1.1mA, 11MHz, Low Noise, Rail-to-Rail I/O **□ ImicRO** Tiny Package, CMOS Operational Amplifier

GENERAL DESCRIPTION

The SGM8603 (single with shutdown) is a low noise, low voltage and low power operational amplifier that can be designed into a wide range of applications. The SGM8603 has a high gain-bandwidth product of 11MHz, a slew rate of 8.5V/µs, and a quiescent current of 1.1mA at 5V. The SGM8603 has a power-down disable feature that reduces the supply current to less than 1μA.

The SGM8603 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 4.9mV for SGM8603. The operating supply range is from 2.1V to 5.5V.

The SGM8603 is available in Green TDFN-2×2-6L package. It is specified over the extended industrial temperature range (-40°C to +125°C).

FEATURES

- Rail-to-Rail Input and Output 1.1mV Typical Vos
- High Gain-Bandwidth Product: 11MHz
- High Slew Rate: 8.5V/µs
- Settling Time to 0.1% with 2V Step: 0.21µs

SGM8603

- Overload Recovery Time: 0.6µs
- Low Noise: 8.5nV/VHz at 10kHz
- Supply Voltage Range: 2.1V to 5.5V
- Input Common Mode Voltage Range:
 - -0.1V to +5.6V with $V_S = 5.5V$
- Low Power
 - 1.1mA Typical Supply Current Less than 1µA when Disabled
- -40°C to +125°C Operating Temperature Range
- Available in Green TDFN-2×2-6L Package

APPLICATIONS

Sensors

Audio

Active Filters

A/D Converters

Communications

Test Equipment

Cellular and Cordless Phones

Laptops and PDAs

Photodiode Amplification

Battery-Powered Instrumentation

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM8603	TDFN-2×2-6L	-40°C to +125°C	SGM8603XTDI6G/TR	8603 XXXX	Tape and Reel, 3000	

NOTE: XXXX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

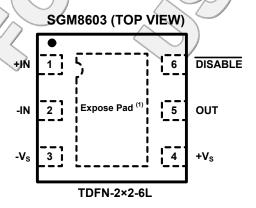
ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S
Input Common Mode Voltage Range
(- V_S) - 0.3 V to (+ V_S) + 0.3 V
Storage Temperature Range65°C to +150°C
Junction Temperature150°C
Lead Temperature (Soldering 10sec)
ESD Susceptibility
HBM4000V/
MM
CDM1000V

RECOMMENDED OPERATING CONDITIONS

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.


OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

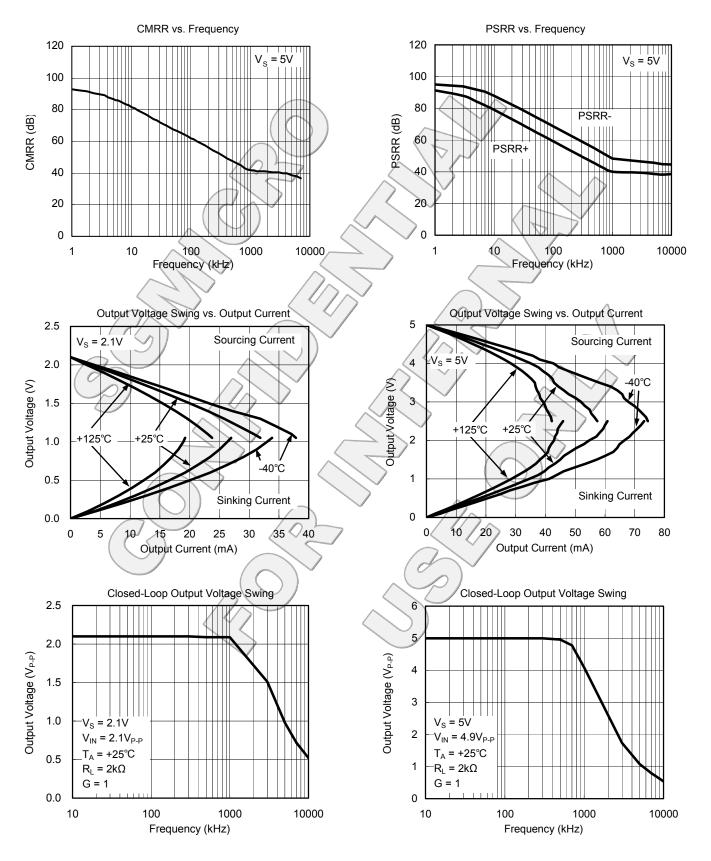
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATION

