

SGM8605-1 1.2mA, 12.5MHz, Rail-to-Rail I/O CMOS Operational Amplifier

GENERAL DESCRIPTION

The SGM8605-1 (single with shutdown) is a low noise, low voltage and low power operational amplifier, that can be designed into a wide range of applications. The SGM8605-1 has a high gain-bandwidth product of 12.5MHz, a slew rate of 8.5V/ μ s, and a quiescent current of 1.2mA at 5V. The SGM8605-1 has a power-down disable feature that reduces the supply current to less than 1 μ A.

The SGM8605-1 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 4.5mV for SGM8605-1. The operating supply range is from 2.1V to 5.5V.

SGM8605-1 is available in a Green UTDFN-1.45×1-6L package. It is specified over the extended industrial temperature range (-40°C to +125°C).

FEATURES

- Rail-to-Rail Input and Output
- Input Offset Voltage: 0.9mV (TYP)
- High Gain-Bandwidth Product: 12.5MHz
- High Slew Rate: 8.5V/µs
- Settling Time to 0.1% with 2V Step: 0.21µs
- Overload Recovery Time: 0.6µs
- Supply Voltage Range: 2.1V to 5.5V
- Input Common Mode Voltage Range:
 - -0.1V to 5.6V with $V_S = 5.5V$
- Low Power: 1.2mA Typical Supply Current
- -40°C to +125°C Operating Temperature Range
- Available in a Green UTDFN-1.45×1-6L Package

APPLICATIONS

Sensors

Audio

Active Filters

A/D Converters

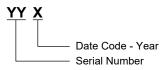
Communications

Test Equipment

Cellular and Cordless Phones

Laptops and PDAs

Photodiode Amplification


Battery-Powered Instrumentation

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM8605-1	UTDFN-1.45×1-6L	-40°C to +125°C	SGM8605-1XUDL6G/TR	78X	Tape and Reel, 5000	

MARKING INFORMATION

NOTE: X = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

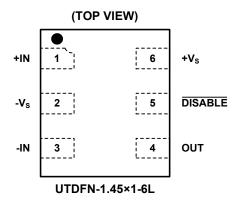
Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Range	
(-V _S) - 0.3	$V \text{ to } (+V_S) + 0.3V$
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.1V to 5.5V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

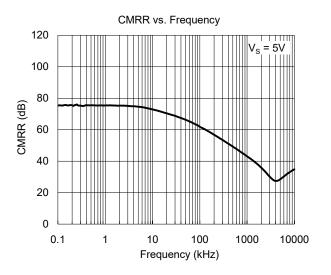
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

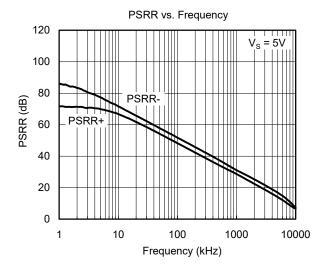
DISCLAIMER

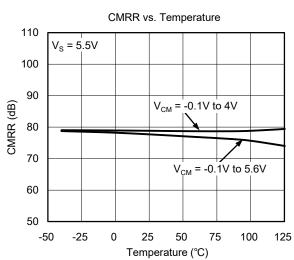
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

