

PART NUMBER 54LS256DM-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

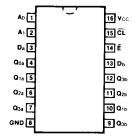
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

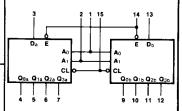
54LS/74LS256 6////7

DUAL 4-BIT ADDRESSABLE LATCH

DESCRIPTION— The '256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A₀, A₁), an active LOW Enable input ($\overline{\mathbb{C}}$) and an active LOW Clear input ($\overline{\mathbb{C}}$ L). Each latch has a Data input (D) and four outputs (Q₀ — Q₃).


When the Enable (\overline{E}) is HIGH and the Clear input (\overline{CL}) is LOW, all outputs (Q_0-Q_3) are LOW. Dual 4-channel demultiplexing occurs when the \overline{CL} and \overline{E} are both LOW. When \overline{CL} is HIGH and \overline{E} is LOW, the selected output (Q_0-Q_3) , determined by the Address inputs, follows D. When the \overline{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode $(\overline{E}=LOW, \overline{CL}=HIGH)$, changing more than one bit of the Address (A_0,A_1) could impose a transient wrong address. Therefore, this should be done only while in the memory mode $(\overline{E}=\overline{CL}=HIGH)$.

- SERIAL-TO-PARALLEL CAPABILITY
- OUTPUT FROM EACH STORAGE BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- EASILY EXPANDABLE
- ACTIVE LOW COMMON CLEAR


ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	оит	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C to} +125^{\circ} \text{ C}$	TYPE
Plastic DIP (P)	A	74LS256PC		9B
Ceramic DIP (D)	Α	74LS256DC	54LS256DM	6B
Flatpak (F)	A	74LS256FC	54LS256FM	4L

CONNECTION DIAGRAM PINOUT A

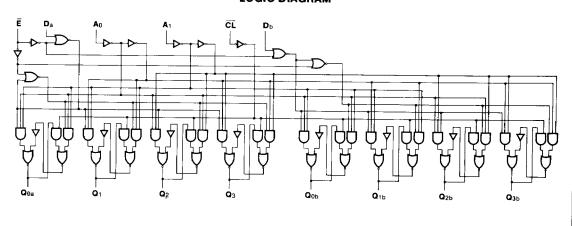
LOGIC SYMBOL

V_{CC} = Pin 16 GND = Pin 8

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74LS (U.L. HIGH/LOW	
∖ 0, A 1	Common Address Inputs	0.5/0.25	
Da, Db	Data Inputs	0.5/0.25	
Ē	Common Enable Input (Active LOW)	1.0/0.5	
CL	Conditional Clear Input (Active LOW)	0.5/0.25	
Q _{0a} — Q _{3a}	Side A Latch Outputs	10/5.0	
		(2.5)	
Q _{0b} — Q _{3b}	Side B Latch Outputs	10/5.0	
		(2.5)	

TRUTH TABLE


	IN	PUTS			OU.	TPUTS	;	MODE	
CL	Ē	A ₀	A ₁	\mathbf{Q}_0	Q ₁	Q ₂	Q ₃	WODE	
L	Н	Х	Х	L	L	L	L	Clear	
L L L		HLH	L H H	D L L	L D L L	L L L	L L D	Demultiplex	
Н	H	Х	Х	Q _{t-1}	Q _{t-1}	Q_{t-1}	Q_{t-1}	Memory	
1111		L H L	LLHH	D Q _{t-1} Q _{t-1} Q _{t-1}	Q _{t-1} D Q _{t-1} Q _{t-1}	Qt-1 Qt-1 D Qt-1	Qt-1 Qt-1 Qt-1 D	Addressable Latch	

t-1 = Bit time before address change or rising edge of E

MODE SELECTION

Ē	CL	MODE
THL	LLI	Addressable Latch Memory Active HIGH 4-Channel Demultiplexers Clear

LOGIC DIAGRAM

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/	74LS	UNITS	CONDITIONS
		Min	Max	0.4.10	CONDITIONS
Icc	Power Supply Current		25	mA	Vcc = Max

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ (See Section 3 for waveforms and load configurations)

		54/	74LS		CONDITIONS
SYMBOL	PARAMETER	C _L =	15 pF	UNITS	
		Min	Max	7	
tpLH tpHL	Propagation Delay E to Q _n		27 24	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay D _n to Q _n		30 20	ns	Figs. 3-1, 3-5
tplH tpHL	Propagation Delay A _n to Q _n		30 20	ns	Figs. 3-1, 3-20
tPHL	Propagation Delay CL to Q _n		18	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}, T_A = +25 ^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/	74LS	UNITS	CONDITIONS
		Min	Max	JUNITS	
ts (H)	Setup Time HIGH Dn to E	20		ns	Fig. 3-13
t _h (ℍ)	Hold Time HIGH	0		ns	Fig. 3-13
t _s (L)	Setup Time LOW D _n to E	15		ns	Fig. 3-13
t _h (L)	Hold Time LOW D _n to E	0		ns	Fig. 3-13
ts (H) ts (L)	Setup Time HIGH or LOW, An to E	0		ns	Fig. 3-21
tw (L)	Ē Pulse Width LOW	17		ns	Fig. 3-21