

M62367GP

3 V Type 8-bit 8ch D/A Converter with Buffer Amplifiers

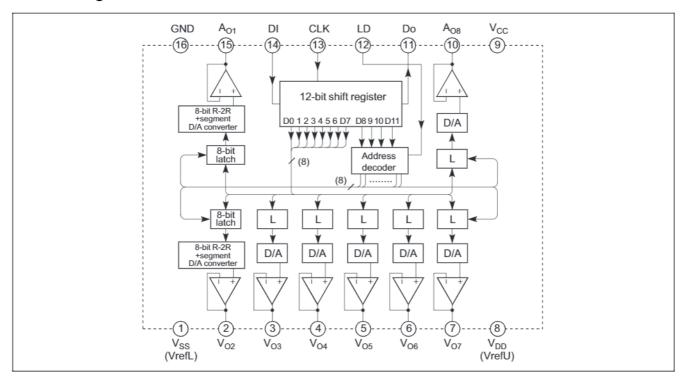
REJ03D0877-0300 Rev.3.00 Mar 25, 2008

Description

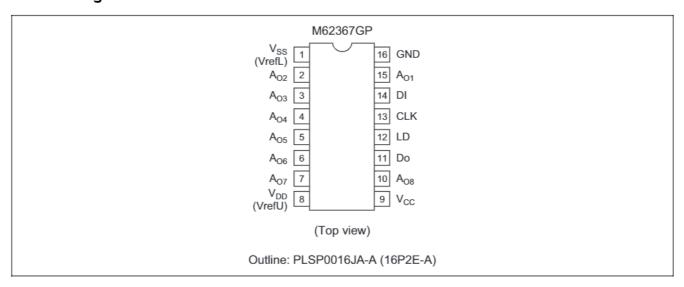
The M62367GP is a CMOS semiconductor IC has 8 channels of 8-bit D/A converter. It is operable with a low supply voltage between 2.7 to 3.6 V, and is easy to use due to serial data input, and 3-pin (DI, CLK, LD) connection with microcomputer.

The IC also contains D_0 pin terminal, enabling cascade connection, and therefore is suitable for automatic control in combination with a microcomputer.

Features

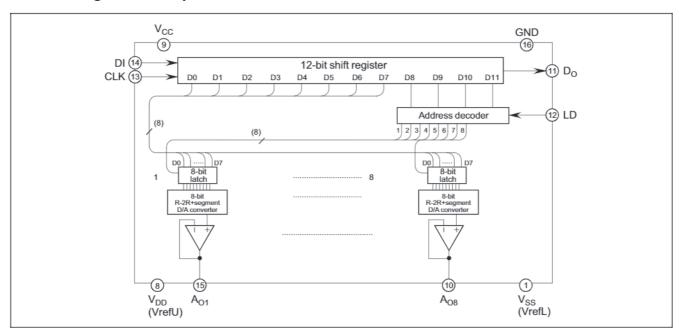

- Operable with a low voltage between 2.7 to 3.6 V
- 12-bit serial data input (connected via 3 pins: DI, CLK, LD)
- 8 channels of R-2R and segment type high-performance 8-bit D/A converters
- 8 buffer operational amplifiers with full swing of output voltage between V_{CC} and GND
- · High oscillation stability against the capacitive load of buffer operational amplifiers

Application


Digital/analog conversion in industrial or home-use electronic equipment.

Automatic control in combination with EEPROM and microcomputer (Substitute for conventional semi-fixed resistor).