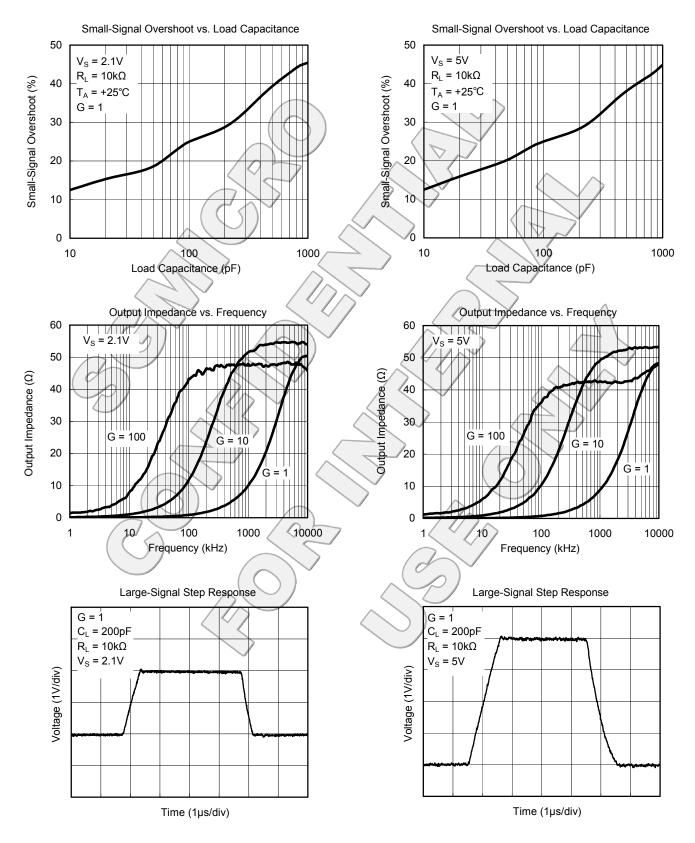
NOTE 1: Exposed pad can be connected to -V_S or left floating.

ELECTRICAL CHARACTERISTICS

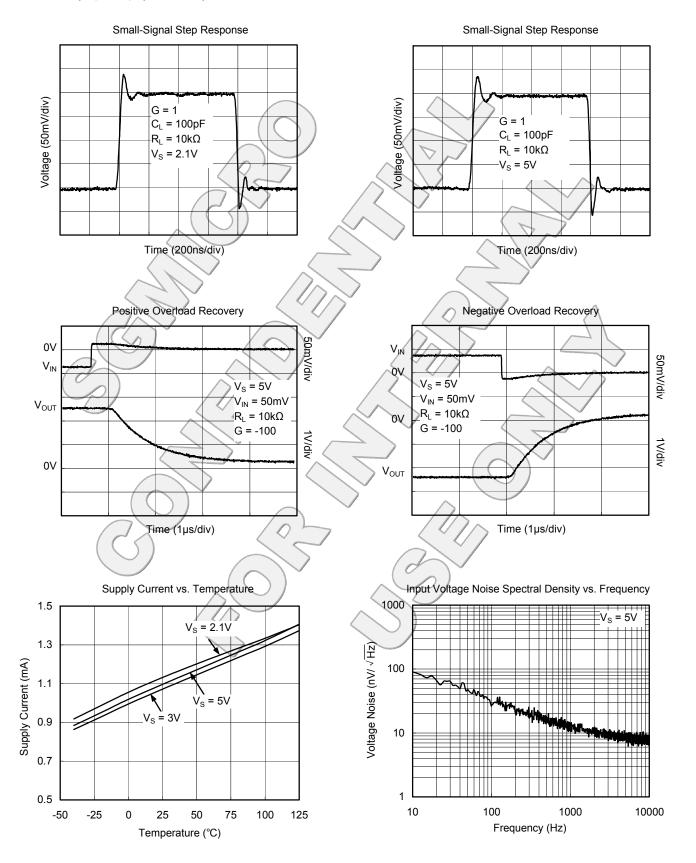
(At $T_A = +25^{\circ}C$, $V_S = +5V$, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.)

