

PART NUMBER

54F163^B2A

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

INCH-POUND
MIL-M-38510/343B
7 April 2004
SUPERSEDING
MIL-M-38510/343A
21 September 1989

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCED SCHOTTKY TTL, BINARY COUNTERS, MONOLITHIC SILICON

Reactivated after 7 April 2004 and may be used for either new or existing design acquisition.

This specification is approved for use by all Departments
and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 Scope. This specification covers the detail requirements for monolithic silicon, advanced Schottky TTL, binary counter microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 Device types. The device types are as follows:

<u>Device type</u>	<u>Circuit</u>
01	Synchronous 4 - bit binary counter (asynchronous master reset)
02	Synchronous 4 - bit binary counter (synchronous reset)
03	Synchronous 4 - bit up/down binary counter (with mode control)
04	Synchronous 4 - bit up/down binary counter (asynchronous master reset)

1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.

1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

<u>Outline letter</u>	<u>Descriptive designator</u>	<u>Terminals</u>	<u>Package style</u>
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDIP2-F16 or CDIP3-F16	16	Flat pack
X	CQCC2-N20 20		Square leadless chip carrier
2	CQCC1-N20 20		Square leadless chip carrier

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to bipolar@dsc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil .

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V dc to +7.0 V dc
Input voltage range	-1.2 V dc at -18 mA to +7.0 V dc
Storage temperature range	-65° to +150°C
Maximum power dissipation, per device (P_D) <u>1/</u>	
Device types 01, 02, 03, 04	303 mW
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction to case (θ_{JC}):	(See MIL-STD-1835)
Junction temperature (T_J) <u>2/</u>	175°C

1.4 Recommended operating conditions.

Supply voltage (V_{CC})	4.5 V dc minimum to 5.5 V dc maximum
Minimum high level input voltage (V_{IH})	2.0 V dc
Maximum low level input voltage (V_{IL})	0.8 V dc
Normalized fanout (each output) <u>3/</u>	
Low logic level	33 maximum
High logic level	50 maximum
Case operating temperature range (T_C)	-55° to +125°C
Width of clock pulse, high ($\overline{PE} = \text{High}$)	
Device types 01, 02	9.0 ns minimum
Width of clock pulse, high ($\overline{PE} = \text{Low}$)	
Device types 01, 02	7.0 ns minimum
Width of clock pulse, low ($\overline{PE} = \text{High}$)	
Device types 01, 02	8.0 ns minimum
Width of clock pulse, low ($\overline{PE} = \text{Low}$)	
Device types 01, 02	9.0 ns minimum
Width of master reset pulse, low ($\overline{MR} = \text{low}$)	
Device type 01	9.5 ns minimum
Width of \overline{PL} pulse low:	
Device type 03	8.5 ns minimum
Device type 04	7.5 ns minimum
Width of clock pulse low:	
Device type 03	7.0 ns minimum
Width of CPU or CPD pulse low	
Device type 04	7.0 ns minimum
Width of master reset pulse, high ($\overline{MR} = \text{high}$)	
Device type 04	6.0 ns minimum
Width of CPU or CPD pulse, low (change of direction)	
Device type 04	12.0 ns minimum
Setup time P_n high to clock pulse	
Device types 01, 02	5.5 ns minimum
Setup time P_n low to clock pulse	
Device types 01, 02	5.5 ns minimum
Setup time \overline{PE} or \overline{SR} high to clock pulse	
Device types 01, 02	13.5 ns minimum
Setup time \overline{PE} or \overline{SR} low to clock pulse	
Device types 01, 02	10.5 ns minimum

1/ Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).2/ Maximum junction temperature shall not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.3/ The device shall fanout in both high and low levels to the specified number of inputs of the same device type as that being tested.

Setup time CEP or CET high to clock pulse	
Device types 01, 02	13.0 ns minimum
Setup time CEP or CET low to clock pulse	
Device types 01, 02	7.5 ns minimum
Setup time \bar{U}/D high to clock pulse	
Device type 03	12.0 ns minimum
Setup time \bar{U}/D low to clock pulse	
Device type 03	12.0 ns minimum
Setup time P_n high to \bar{PL}	
Device types 03, 04	6.0 ns minimum
Setup time P_n low to \bar{PL}	
Device types 03, 04	6.0 ns minimum
Setup time \bar{CE} low to clock pulse	
Device type 03	10.5 ns minimum
Hold time P_n high to clock pulse	
Device types 01, 02	2.5 ns minimum
Hold time P_n low to clock pulse	
Device types 01, 02	2.5 ns minimum
Hold time \bar{PE} or \bar{SR} high to clock pulse	
Device types 01, 02	2.0 ns minimum
Hold time \bar{PE} or \bar{SR} low to clock pulse	
Device types 01, 02	0.0 ns minimum
Hold time P_n high to \bar{clock} pulse	
Device types 01, 02	2.0 ns minimum
Hold time \bar{U}/D high to \bar{clock} pulse	
Device type 03	0.0 ns minimum
Hold time \bar{U}/D low to \bar{clock} pulse	
Device type 03	0.0 ns minimum
Hold time \bar{CE} high to \bar{clock} pulse	
Device type 03	0.0 ns minimum
Recovery time master reset to $clock$ pulse	
Device type 01	6.0 ns minimum
Recovery time \bar{PL} to $clock$ pulse	
Device type 03	7.5 ns minimum
Recovery time master reset to CPU or CPD	
Device type 04	4.5 ns minimum
Recovery time \bar{PL} to CPU or CPD	
Device type 04	8.0 ns minimum

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications and Standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at <http://assist.daps.dla.mil/quicksearch/> or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 Terminal connections. The terminal connections shall be as specified on figures 1.

3.3.2 Logic diagram. The logic diagram shall be as specified on figure 2.

3.3.3 Truth table. The truth table shall be as specified on figure 3.

3.3.4 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535.

4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 Technology Conformance Inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.
- c. Subgroups 7 and 8 shall verify the truth tables herein.

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions $-55^{\circ}\text{C} \leq T_C \leq +125^{\circ}\text{C}$	Device type	Limits		Unit
				Min	Max	
High level output voltage	V_{OH}	$V_{CC} = 4.5 \text{ V}$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -1.0 \text{ mA}$, $V_{IH} = 2.0 \text{ V}$	All	2.5		V
Low level output voltage	V_{OL}	$V_{CC} = 4.5 \text{ V}$, $I_{OL} = 20 \text{ mA}$, $V_{IH} = 2.0 \text{ V}$, $V_{IL} = 0.8 \text{ V}$	All		0.5	V
Input clamp voltage	V_{IC}	$V_{CC} = 4.5 \text{ V}$, $I_{IN} = -18 \text{ mA}$, $T_C = 25^{\circ}\text{C}$	All		-1.2	V
High level input current	I_{IH1}	$V_{CC} = 5.5 \text{ V}$, $V_{IN} = 2.7 \text{ V}$	01, 02		40	μA
			03, 04		20	
Low level input current	I_{IL1}	$V_{CC} = 5.5 \text{ V}$, $V_{IL} = 0.5 \text{ V}$	01, 02	-0.0	-0.6	mA
			03, 04	-.03	-0.6	
	I_{IL2}	$V_{CC} = 5.5 \text{ V}$, $V_{IL} = 0.5 \text{ V}$	01, 02	-0.0	-1.2	mA
			03, 04	-.09	-1.8	
Short circuit output current 1/	I_{OS}	$V_{CC} = 5.5 \text{ V}$, $V_{OS} = 0.0 \text{ V}$	All	-60	-150	mA
Supply current	I_{CC}	$V_{CC} = 5.5 \text{ V}$	All		55	mA
Maximum count frequency	f_{MAX}	$V_{CC} = 5.0 \text{ V}$	All	70		MHz
Propagation delay time, CP to Qn	t_{PLH1}	$V_{CC} = 5.0 \text{ V}$, $C_L = 50 \text{ pF} \pm 10\%$, See figure 4	03	3.0	9.5	ns
CP to Qn	t_{PHL1}		03	5.0	13.5	ns
CPU, CPD to Qn	t_{PLH1}		04	3.0	10.0	ns
CPU, CPD to Qn	t_{PHL1}		04	5.5	14.0	ns
CP to Qn, $\overline{PE} = (\text{high})$	t_{PLH1}		01, 02	2.0	9.0	ns
CP to Qn, $\overline{PE} = (\text{high})$	t_{PHL1}		01, 02	3.5	11.5	ns
CP to TC	t_{PLH2}		03	5.0	16.5	ns
CP to TC	t_{PHL2}		03	4.5	13.5	ns
CPU to \overline{TCU}	t_{PLH2}		04	2.5	10.5	ns
CPU to \overline{TCU}	t_{PHL2}		04	3.0	9.5	ns

1/ Not more than one output should be shorted at a time.