Block Diagram


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
14	DI	Serial data input terminal to input 12-bit length serial data
11	Do	Terminal to output MSB data of 12-bit shift register
13	CLK	Shift clock input terminal. Input signal at DI pin is input to 12-bit shift register at rise of shift clock pulse
12	LD	When H-level signal is input to this terminal. The value stored in 12-bit shift register is loaded in decoder and D/A converter output register.
15	A ₀₁	8-bit D/A converter output terminal
2	A _{O2}	
3	A ₀₃	
4	A ₀₄	
5	A _{O5}	
6	A ₀₆	
7	A ₀₇	
10	A ₀₈	
9	Vcc	Power supply terminal
16	GND	GND terminal
8	V _{DD}	D/A converter upper reference voltage input terminal
1	V _{SS}	D/A converter lower reference voltage input terminal

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	Vcc	-0.3 to +7.0	V
Upper reference voltage of D/A converter	V _{DD}	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	V
Output voltage	Vo	-0.3 to V _{CC} + 0.3	V
Power dissipation	Pd	150	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

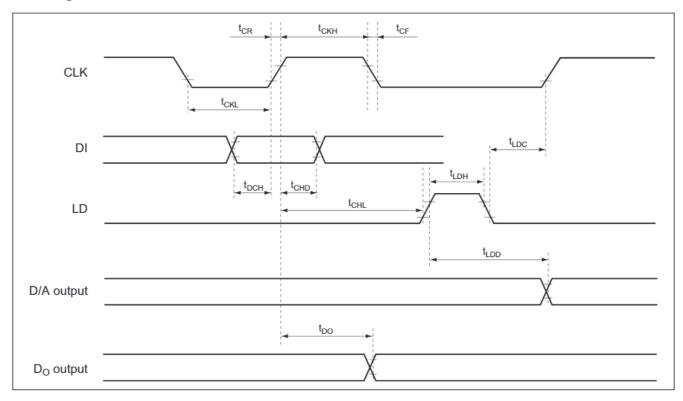
<Digital Part>

 $(V_{CC}, VrefU = +3 \ V \pm 10\%, V_{CC} \geq VrefU, GND, VrefL = 0 \ V, Ta = -20 \ to \ +85 ^{\circ}C, unless \ otherwise \ noted.)$

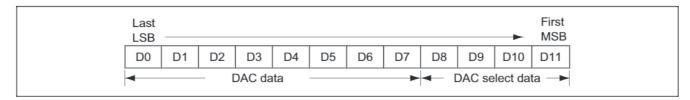
			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	Vcc	2.7	3.0	3.6	V	
Circuit current	Icc	_	0.6	2.0	mA	CLK = 1 MHz operation,
						$V_{CC} = 3 \text{ V}, I_{AO} = 0 \mu A$
Input leak current	I _{ILK}	-10	_	10	μΑ	V _{IN} = 0 to V _{CC}
Input low voltage	V _{IL}	_	_	0.2 V _{CC}	V	
Input high voltage	V _{IH}	0.8 V _{CC}	_	_	V	
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	V _{CC} - 0.4	_	_	V	I _{OH} = -400 μA

<Analog Part>

 $(V_{CC}, VrefU = +3 \ V \pm 10\%, V_{CC} \geq VrefU, GND, VrefL = 0 \ V, Ta = -20 \ to \ +85 ^{\circ}C, unless \ otherwise \ noted.)$


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Current dissipation	IrefU	_	0.6	1.5	mA	VrefU = 3 V, VrefL = 0 V
						Data condition: at maximum current
D/A converter upper	VrefU	0.7 V _{CC}	_	Vcc	V	Reference voltage cannot always
reference voltage range						be set to any value in this range,
D/A converter lower	VrefL	GND	_	0.3 V _{CC}	V	because it is restricted to the buffer
reference voltage range						amplifier output voltage range.
Buffer amplifier output	V _{AO}	0.1	_	V _{CC} - 0.1	V	$I_{AO} = \pm 100 \mu A$
driver voltage range		0.2	_	V _{CC} - 0.2	V	I _{AO} = +500 μA
						–200 μΑ
Buffer amplifier output	I _{AO}	-0.3	_	1	mA	Upper saturation voltage = 0.4 V
voltage range						Lower saturation voltage = 0.4 V
Differential nonlinearity	S _{DL}	-1.0	_	1.0	LSB	V _{CC} = 2.760 V
error						VrefU = 2.610 V
Nonlinearity error	S _L	-1.5	_	1.5	LSB	VrefL = 0.050 V (10 mV/LSB)
Zero code error	Szero	-2	_	2	LSB	Without load ($I_{AO} = \pm 0$)
Full scale error	S _{FULL}	-2	_	2	LSB	
Output capacitive load	Co	_	_	0.1	μF	
Buffer amplifier output	Ro	_	5	_	Ω	
impedance						

