					
V _{IN(1)}	Logical "1" Input Voltage					
(/	MM74C901	V _{CC} = 4.75V	4.25			V
	MM74C902	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage					
(-/	MM74C901	V _{CC} = 4.75V			1.0	V
	MM74C902	V _{CC} = 4.75V			1.5	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V, I_{O} = -800 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage					
(-)	MM74C901	$V_{CC} = 4.75V, I_{O} = 2.6 \text{ mA}$			0.4	V
	MM74C902	$V_{CC} = 4.75V, I_{O} = 3.2 \text{ mA}$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				1
(MM74C9	901)					
SOURCE	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-5.0			mA
	(P-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				
SOURCE	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V	-20			mA
	(P-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				
I _{SINK}	Output Sink Current	V _{CC} = 5.0V, V _{OUT} = V _{CC}	9.0			mA
	(N-Channel)	T _A = 25°C, V _{IN} = V _{CC}				
I _{SINK}	Output Sink Current	V _{CC} = 5.0V, V _{OUT} = 0.4V	3.8			mA
	1	T _A = 25°C, V _{IN} = V _{CC}				

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I SOURCE	Output Source Current	V _{CC} = 5.0V, V _{OUT} = 0V	-5.0			mA
	(P-Channel)	$T_A = 25$ °C, $V_{IN} = V_{CC}$				
I SOURCE	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V	-20			mA
	(P-Channel)	$T_A = 25$ °C, $V_{IN} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V$, $V_{OUT} = V_{CC}$	9.0			mA
	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V, V_{OUT} = 0.4V$	3.8			mA
	(N-Channel)	$T_A = 25^{\circ}C, V_{IN} = 0V$				

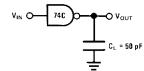
AC Electrical Characteristics (Note 2)

 $T_A = 25$ °C, $C_L = 50$ pF, unless otherwise noted

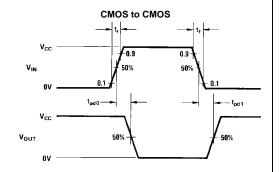

Symbol	Parameter	Conditions	Min	Тур	Max	Units
MM74C9	01		L	ı	ı	I
t _{pd1}	Propagation Delay Time	V _{CC} = 5.0V		38	70	ns
	to a Logical "1"	$V_{CC} = 10V$		22	30	ns
t _{pd0}	Propagation Delay Time	V _{CC} = 5.0V		21	35	ns
	to a Logical "0"	V _{CC} = 10V		13	20	ns
C _{IN}	Input Capacitance	Any Input (Note 3)		14		pF
C _{PD}	Power Dissipation Capacity	Per Buffer (Note 4)		30		pF
MM74C9	02		•			
t _{pd1}	Propagation Delay Time	V _{CC} = 5.0V		57	90	ns
	to a Logical "1"	V _{CC} = 10V		27	40	ns
t _{pd0}	Propagation Delay Time	V _{CC} = 5.0V		54	90	ns
	to a Logical "0"	V _{CC} = 10V		25	40	ns
C _{IN}	Input Capacitance	Any Input (Note 3)		5.0		pF
C _{PD}	Power Dissipation Capacity	Per Buffer (Note 4)		50		pF

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

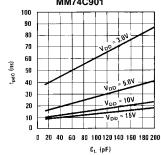

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90.

Typical Application

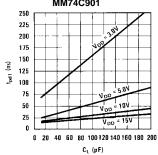


Note: $V_{CC1} = V_{CC2}$

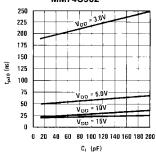
AC Test Circuit and Switching Time Waveforms

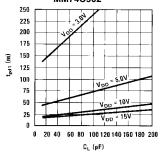


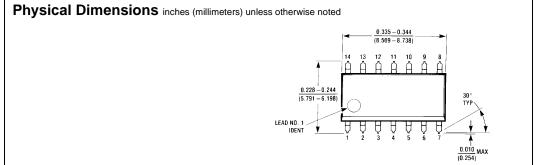
Note: Delays measured with input t_r , t_f = 20 ns.

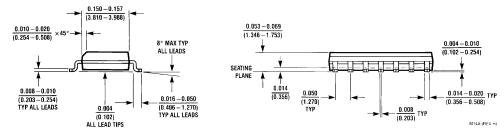


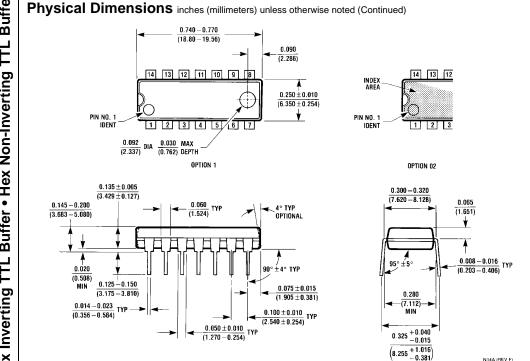
Typical Performance Characteristics


Typical Propagation Delay to a Logical "0" for the MM74C901


Typical Propagation Delay to a Logical "1" for the MM74C901




Typical Propagation Delay to a Logical "0" for the MM74C902


Typical Propagation Delay to a Logical "1" for the MM74C902

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-120, 0.150" Narrow Package Number M14A

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com