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions $-55^{\circ}\text{C} \leq T_C \leq +125^{\circ}\text{C}$	Device type	Limits		Unit
				Min	Max	
Propagation delay time, $\overline{\text{PL}}$ to Qn	t_{PLH3}	$V_{\text{CC}} = 5.0 \text{ V}$, $C_L = 50 \text{ pF} \pm 10\%$, See figure 4	04	4.0	13.5	ns
$\overline{\text{PL}}$ to Qn	t_{PHL3}		04	5.0	15.0	ns
CPD to $\overline{\text{TCD}}$	t_{PLH4}		04	2.5	10.5	ns
CPD to $\overline{\text{TCD}}$	t_{PHL4}		04	3.0	9.5	ns
CP to Qn , $\overline{\text{PE}} = (\text{low})$	t_{PLH2}		01, 02	2.0	10.0	ns
CP to Qn , $\overline{\text{PE}} = (\text{low})$	t_{PHL2}		01, 02	3.0	10.0	ns
CP to $\overline{\text{RC}}$	t_{PLH3}		03	3.0	11.5	ns
CP to $\overline{\text{RC}}$	t_{PHL3}		03	3.0	12.5	ns
CP to TC	t_{PLH3}		01, 02	4.5	16.5	ns
CP to TC	t_{PHL3}		01, 02	4.0	18.5	ns
Pn to Qn	t_{PLH4}		03	2.0	9.0	ns
Pn to Qn	t_{PHL4}		03	6.0	16.0	ns
Pn to Qn	t_{PLH5}		04	1.5	8.5	ns
Pn to Qn	t_{PHL5}		04	6.0	16.5	ns
CET to TC	t_{PLH4}		01, 02	2.5	9.0	ns
CET to TC	t_{PHL4}		01, 02	2.5	9.0	ns
$\overline{\text{CE}}$ to $\overline{\text{RC}}$	t_{PLH5}		03	3.0	9.0	ns
$\overline{\text{CE}}$ to $\overline{\text{RC}}$	t_{PHL5}		03	3.0	9.0	ns
$\overline{\text{MR}}$ to Qn	t_{PHL5}		01	5.5	14.0	ns
$\overline{\text{MR}}$ to TC	t_{PHL6}		01	4.5	14.0	ns
$\overline{\text{PL}}$ to Qn	t_{PLH6}		03	5.0	13.0	ns
$\overline{\text{PL}}$ to Qn	t_{PHL6}		03	5.5	14.5	ns

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions $-55^{\circ}\text{C} \leq T_C \leq +125^{\circ}\text{C}$	Device type	Limits		Unit
				Min	Max	
Propagation delay time, MR to $\overline{\text{TCU}}$	$t_{\text{PLH}6}$	$V_{\text{CC}} = 5.0 \text{ V}$, $C_L = 50 \text{ pF} \pm 10\%$, See figure 4	04	5.0	15.0	ns
MR to $\overline{\text{TCD}}$	$t_{\text{PHL}6}$		04	5.0	16.0	ns
$\overline{\text{U/D}}$ to $\overline{\text{RC}}$	$t_{\text{PLH}7}$		03	7.0	22.5	ns
$\overline{\text{U/D}}$ to $\overline{\text{RC}}$	$t_{\text{PHL}7}$		03	5.5	14.0	ns
MR to Qn	$t_{\text{PHL}11}$		04	5.0	16.0	ns
$\overline{\text{U/D}}$ to TC	$t_{\text{PLH}8}$		03	4.0	13.5	ns
$\overline{\text{U/D}}$ to TC	$t_{\text{PHL}8}$		03	4.0	12.5	ns
$\overline{\text{PL}}$ to $\overline{\text{TCU}}$	$t_{\text{PLH}7}$		04	6.0	18.5	ns
$\overline{\text{PL}}$ to $\overline{\text{TCU}}$	$t_{\text{PHL}7}$		04	6.0	17.5	ns
$\overline{\text{PL}}$ to $\overline{\text{TCD}}$	$t_{\text{PLH}8}$		04	6.0	18.5	ns
$\overline{\text{PL}}$ to $\overline{\text{TCD}}$	$t_{\text{PHL}8}$		04	6.0	17.5	ns
Pn to $\overline{\text{TCU}}$	$t_{\text{PLH}9}$		04	5.0	16.5	ns
Pn to $\overline{\text{TCU}}$	$t_{\text{PHL}9}$		04	4.5	16.5	ns
Pn to $\overline{\text{TCD}}$	$t_{\text{PLH}10}$		04	5.0	16.5	ns
Pn to $\overline{\text{TCD}}$	$t_{\text{PHL}10}$		04	4.5	16.5	ns
MR to Qn	$t_{\text{PHL}11}$		04	5.0	16.0	ns

TABLE II. Electrical test requirements.

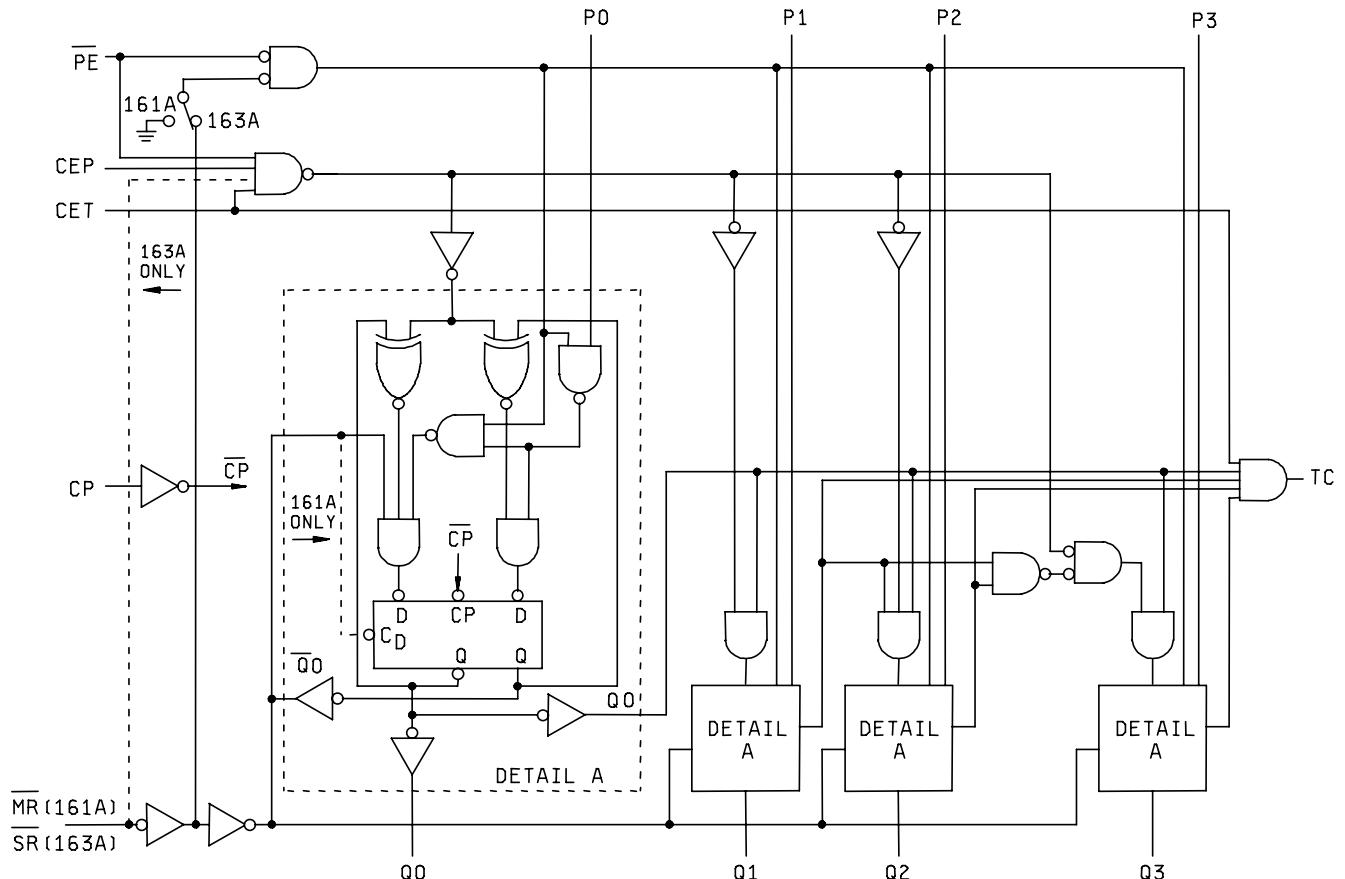
MIL-PRF-38535 test requirements	Subgroups (see table III)	
	Class S devices	Class B devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 7, 8, 9, 10, 11	N/A
Group C end-point electrical parameters	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

*PDA applies to subgroup 1.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.