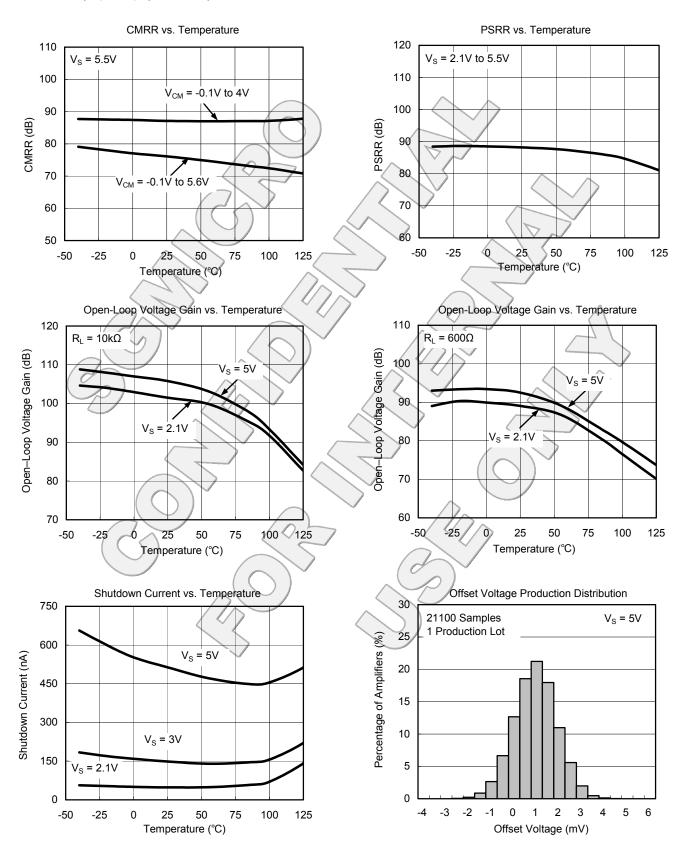

		SGM8603						
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
FANAMETER	CONDITIONS	+25℃	+25℃	-40℃ to 85℃	-40°C to 125°C	UNITS	MIN/ MAX	
INPUT CHARACTERISTICS				$\overline{}$				
Input Offset Voltage (Vos)		1.1	4.9	5.1	5.4	mV	MAX	
Input Bias Current (I _B)						рА	TYP	
Input Offset Current (I _{OS})		1\	~			pА	TYP	
Input Common Mode Voltage Range (V _{CN}	$V_S = 5.5V$	-0.1 to +5.6			\wedge	V	TYP	
Common Mode Rejection Ratio (CMRR)	$V_{\rm S} = 5.5 \text{V}, V_{\rm CM} = -0.1 \text{V to 4V}$	83	67	66	65	dB	MIN	
Common wode Rejection Ratio (Civil Rty)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	77	61	60	56	dB	MIN	
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_O = 0.15V$ to 4.85V	91	85	73	62	dB	MIN	
Open-Loop voltage Gain (AoL)	$R_L = 10k\Omega$, $V_O = 0.05V$ to 4.95V	105	97	84	69	dB	MIN	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)	\rangle	2.7		7]		μV/°C	TYP	
OUTPUT CHARACTERISTICS								
Output Voltage Swing from Rail	$R_L = 600\Omega$	78	102	123	144	_ mV	MAX	
Output voltage Swing Irom Rail	$R_L = 10k\Omega$	7 <	12	/ 14	20	mV	MAX	
Output Current (I _{OUT})		64	52	25	19/	mA	MIN	
Closed-Loop Output Impedance	f = 1MHz, G = 1/	8.5				Q	TYP	
POWER-DOWN DISABLE						\triangle		
Turn-On Time		(1.1				μs	TYP	
Turn-Off Time		0.3				μs	TYP	
DISABLE Voltage-Off			8.0			V	MAX	
DISABLE Voltage-On			2			V	MIN	
POWER SUPPLY								
Operating Voltage Range			2.1	2.1	2.1	V	MIN	
Operating Voltage Range			5.5	5.5	5.5	V	MAX	
Power Supply Rejection Ratio (PSRR)	$V_s = +2.1V \text{ to } +5.5V,$ $V_{CM} = (-V_S) + 0.5V$	80	68	67	64	dB	MIN	
Quiescent Current (Ia)	I _{OUT} = 0	1.1	1.4	1.6	1.75	mA	MAX	
Supply Current when Disabled		0.5	8	9	10	μΑ	MAX	
DYNAMIC PERFORMANCE)					
Gain-Bandwidth Product (GBP)	$R_{\rm L}$ = 10k Ω	11				MHz	TYP	
Phase Margin (φ _O)		62				0	TYP	
Full Power Bandwidth (BW _P)	<1% distortion	400				kHz	TYP	
Slew Rate (SR)	G= 1, 2V output step	8.5				V/µs	TYP	
Settling Time to 0.1% (t _S)	G = 1, 2V output step	0.21				μs	TYP	
Overload Recovery Time	V _{IN} × Gain = V _S	0.6				μs	TYP	
NOISE PERFORMANCE	•				•			
	f = 1kHz	12.5				nV/√Hz	TYP	
Voltage Noise Density (e _n)	f = 10kHz	8.5				nV/ _{√Hz}	TYP	