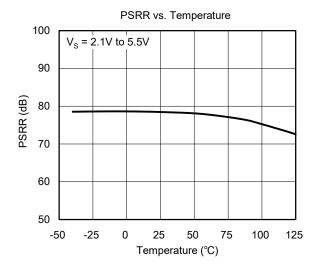
PIN CONFIGURATION

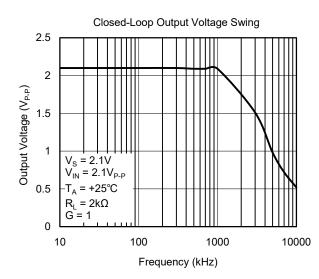
ELECTRICAL CHARACTERISTICS

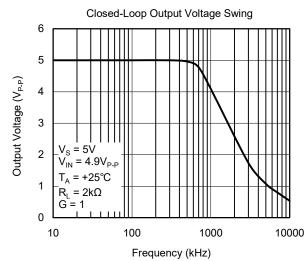

		SGM8605-1					
DADAMETED	COMPITIONS	TYP	MIN/MAX OVER TEMPERATURE				
PARAMETER	CONDITIONS	+25°C	+25℃	-40℃ to +125℃	UNITS	MIN/MAX	
Input Characteristics							
Input Offset Voltage (Vos)		0.9	4.5	4.8	mV	MAX	
Input Bias Current (I _B)		2			pА	TYP	
Input Offset Current (I _{OS})		3			рА	TYP	
Input Common Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1 to 5.6			V	TYP	
	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	79	68	65	dB	MIN	
Common Mode Rejection Ratio (CMRR)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to $5.6V$	75	60	58	dB	MIN	
0 1 1/4 0 1/4 1	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 4.85V	TYP MIN/MAX OVER +25°C +25°C -40°C to +125°C 0.9 4.5 4.8 2 3 -0.1 to 5.6 4V 79 68 65 6.6V 75 60 58 4.85V 88 80 67	dB	MIN			
Open-Loop Voltage Gain (A _{OL})	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 4.95V	100	96	75	dB	MIN	
Input Offset Voltage Drift (ΔV _{OS} /ΔT)		2			μV/°C	TYP	
Output Characteristics				1			
0 : 17 0 : ($R_L = 600\Omega$	74	96	123	mV	TYP	
Output Voltage Swing from Rail	$R_L = 10k\Omega$	6	13	19	mV	TYP	
Output Current (I _{OUT})		78	59	50	mA	MIN	
Closed-Loop Output Impedance	f = 1MHz, G = +1	8.5			Ω	TYP	
Power-Down Disable	•						
Turn-On Time		1			μs	TYP	
Turn-Off Time		0.2			μs	TYP	
DISABLE Voltage-Off			0.8		V	MAX	
DISABLE Voltage-On			2		V	MIN	
Power Supply	•						
Operating Voltage Bange			2.1	2.1	V	MIN	
Operating Voltage Range			5.5	5.5	V	MAX	
Power Supply Rejection Ratio (PSRR)	$V_S = 2.1V$ to 5.5V, $V_{CM} = (-V_S) + 0.5V$	75	67	61	dB	MIN	
Quiescent Current (I _Q)	I _{OUT} = 0	1.2	1.5	1.9	mA	MAX	
Supply Current when Disabled		0.5	8	10	μΑ	MAX	
Dynamic Performance	1			1			
Gain-Bandwidth Product (GBP)	$R_L = 600\Omega$	12.5			MHz	TYP	
Phase Margin (φ _o)		65			degrees	TYP	
Slew Rate (SR)	G = +1, 2V output step	8.5			V/µs	TYP	
Settling Time to 0.1% (t _S)	G = +1, 2V output step	0.21			μs	TYP	
Overload Recovery Time	$V_{IN} \times G = V_{S}$	0.6			μs	TYP	
Noise Performance				1			
	f = 1kHz	12			nV/√ Hz	TYP	
Input Voltage Noise Density (e _n)	f = 10kHz	8			nV/√Hz	TYP	

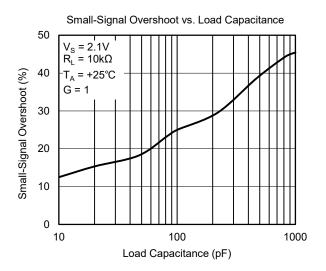

ELECTRICAL CHARACTERISTICS (continued)

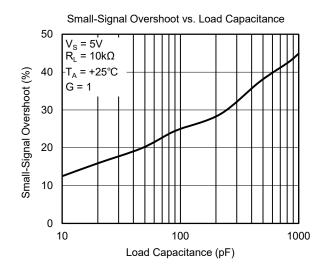

(At V_S = +2.1V, T_A = +25°C, V_{CM} = + $V_S/2$, R_L = 600 Ω , unless otherwise noted.)