4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 Methods of inspection. Methods of inspection shall be specified as follows:

4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

Terminal number	Device type 01		Device type 2		Device type 03		Device type 04	
	Case E and F	Case X and 2	Case E and F	Case X and 2	Case E and F	Case X and 2	Case E and F	Case X and 2
1	MR	NC	SR	NC	P1	NC	P1	NC
2	CP	MR	CP	SR	Q1	P1	Q1	P1
3	P0	CP	P0	CP	Q0	Q1	Q0	Q1
4	P1	P0	P1	P0	CE	Q0	CPD	Q0
5	P2	P1	P2	P1	U/D	CE	CPU	CPD
6	P3	NC	P3	NC	Q2	NC	Q2	NC
7	CEP	P2	CEP	P2	Q3	U/D	Q3	CPU
8	GND	P3	GND	P3	GND	Q2	GND	Q2
9	PE	CEP	PE	CEP	P3	Q3	P3	Q3
10	CET	GND	CET	GND	P2	GND	P2	GND
11	Q3	NC	Q3	NC	PL	NC	PL	NC
12	Q2	PE	Q2	PE	TC	P3	TCU	P3
13	Q1	CET	Q1	CET	RC	P2	TCD	P2
14	Q0	Q3	Q0	Q3	CP	PL	MR	PL
15	TC	Q2	TC	Q2	P0	TC	P0	TCU
16	V _{cc}	NC						
17		Q1		Q1		RC		TCD
18		Q0		Q0		CP		MR
19		TC		TC		P0		P0
20		V _{cc}		V _{cc}		V _{cc}		V _{cc}

FIGURE 1. Terminal connections.

Device types 01 and 02FIGURE 2. Logic diagram.

Device type 03

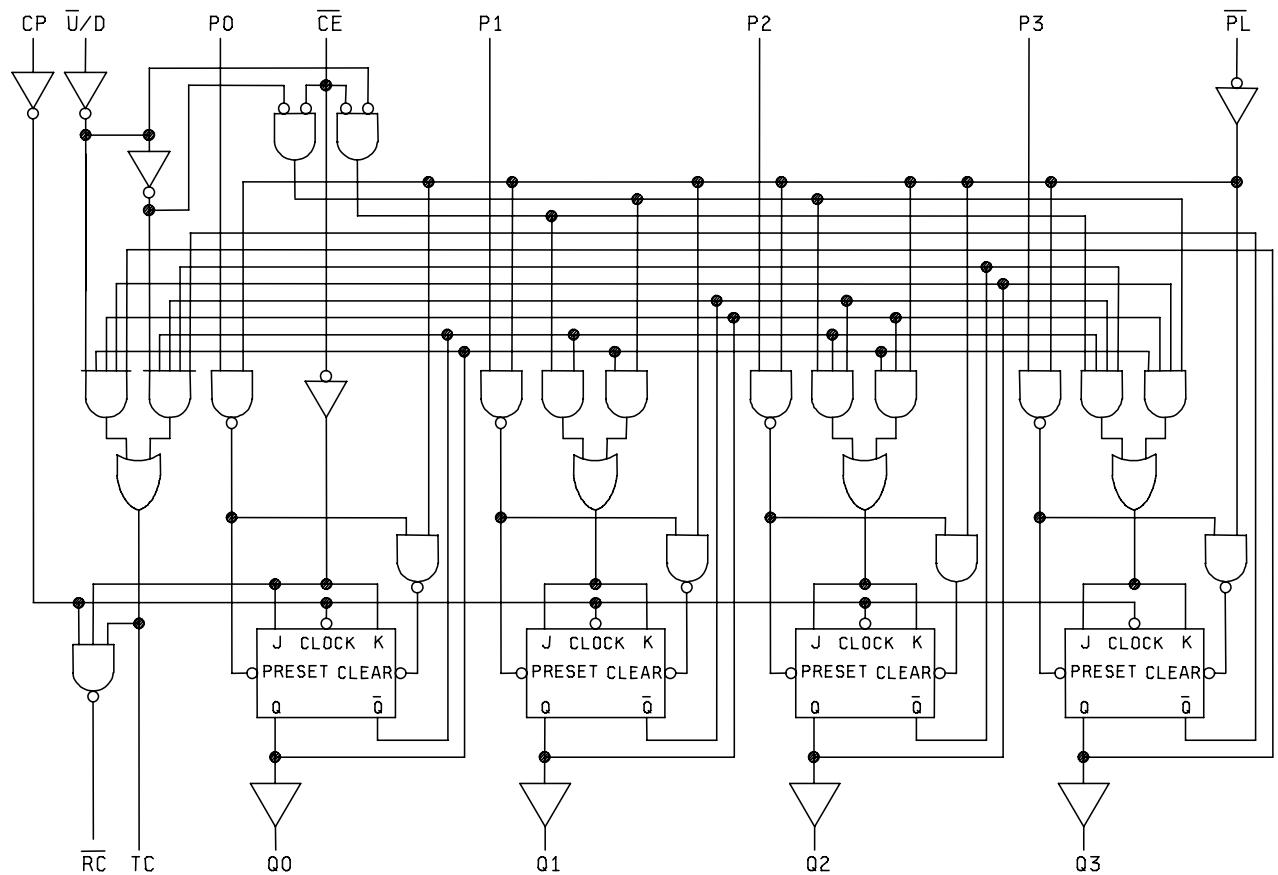


FIGURE 2. Logic diagram - Continued.

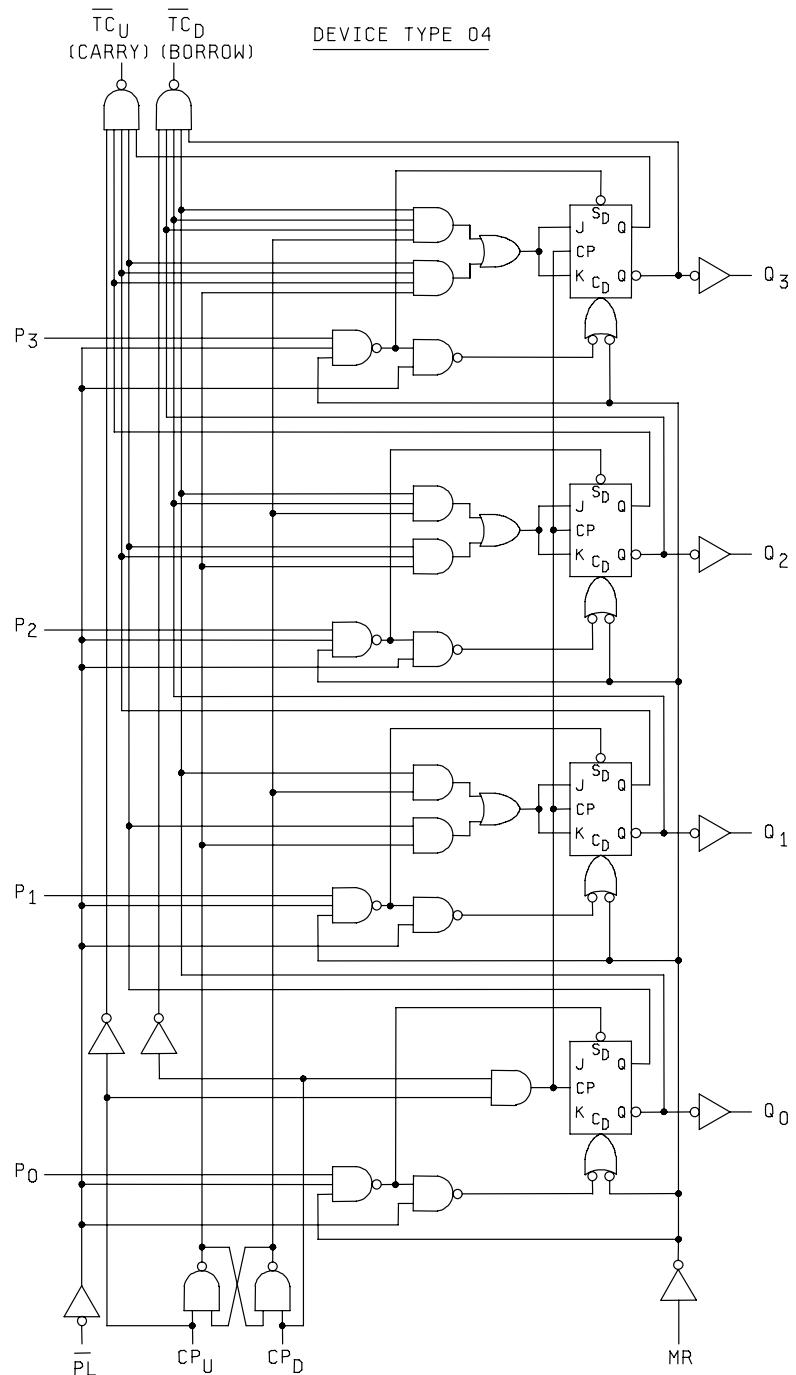


FIGURE 2. Logic diagram - Continued.