ELECTRICAL CHARACTERISTICS


(At $T_A = +25^{\circ}C$, $V_S = +2.1V$, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.)

				SGM	8603			
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATU				RE	
TANAMETER	CONDITIONS	+25℃	+25℃	-40℃ to 85℃	-40℃ to 125℃	UNITS	MIN/ MAX	
INPUT CHARACTERISTICS				$\overline{}$				
Input Offset Voltage (Vos)		1_	5.2	5.5	5.6	mV	MAX	
Input Bias Current (I _B)						pА	TYP	
Input Offset Current (I _{OS})		_ 1\ \				pА	TYP	
Input Common Mode Voltage Range (V _{CM})	V _S = 2.1V	-0.1 to +2.2	>		\wedge	V	TYP	
Common Mode Rejection Ratio (CMRR)	$V_S = 2.1 \text{V}, V_{CM} = -0.1 \text{V to } 0.6 \text{V}$	77	60	59	51	dB	MIN	
Common wode Rejection Ratio (CWRN)	$V_S = 2.1V$, $V_{CM} = -0.1V$ to 2.2V	70	55	53	49	dB	MIN	
Open-Loop Voltage Gain (A _{OL})	$R_L \neq 600\Omega, V_O = 0.15V \text{ to } 1.95V$	88	78	68	58	dB	MIN	
Open-Loop voltage Gain (AoL)	$R_L = 10k\Omega, V_O = 0.05V \text{ to } 2.05V$	100	89	82	67	dB	MIN	
Input Offset Voltage Drift (ΔV _{QS} /Δ _T)		2.9		7 //		μV/°C	TYP	
OUTPUT CHARACTERISTICS		l .						
Outrat Vallage Outra from Pall	R _L = 600Ω	38	50	59	66	⊿ mV	MAX	
Output Voltage Swing from Rail	$R_L = 10k\Omega$	4 (9	/ 11	12	mV	MAX	
Output Current (I _{OUT})		28	23	17	14/	mA.	MIN	
Closed-Loop Output Impedance	f = 1MHz, G = 1/	9.3				Ω	TYP	
POWER-DOWN DISABLE						\wedge		
Turn-On Time	/	7.7		/		μs	TYP	
Turn-Off Time		0.5			7 / /	μs	TYP	
DISABLE Voltage-Off			0.4			V	MAX	
DISABLE Voltage-On			1.8			V	MIN	
POWER SUPPLY			(
Quiescent Current (IQ)	I _{OUT} = 0	1.1	1.4	1.6	1.75	mA	MAX	
Supply Current when Disabled		0.5	8	9	10	μΑ	MAX	
DYNAMIC PERFORMANCE			1/2					
Gain-Bandwidth Product (GBP)	$R_L = 10k\Omega$	11.5	4//			MHz	TYP	
Phase Margin (φ ₀)		59	/			0	TYP	
Full Power Bandwidth (BW _F)	< 1% distortion	400				kHz	TYP	
Slew Rate (SR)	G = 1, 2V output step	8				V/µs	TYP	
Settling Time to 0.1% (t _s)	G = 1, 2V output step	0.23				μs	TYP	
Overload Recovery Time	V _{IN} × Gain = V _S	$\bigcirc 1$				μs	TYP	
NOISE PERFORMANCE						'		
Voltago Noiso Donsity (a.)	f = 1kHz	15				nV/ _{√Hz}	TYP	
Voltage Noise Density (e _n)	f = 10kHz	9				nV/√Hz	TYP	


At $T_A = +25^{\circ}C$, $V_{CM} = Vs/2$, $R_L = 600\Omega$, unless otherwise noted.