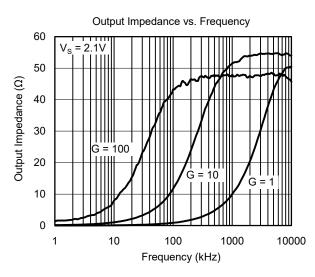

		SGM8605-1					
DADAMETED	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE				
PARAMETER	CONDITIONS	+25°C	+25℃	-40°C to +125°C	UNITS	MIN/MAX	
Input Characteristics							
Input Offset Voltage (Vos)		0.8	4.7	4.9	mV	MAX	
Input Bias Current (I _B)		2			pА	TYP	
Input Offset Current (I _{OS})		3			pА	TYP	
Input Common Mode Voltage Range (V _{CM})	V _S = 2.1V	-0.1 to 2.2			V	TYP	
Common Made Dejection Detic (CMDD)	$V_S = 2.1V$, $V_{CM} = -0.1V$ to 0.6V	70	60	50	dB	MIN	
Common Mode Rejection Ratio (CMRR)	$V_S = 2.1V$, $V_{CM} = -0.1V$ to 2.2V	70	54	49	dB	MIN	
Open Lean Valtage Cain (A.)	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 1.95V	87	81	64	dB	MIN	
Open-Loop Voltage Gain (A _{OL})	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 2.05V	TYP MIN/MAX OVER +25°C +25°C -40°C to +125°C 0.8 4.7 4.9 2 3 -0.1 to 2.2 6V 70 60 50 2V 70 54 49 .95V 87 81 64	dB	MIN			
Input Offset Voltage Drift (ΔV _{OS} /ΔT)		2			μV/°C	TYP	
Output Characteristics							
Outrot Valle on Outro from Dall	$R_L = 600\Omega$	38	58	70	mV	TYP	
Output Voltage Swing from Rail	$R_L = 10k\Omega$	5	9	11	to UNITS MV PA PA V dB dB dB dB dB µV/°C MV mV V V MV MV TA V V MV MV TA V V MA PA V MV MV MV MV MV MA PA PA V MV MV MV MV MV MA PA PA W MV MV MV MA PA PA MV MV MV MV MA PA PA MV MV MV MV MA MA MA MA MA M	TYP	
Output Current (I _{OUT})		28	20	15	mA	MIN	
Power-Down Disable	•			•			
Turn-On Time		7.4			μs	TYP	
Turn-Off Time		0.4			μs	TYP	
DISABLE Voltage-Off			0.4		V	MAX	
DISABLE Voltage-On			1.8		V	MIN	
Power Supply							
Quiescent Current (I _Q)	I _{OUT} = 0	1.3	1.55	1.9	mA	MAX	
Supply Current when Disabled		0.5	4	6	μA	MAX	
Dynamic Performance	•			•			
Gain-Bandwidth Product (GBP)	$R_L = 600\Omega$	12.5			MHz	TYP	
Phase Margin (φ ₀)		60			degrees	TYP	
Slew Rate (SR)	G = +1, 1V output step	8.9			V/µs	TYP	
Settling Time to 0.1% (t _s)	G = +1, 1V output step	0.24			μs	TYP	
Overload Recovery Time	$V_{IN} \times G = V_{S}$	0.53			μs	TYP	
Noise Performance	•			•			
Innert Valtage Nation Density (a.)	f = 1kHz	12.5			nV/√ Hz	TYP	
Input Voltage Noise Density (en)	f = 10kHz	9			nV/√Hz	TYP	