Device types 01 and 02

Mode select table

* \overline{SR}	\overline{PE}	CET	CEP	Action on the rising clock edge (\sqcup)
L	X	X	X	Reset (clear)
H	L	X	X	Load (Pn - Qn)
H	H	H	H	Count (increment)
H	H	L	X	No change (hold)
H	H	X	L	No change (hold)

* For F163A only

H = High voltage level

L = Low voltage level

X = Immortal

Device type 03

Mode select table

Inputs				Mode
\overline{PL}	\overline{CE}	\overline{U}/D	CP	
H	L	L	\sqcup	Count up
H	L	H	\sqcup	Count down
L	X	X	X	Preset (asyn)
H	H	X	X	No change (hold)

RC truth table

Inputs			Output
\overline{CE}	TC*	CP	\overline{RC}
L	H	\sqcup	\sqcup
H	X	X	H
X	L	X	H

*TC is generated internally

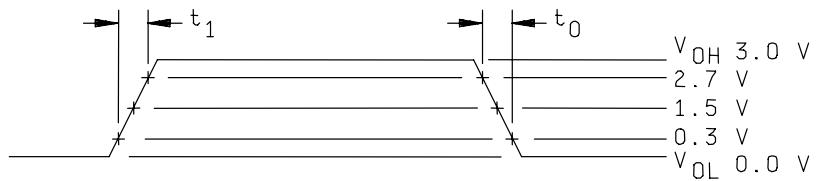
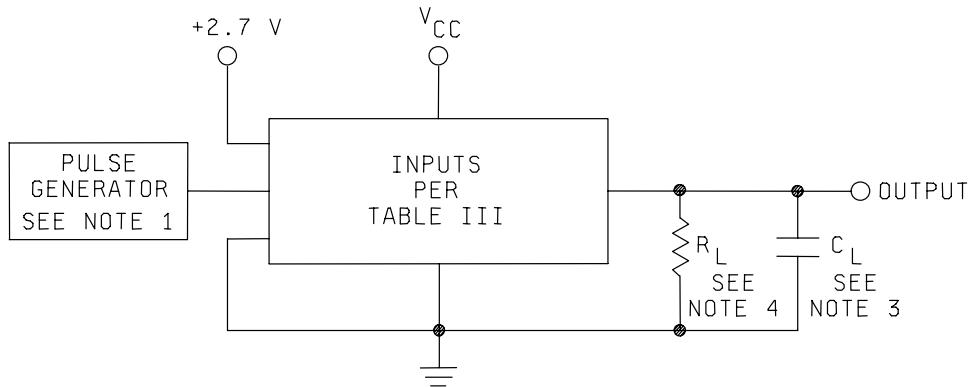
H = High voltage level

L = Low voltage level

X = Immortal

 \sqcup = Transition from low to high level \sqsubseteq = One low level pulseDevice type 04

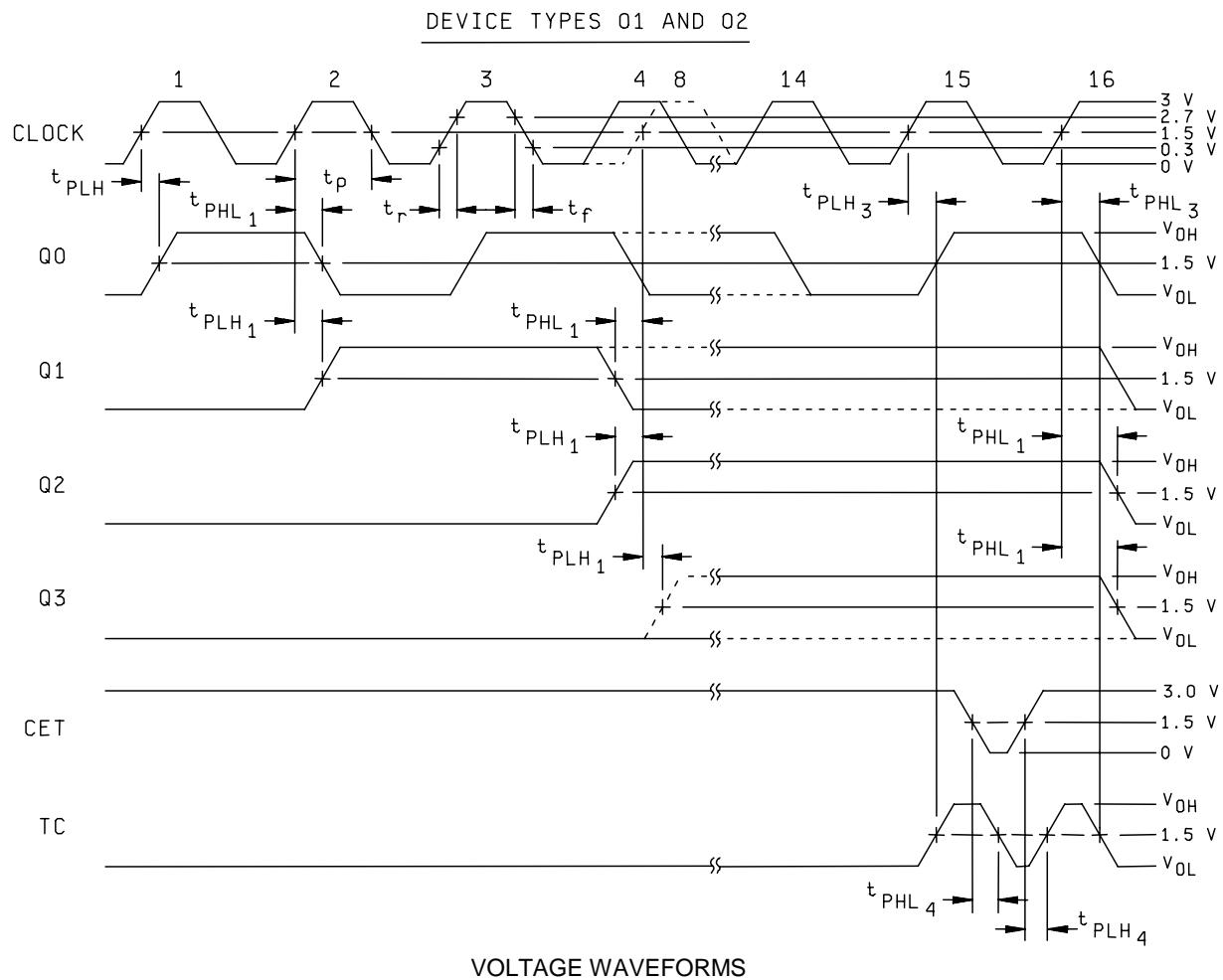
Function table

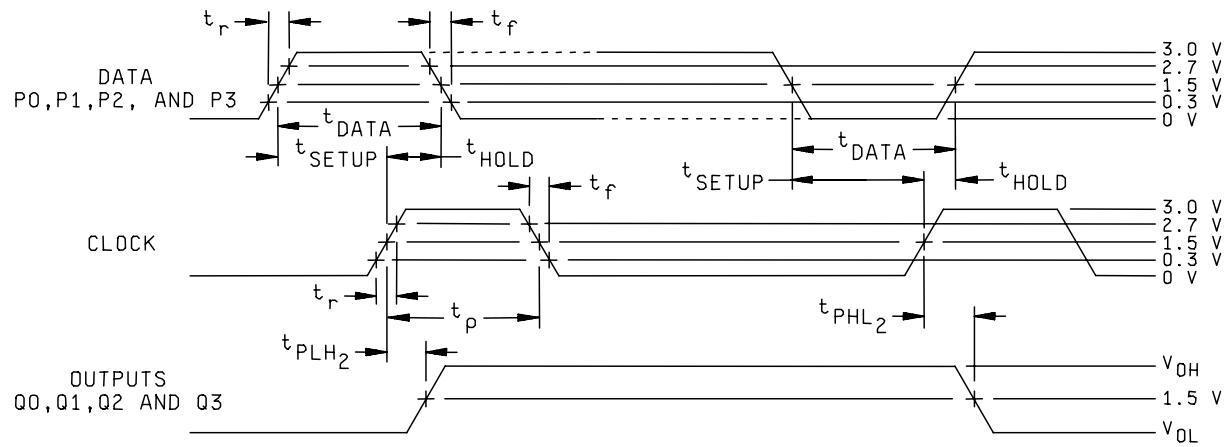


MR	\overline{PL}	CPU	CPD	Mode
H	X	X	X	Reset (asyn)
L	L	X	X	Preset (asyn)
L	H	H	H	No change
L	H	\sqcup	H	Count up
L	H	H	\sqcup	Count down

H = High voltage level

L = Low voltage level

X = Immortal


 \sqcup = Transition from low to high levelFIGURE 3. Truth table.



NOTES:

1. $T_1 = T_0 \leq 2.5 \text{ ns}$, $\text{PRR} \leq 1 \text{ MHz}$, $Z_{\text{OUT}} \approx 50\Omega$.
2. Inputs not under test should be biased per table III.
3. $C_L = 50 \text{ pF} \pm 10\%$ including scope probe, wiring, and stray capacitance without package in test fixture.
4. $R_1 = 499\Omega \pm 5\%$.
5. Voltage measurements are to be made with respect to network ground terminal.

FIGURE 4. Switching time waveform.

FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02 - Continued.

NOTE: The data pulse generator has the following characteristics: $V_{gen} = 3.0 \text{ V}$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$, $t_{DATA} = 8.0 \text{ ns}$, $t_{SETUP} = 5.5 \text{ ns}$, $t_{HOLD} = 2.5 \text{ ns}$, $t_{P(CLOCK)} = 7.0 \text{ ns}$.

FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02 - Continued.

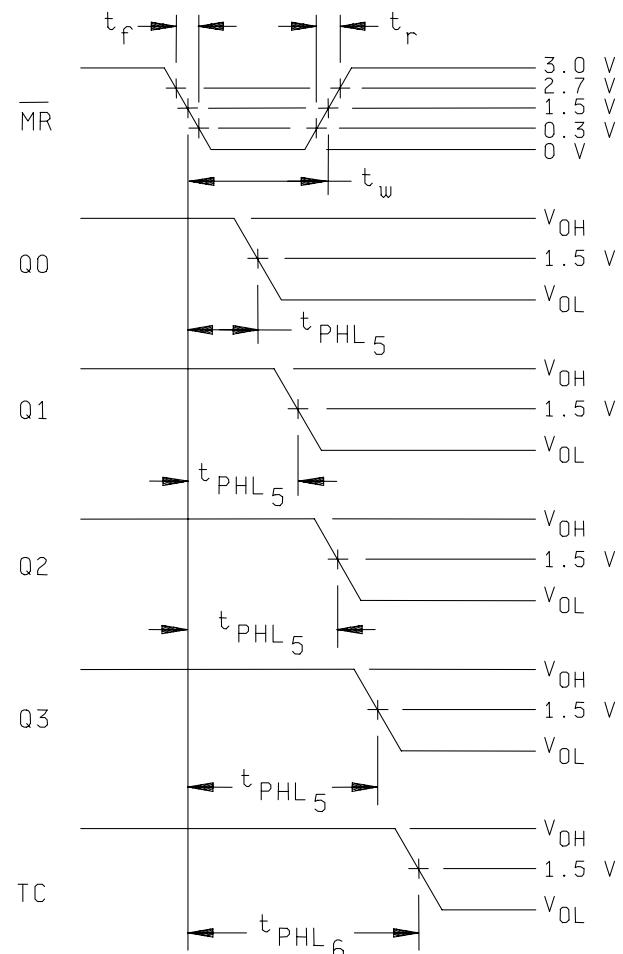
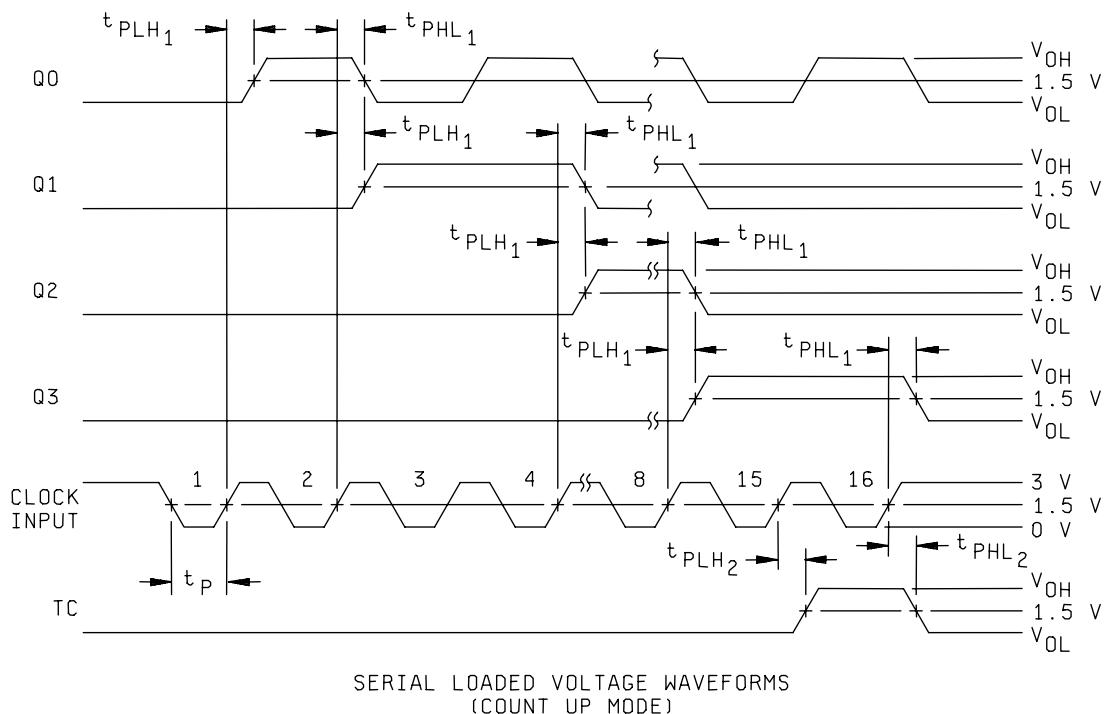
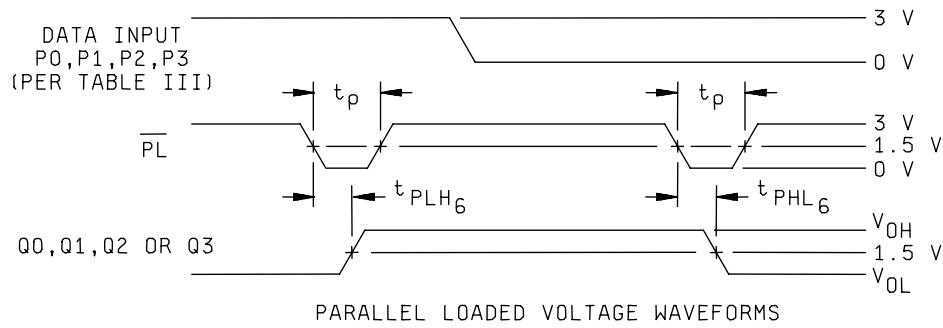




FIGURE 4. Switching time test circuit and waveforms for device type 01 - Continued.

FIGURE 4. Switching time test circuit and waveforms for device type 03 - Continued.

DEVICE TYPE 03

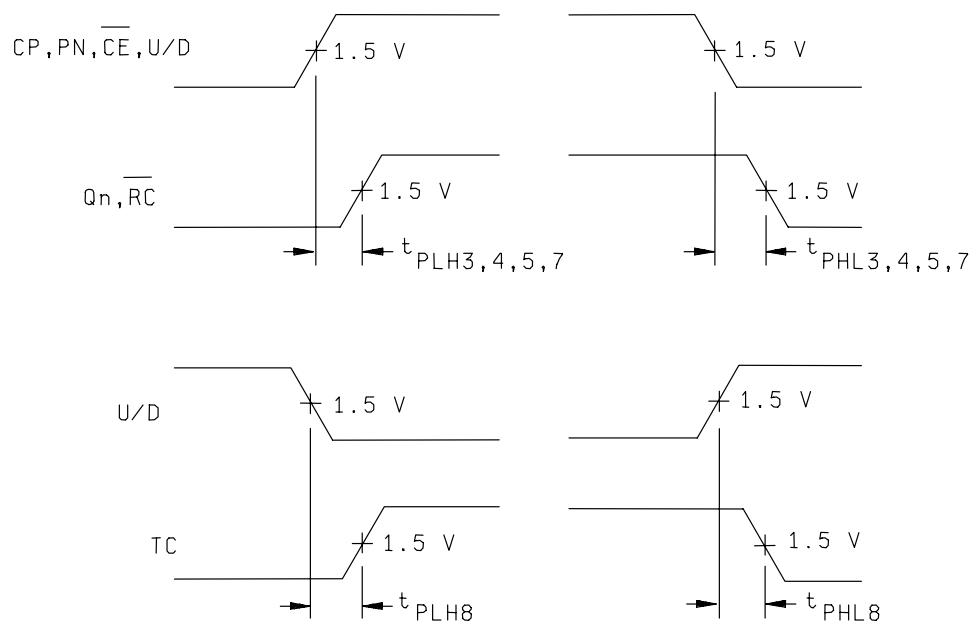


FIGURE 4. Switching time waveforms - Continued.