At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

APPLICATION INFORMATION

Driving Capacitive Loads

The SGM8603 can directly drive 4700pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

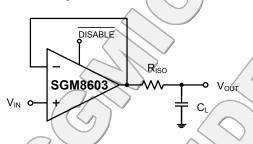


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting input with the output. C_{F} and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

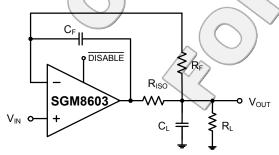


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM8603 operates from either a single +2.1V to +5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interfacing).

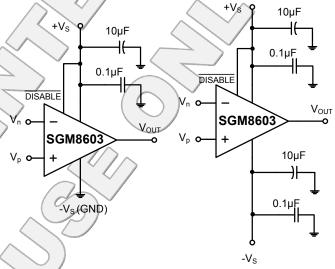


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGM8603 circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_p - V_n) \times R_2/R_1 + V_{REF}$.

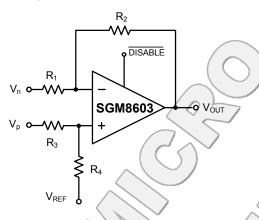


Figure 4. Differential Amplifier

Low-Pass Active Filter

The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

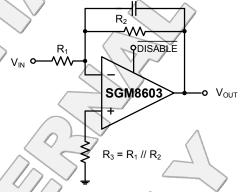
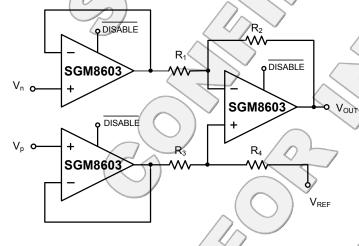
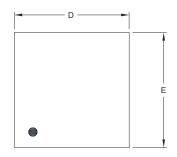
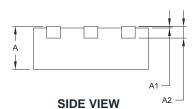


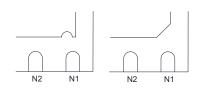
Figure 6. Low-Pass Active Filter

The circuit in Figure 5 performs the same function as

Instrumentation Amplifier

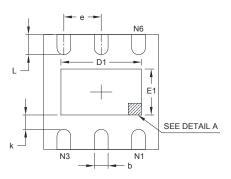
that in Figure 4 but with a high input impedance.

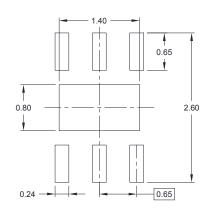





Figure 5. Instrumentation Amplifier

PACKAGE OUTLINE DIMENSIONS TDFN-2×2-6L

TOP VIEW

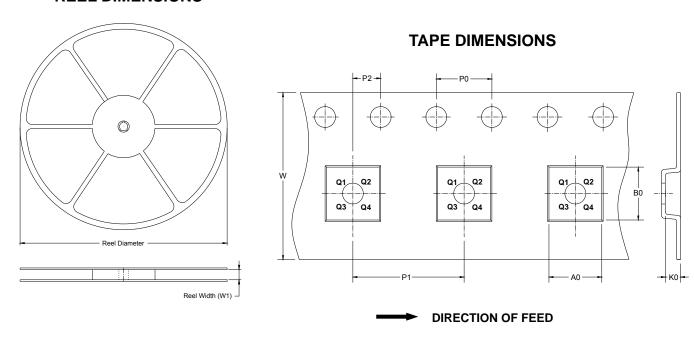



DETAIL A

Pin #1 ID and Tie Bar Mark Options

NOTE: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

BOTTOM VIEW

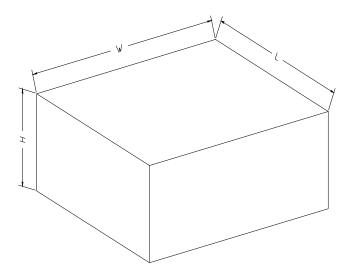


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches			
	MIN	MIN MAX		MAX		
Α	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.203	0.203 REF		REF		
D	1.900	2.100	0.075	0.083		
D1	1.100	1.450	0.043	0.057		
E	1.900	2.100	0.075	0.083		
E1	0.600	0.850	0.024	0.034		
k	0.200	0.200 MIN		3 MIN		
b	0.180	0.300	0.007	0.012		
е	0.650 TYP		0.026	TYP		
L	L 0.250 0.450		0.010	0.018		

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-2×2-6L	7"	9.5	2.30	2.30	1.10	4.00	4.00	2.00	8.00	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Type Length (mm)		Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18

REVISION HISTORY

VERSION	DATE	PAGE	LOCATION	REMARK