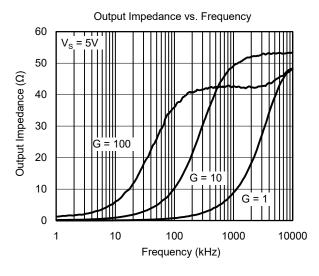

TYPICAL PERFORMANCE CHARACTERISTICS

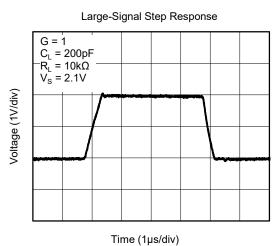


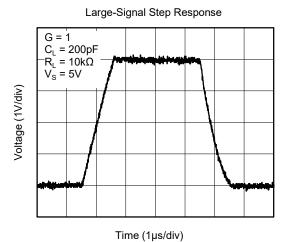


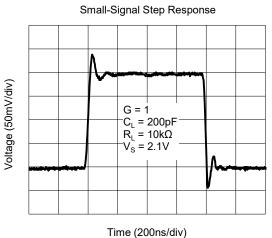


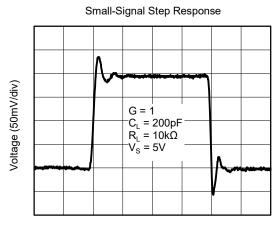


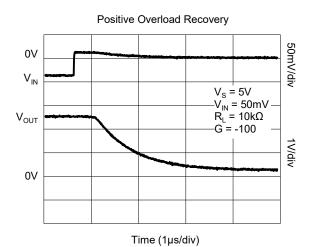


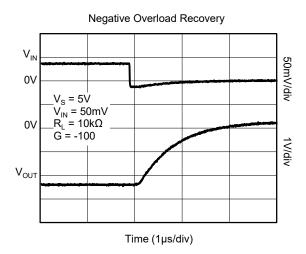

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

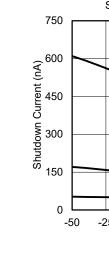


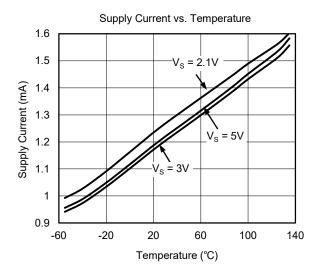


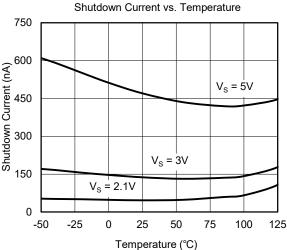


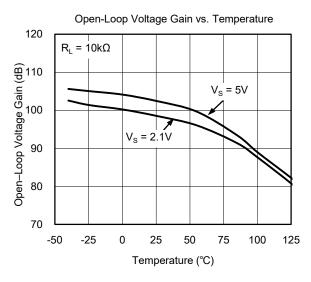

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

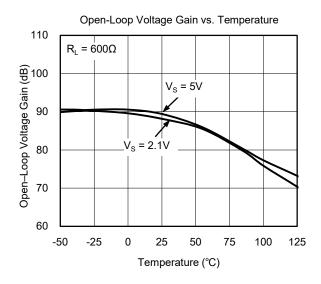


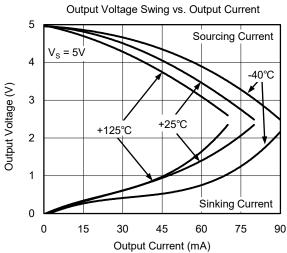


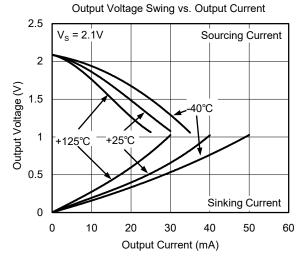


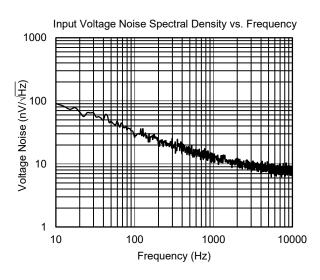

Time (200ns/div)

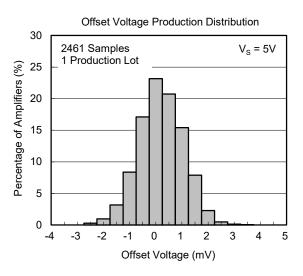









TYPICAL PERFORMANCE CHARACTERISTICS (continued)