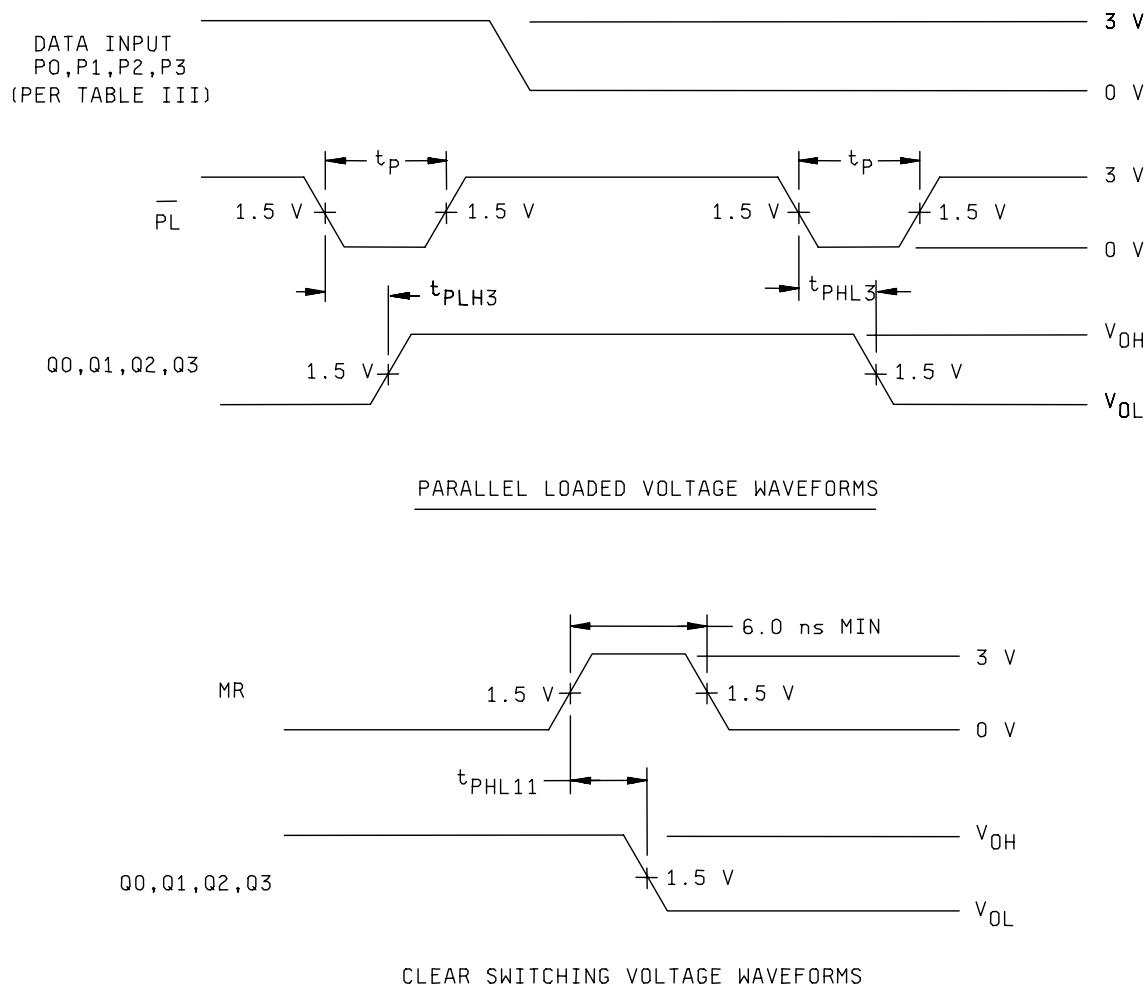
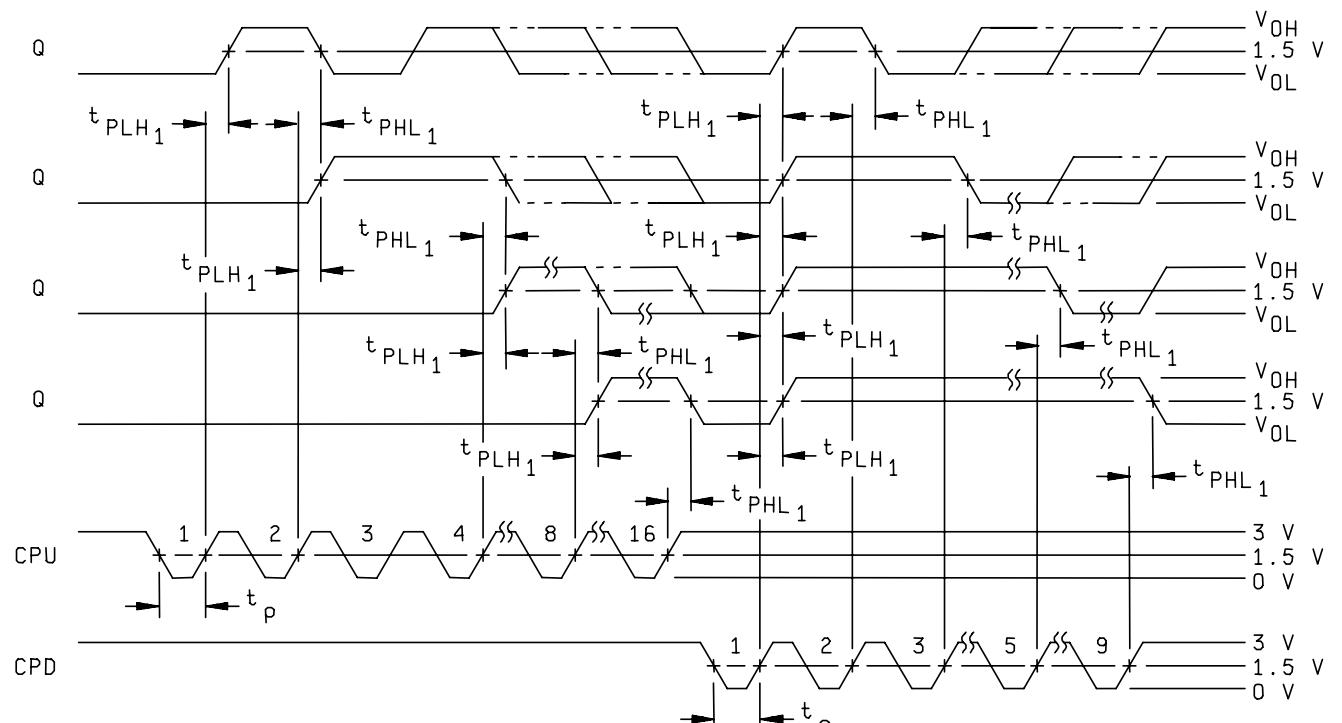



FIGURE 4. Switching time test circuit and waveforms for device type 04 - Continued.

SERIAL LOADED VOLTAGE WAVEFORMS

FIGURE 4. Switching time test circuit and waveforms for device type 04 - Continued.

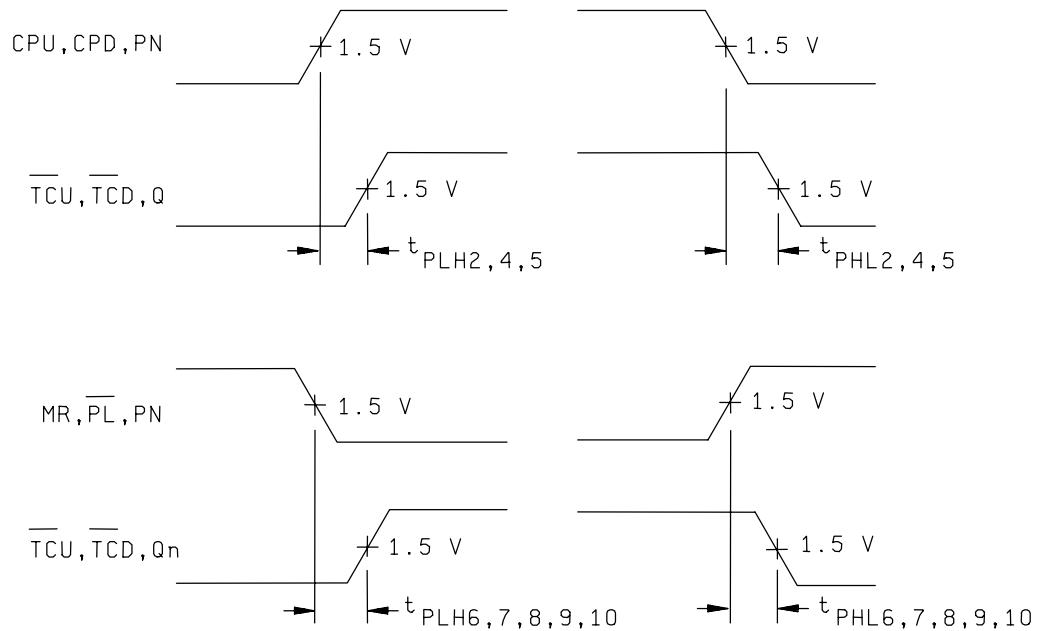

DEVICE TYPE 04FIGURE 4. Switching time waveforms - Continued.

TABLE III. Group A inspection for device type 01.