AC Characteristics

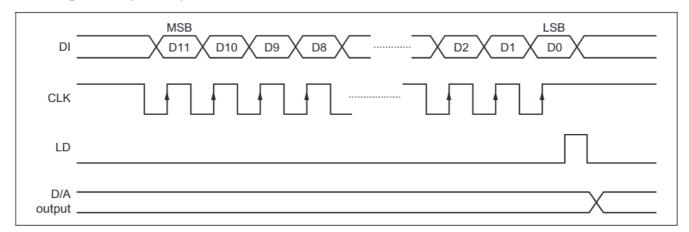

 $(V_{CC}, VrefU = +3 \ V \pm 10\%, V_{CC} \geq VrefU, GND, VrefL = 0 \ V, Ta = -20 \ to \ +85 ^{\circ}C, unless \ otherwise \ noted.)$

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	t _{CKH}	200	_	_	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}	_	_	200	ns	
Data setup time	t _{DCH}	30	_	_	ns	
Data hold time	t _{CHD}	60	_	_	ns	
LD setup time	t _{CHL}	200	_	_	ns	
LD hold time	t _{LDC}	100	_	_	ns	
LD "H" pulse duration time	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	C _L = 100 pF
D/A output setting time	t _{LDD}	_	_	300	μs	$C_L \ge 100 \text{ pF}, V_{AO}: 0.1 \leftrightarrow 2.6 \text{ V}$
						This time until the output becomes the final value of 1/2 LSB

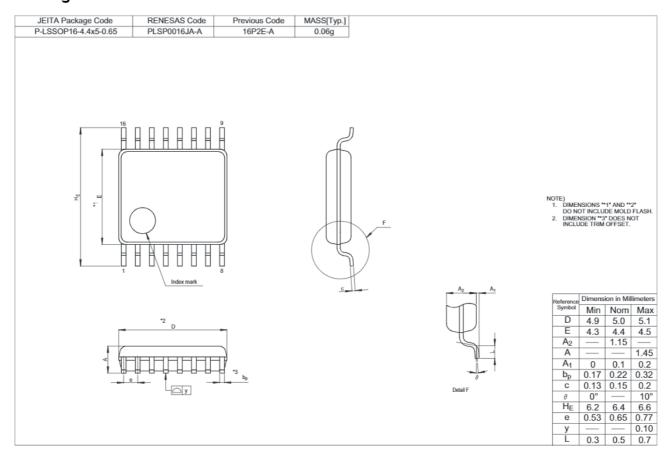
Timing Chart

Digital Data Format

DAC Data


D0	D1	D2	D 3	D4	D 5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL
:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL
1	1	1	1	1	1	1	1	VrefU

Note: $VrefU = V_{DD}$, $VrefL = V_{SS}$


DAC Select Data

D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	A _{O1} selection
0	0	1	0	A ₀₂ selection
0	0	1	1	A _{O3} selection
0	1	0	0	A ₀₄ selection
0	1	0	1	A ₀₅ selection
0	1	1	0	A ₀₆ selection
0	1	1	1	A ₀₇ selection
1	0	0	0	A _{O8} selection
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property rights or any other rights or Renesas or any third party with respect to the information in this document nor grants any license to any intellectual property or any other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document.

- cestruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com.)

 Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

 When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

 With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and transportation and transportation control, ae

- applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas semiconductor products, or if you have any other inquiries.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.

Unit 204, 205, AZIAČenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

-		
-		
-		
-		
-		
-		
L		