APPLICATION INFORMATION

Driving Capacitive Loads

The SGM8605-1 can directly drive 4700pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

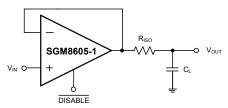


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting input with the output. C_{F} and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

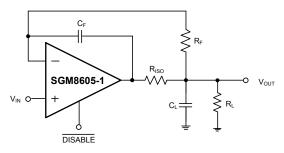


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power Supply Bypassing and Layout

The SGM8605-1 operates from either a single 2.1V to 5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

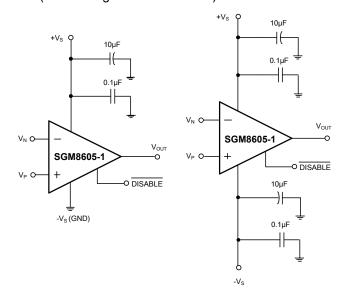


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGM8605-1 circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

APPLICATION INFORMATION

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

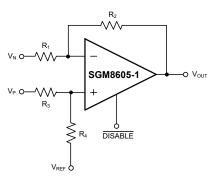


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

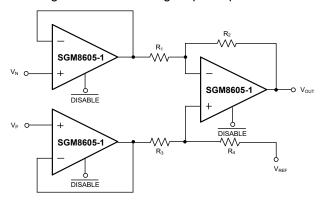


Figure 5. Instrumentation Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

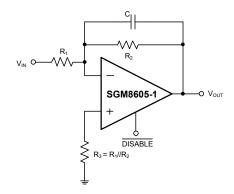
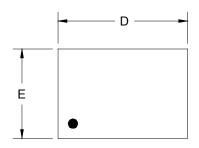
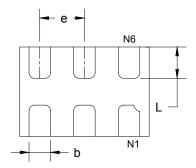


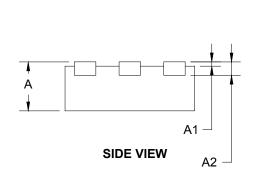
Figure 6. Active Low-Pass Filter

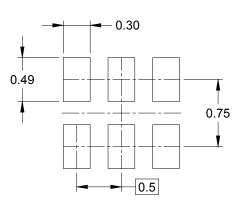
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (MARCH 2016) to REV.A

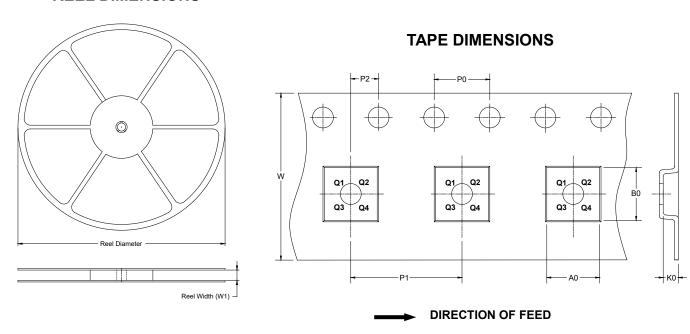
Page


PACKAGE OUTLINE DIMENSIONS UTDFN-1.45×1-6L



TOP VIEW

BOTTOM VIEW

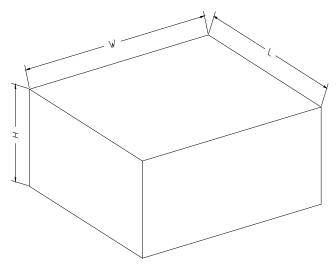


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.450	0.550	0.018	0.022	
A1	0.000	0.050	0.000	0.002	
A2	0.150	0.150 REF 0.006 REF		REF	
D	1.374	1.526	0.054	0.060	
E	0.924	1.076	0.036	0.042	
b	0.180	0.300	0.007	0.012	
е	0.500 TYP		0.020 TYP		
L	0.274	0.426	0.011	0.017	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
UTDFN-1.45×1-6L	7"	9.5	1.15	1.60	0.75	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18