Subgroup	Symbol	MIL-STD-883 method	Cases E, F 2, X 1/ 2/	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).												Measured terminal	Limits	Unit			
				1	2	3	4	5	6	7	8	9	10	12	13	14					
V	V _{OH}	3006	1	2/	2/	"	"	2.0 V	5.5 V	GND	PE	CET	Q3	Q2	Q1	Q0	TC	V _{CC}	4.5 V	Q3	2.5 V
			2	"	"	"	"	2.0 V	"	"	"	"	"	"	"	"	"	"	Q2	"	"
			3	"	"	"	"	2.0 V	"	"	"	"	"	"	"	"	"	"	Q1	"	"
			4	"	"	"	"	2.0 V	"	"	"	"	"	"	"	"	"	"	Q0	"	"
			5	"	"	"	"	5.5 V	5.5 V	5.5 V	0.0 V	20 V	"	"	"	"	"	"	TC	"	"
	V _{OL}	3007	6	5.5 V	"	"	"	0.8 V	"	"	"	5.5 V	20 mA	"	"	"	"	"	Q3	0.5	"
			7	"	"	"	"	0.8 V	"	"	"	"	20 mA	"	"	"	"	"	Q2	"	"
			8	"	"	"	"	0.8 V	"	"	"	"	"	20 mA	"	"	"	"	Q1	"	"
			9	"	"	"	"	0.8 V	"	"	"	"	"	"	20 mA	"	"	"	Q0	"	"
			10	"	"	"	"	5.5 V	5.5 V	5.5 V	0.8 V	"	"	"	20 mA	"	"	TC	"	"	
I	IC	3022	11	-18 mA	"	"	"	"	"	"	"	"	"	"	"	"	"	"	MR	-1.2	"
			12	-18 mA	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP	"	"
			13	-18 mA	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P0	"	"
			14	-18 mA	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P1	"	"
			15	"	"	"	"	-18 mA	"	"	"	"	"	"	"	"	"	"	P2	"	"
	IH1	3010	16	"	"	"	"	-18 mA	"	"	"	"	"	"	"	"	"	"	P3	"	"
			17	"	"	"	"	-18 mA	"	"	"	"	"	"	"	"	"	"	CEP	"	"
			18	"	"	"	"	-18 mA	"	"	"	"	"	"	"	"	"	"	PE	"	"
			19	2.7 V	"	"	"	"	"	"	"	"	-18 mA	"	"	"	"	"	CET	"	"
			20	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	5.5 V	MR	40 μ A
I	IH2	3009	21	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP	"	"
			22	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P0	"	"
			23	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P1	"	"
			24	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P2	"	"
			25	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P3	"	"
	IL1	3009	26	2.7 V	"	"	"	"	2.7 V	"	0.0 V	0.0 V	"	"	"	"	"	"	CEP	"	"
			27	2.7 V	"	"	"	"	2.7 V	"	0.0 V	0.0 V	"	"	"	"	"	"	PE	"	"
			28	2.7 V	"	"	"	"	0.0 V	2.7 V	"	"	"	"	"	"	"	"	CET	"	"
			29	7.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	MR	100	"
			30	7.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP	"	"
I	IL2	3009	31	7.0 V	"	"	"	"	7.0 V	"	7.0 V	"	"	"	"	"	"	"	P0	"	"
			32	7.0 V	"	"	"	"	7.0 V	"	7.0 V	"	"	"	"	"	"	"	P1	"	"
			33	7.0 V	"	"	"	"	7.0 V	"	7.0 V	"	"	"	"	"	"	"	P2	"	"
			34	7.0 V	"	"	"	"	7.0 V	"	7.0 V	"	"	"	"	"	"	"	P3	"	"
			35	7.0 V	"	"	"	"	7.0 V	"	7.0 V	"	"	"	"	"	"	"	CEP	"	"
	IL1	3009	36	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	PE	"	"
			37	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CET	"	"
			38	0.5 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	MR	3/	mA
			39	0.5 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP	"	"
			40	0.5 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P0	"	"
I	IL2	3009	41	"	"	"	"	0.5 V	"	"	"	"	"	"	"	"	"	"	P1	"	"
			42	"	"	"	"	0.5 V	"	"	"	"	"	"	"	"	"	"	P2	"	"
			43	"	"	"	"	0.5 V	"	"	"	"	"	"	"	"	"	"	P3	"	"
			44	"	"	"	"	5.5 V	"	5.5 V	"	"	"	"	"	"	"	"	CEP	"	"
			45	"	"	"	"	5.5 V	"	5.5 V	"	"	"	"	"	"	"	"	PE	"	"
	IL1	3009	46	5.5 V	"	"	"	5.5 V	"	5.5 V	"	5.5 V	"	0.5 V	"	"	"	"	CET	"	"
			47	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP	"	"
			48	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P0	"	"
			49	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P1	"	"
			50	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	P2	"	"

See footnotes at end of table III.

TABLE III. Group A inspection for device type Q1- Continued.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Measured terminal	Limits	Unit								
			1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	Q0	Q1	Q2	Q3	PE	GND	Q0	Q1	Q2	Q3	Q0	Q1
1	I_{OS}	3011	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits	Unit								
$T_C = 25^\circ C$			47	2/	2/																								
			48	"	"																								
			49	"	"																								
			50	"	"																								
			51	"	"																								
			52	"	"																								
			55	"	"																								
			56	"	"																								
			57	"	"																								
			58	"	"																								
			59	"	"																								
			60	"	"																								
			61	"	"																								
			62	"	"																								
			63	"	"																								
			64	"	"																								
			65	"	"																								
			66	"	"																								
			67	"	"																								
			68	"	"																								
			69	"	"																								
			70	"	"																								
			71	"	"																								
			72	"	"																								
			73	"	"																								
			74	"	"																								
			75	"	"																								
			76	"	"																								
			77	"	"																								
			78	"	"																								
			79	"	"																								
			80	"	"																								
			81	"	"																								
			82	"	"																								
			83	"	"																								
			84	"	"																								
			85	"	"																								
			86	"	"																								
			87	"	"																								
			88	"	"																								
			89	"	"																								
			90	"	"																								
			91	"	"																								
			92	"	"																								
			93	"	"																								
			94	"	"																								
			95	"	"																								
			96	"	"																								

See footnotes at end of table III.

TABLE III. Group A inspection for device type Q1- Continued.
Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).

Subgroup	Symbol	MIL-STD-883 method	Cases E, F 2, X 1/	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Unit		
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
Test no.	Test no.	Test no.	Test no.	CP	P0	P1	P2	P3	CEP	GND	PE	CET	Q3	Q2	Q1	Q0	TC	V _{cc}	Min	Max		
3	7	T _C = 25°C Functional test -	3014	97	A	A	A	A	A	GND	B	A	H	H	H	H	H	H	All			
			98	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	All	outputs		
			99	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	All			
			100	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	All			
			101	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	All			
			102	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	All			
			103	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	All			
			104	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	All			
			105	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	All			
			8	Repeat subgroup 7 tests at T _C = 125°C and T _C = -55°C.																		
t	t	T _C = 25°C Z/ \underline{Q} /	3003	106	2.7 V	IN						2.7 V	GND	2.7 V	2.7 V	OUT	OUT	OUT	5.0 V	90	MHz	
			Fig. 4	107	"	"	"	"	"	"	"	"	"	"	"	"	"	"	Q1	"	"	
			"	108	"	"	"	"	"	"	"	"	"	"	"	"	"	"	Q2	"	"	
			"	110	Q1	"	"	"	"	"	"	"	"	"	"	"	"	"	Q3	"	"	
			"	111	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q0	2.0	7.5	
			"	112	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q1	"	"	
			"	113	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q2	"	"	
			"	114	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q3	"	"	
			"	115	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q0	3.5	10.0	
			"	116	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q1	"	"	
			"	117	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q2	"	"	
			"	PLH2	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q3	"	"	
t	t	T _C = 125°C Z/ \underline{Q} /	PLH1	118	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q0	2.5	8.5
			"	119	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q1	"	"	
			"	120	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q2	"	"	
			"	121	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q3	"	"	
			"	122	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q0	4.0	"	
			"	123	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q1	"	"	
			"	124	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q2	"	"	
			"	125	"	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q3	"	"	
			"	126	2.7 V	IN	2.7 V	2.7 V	2.7 V	2.7 V												
			"	127	"	IN	"	"	"	"	"	"	"	"	"	"	"	"	CP to TC	4.5	14.0	
t	t	T _C = -55°C Z/ \underline{Q} /	PLH3	128	"	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to TC	4.0	16.0
			"	129	"	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	CET to TC	2.5	7.5	
			"	130	IN	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	CET to TC	2.5	7.5	
			"	131	"	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	MR to Q0	5.5	12.0	
			"	132	"	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	MR to Q1	"	"	
			"	133	"	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	MR to Q2	"	"	
t	t	T _C = 125°C Z/ \underline{Q} /	PLH6	134	"	2.7 V	2.7 V	2.7 V	4.5	11.5												
			"	135	"	2.7 V	"	"	"	"	"	"	"	"	"	"	"	"	OUT	"	"	

See footnotes at end of table III.

10 Same tests and terminal conditions as for subgroup 9, except T_C = +125°C and use limits from table I.11 Same tests, terminal conditions and limits as for subgroup 10, except T_C = -55°C.

TABLE III. Group A inspection for device type 02.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Measured terminal	Limits	Unit	
			1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	17	18			
V _Y	V _{OH}	3006	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	V _{CC}	Q3	2.5 V	
			2.0 V	2/	2.0 V	2.0 V	0.8 V	GND	0.8 V													
	V _{OL}	3007	2	3	4	5	5.5 V	2.0 V	Q1	-1.0 mA	-1.0 mA											
			5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V				
	V _{IC}	3022	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Q2	-1.0 mA	-1.0 mA
			0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V	0.8 V			
I	I _{H1}	3010	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	P0	-18 mA	-18 mA
			-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA	-18 mA			
	I _{H2}	3009	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	P1	-18 mA	-18 mA
			2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	7.0 V										
	I _{L1}	3009	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	P2	-18 mA	-18 mA
			2/	0.5 V																		
I _{L2}	46	4/	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	P3	-18 mA	-18 mA
			2/	0.5 V																		

See footnotes at end of table III.

TABLE III. Group A inspection for device type 02 - Continued.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Measured terminal	Limits	Unit	
			1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	17	18	19	20	
1	I_{os}	Test no.	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Min	Max	
$T_C = 25^\circ C$	3011	\overline{SR}	CP	P0	P1	P2	P3	CEP	GND	\overline{PE}	CEI	Q3	Q2	Q1	Q0	TC	V_{CC}	Q3	-60	-150	mA	
1	I_{os}	47	5.5 V	2/	5.5 V	5.5 V					0.0 V			0.0 V		0.0 V			5.5 V	Q2	"	"
1	I_{os}	48	"	"	"	"					"			"		"			"	Q1	"	"
1	I_{os}	49	"	"	"	"					"			"		"			"	Q0	"	"
1	I_{os}	50	"	"	"	"					"			"		"			"	TC	"	"
1	I_{os}	51	"	"	"	"					"			"		"			"	V_{CC}	55	"
1	V_{CC}	3005	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	
2	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = 125^\circ C$ and V_{IC} tests are omitted.																Same tests, terminal conditions, and limits as subgroup 1, except $T_C = -55^\circ C$ and V_{IC} tests are omitted.					
3	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = -55^\circ C$ and V_{IC} tests are omitted.																Same tests, terminal conditions, and limits as subgroup 1, except $T_C = -55^\circ C$ and V_{IC} tests are omitted.					
7	$T_C = 25^\circ C$																$T_C = 25^\circ C$					
5	Functional test	7	53	B	2/	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	
5	Functional test	54	A	B	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	55	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	56	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	57	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	58	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	59	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	60	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	61	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	62	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	63	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	64	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	65	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	66	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	67	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	68	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	69	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	70	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	71	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	72	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	73	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	74	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	75	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	76	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	77	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	78	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	79	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	80	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	81	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	82	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	83	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	84	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	85	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	86	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	87	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	88	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	89	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	90	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	91	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	92	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	93	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	94	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	95	"	"	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
5	Functional test	96	"	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	

See footnotes at end of table III.

TABLE III. Group A inspection for device type 02 - Continued.

Subgroup	Symbol	MIL-STD-883 method	Cases E, F 2, X 1/ 2, X 1/	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Unit		
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
				SR	CP	P0	P1	P2	P3	CEP	GND	PE	CET	Q3	Q2	Q1	Q0	TC	V _{cc}	All	outputs	
5	7	Functional test $T_c = 25^\circ C$	3014	97	A	A	A	A	A	A	GND	B	A	H	H	H	H	H	H	"	"	
			98	A	B	"	"	"	"	A	"	"	"	"	"	"	"	"	"	"	"	
			99	B	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
			100	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
			101	A	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
			102	"	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	
			103	"	B	B	B	B	B	B	B	"	"	"	"	"	"	"	"	"	"	
8	Repeat subgroup 7 tests, at $T_c = 125^\circ C$ and $T_c = -55^\circ C$.		104	"	A	B	B	B	B	B	B	"	"	"	"	"	"	"	"	"	"	
			105	"	B	A	A	A	A	A	A	"	"	"	"	"	"	"	"	"	"	
			106	"	A	A	A	A	A	A	A	"	"	"	"	"	"	"	"	"	"	
			107	27 V	IN	"	"	"	"	"	"	2.7 V	GND	2.7 V	2.7 V	"	"					
			3003	Fig. 4	108	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			109	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			110	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
t	PH1		111	8/	2/	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			112	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			113	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			114	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			115	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			116	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			117	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
t	PH1		118	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			119	2.7 V	"	"	"	"	"	"	"	0.0 V	0.0 V	0.0 V	"							
			120	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			121	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			122	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			123	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			124	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
t	PH2		125	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			126	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			127	2.7 V	IN	2/	2.7 V	2.7 V	2.7 V	2.7 V												
			128	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			129	"	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			130	"	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			14	Same tests and terminal conditions as for subgroup 9, except $T_c = +125^\circ C$ and use limits from table I.																		
t	PH4		15	Same tests, terminal conditions and limits as for subgroup 10, except $T_c = -55^\circ C$.																		
			16	Same tests at end of table III.																		

TABLE III. Group A inspection for device type 03.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Measured terminal	Limits	Unit
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
$T_C = 25^\circ C$	V_{OH}	3006	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits	Unit
			P1	Q1	Q0	\overline{CE}	\overline{UD}	Q2	Q3	GND	P3	P2	\overline{PL}	TC	\overline{RC}	CP	P0	V_{CC}			
			1	2.0 V	-1.0 mA	2.0 V	"	"	"	"	0.8 V	"	"	"	"	4.5 V	Q1	2.5 V			
			2	"	"	-1.0 mA	"	"	"	"	"	"	"	"	"	2.0 V	"	"	Q0	"	"
			3	"	"	"	"	-1.0 mA	"	"	"	"	"	"	"	"	"	"	Q2	"	"
			4	"	"	"	"	"	-1.0 mA	"	"	"	"	"	"	"	"	"	Q3	"	"
			5	2.0 V	"	0.8 V	0.8 V	"	"	"	2.0 V	"	"	"	"	"	"	"	TC	"	"
			6	2.0 V	"	0.8 V	0.8 V	"	"	"	2.0 V	"	"	-1.0 mA	"	2.0 V	2.0 V	"	\overline{RC}	"	"
			7	0.8 V	20 mA	2.0 V	"	"	"	"	"	"	"	"	"	"	"	"	Q1	0.5 V	"
			8	"	9	"	"	20 mA	"	"	"	"	"	0.8 V	"	"	0.8 V	"	Q0	"	"
V_{OL}		3007	9	"	10	"	"	20 mA	"	"	0.8 V	"	"	"	"	"	"	"	Q2	"	"
			10	"	11	2.0 V	"	2.0 V	"	"	2.0 V	"	"	20 mA	"	"	20 mA	"	Q3	"	"
			11	2.0 V	2.0 V	0.8 V	0.8 V	"	"	"	2.0 V	"	"	20 mA	"	"	20 mA	"	TC	"	"
			12	"	13	-18 mA	"	-18 mA	"	"	"	"	"	"	"	"	20 mA	0.8 V	\overline{RC}	"	"
			13	"	14	"	"	-18 mA	"	"	"	"	"	"	"	"	"	"	P1	-1.2 V	"
			14	"	15	"	"	-18 mA	"	"	"	"	"	"	"	"	"	"	\overline{CE}	"	"
			15	"	16	"	"	-18 mA	"	"	"	"	"	-18 mA	"	"	-18 mA	"	\overline{UD}	"	"
			16	"	17	"	"	"	"	"	"	"	"	-18 mA	"	"	-18 mA	"	P3	"	"
			17	"	18	"	"	"	"	"	"	"	"	-18 mA	"	"	-18 mA	"	P2	"	"
			18	"	19	"	"	"	"	"	"	"	"	-18 mA	"	"	-18 mA	"	\overline{PL}	"	"
I_{IC}		3022	19	"	20	"	"	"	"	"	"	"	"	-18 mA	"	"	-18 mA	"	CP	"	"
			20	"	21	2.7 V	"	2.7 V	"	"	"	"	"	5.5 V	"	"	5.5 V	"	P0	"	"
			21	"	22	"	"	"	"	"	"	"	"	5.5 V	"	"	5.5 V	"	$\overline{P1}$	20 μA	"
			22	"	23	"	"	2.7 V	"	"	"	"	"	"	"	"	"	"	\overline{CE}	"	"
			23	"	24	"	"	"	"	"	"	"	"	2.7 V	"	"	2.7 V	"	\overline{UD}	"	"
			24	"	25	"	"	"	"	"	"	"	"	5.5 V	"	"	5.5 V	"	P3	"	"
			25	"	26	"	"	"	"	"	"	"	"	2.7 V	"	"	2.7 V	"	P2	"	"
			26	"	27	"	"	"	"	"	"	"	"	"	"	"	2.7 V	"	\overline{PL}	"	"
			27	"	28	"	"	"	"	"	"	"	"	5.5 V	"	"	2.7 V	"	CP	"	"
			28	"	29	7.0 V	"	7.0 V	"	"	"	"	"	5.5 V	"	"	2.7 V	"	P0	"	"
I_{H2}		3010	30	"	31	"	"	7.0 V	"	"	"	"	"	"	"	"	"	"	$\overline{P1}$	100 μA	"
			31	"	32	"	"	"	"	"	"	"	"	7.0 V	"	"	7.0 V	"	\overline{CE}	"	"
			32	"	33	"	"	"	"	"	"	"	"	7.0 V	"	"	7.0 V	"	\overline{UD}	"	"
			33	"	34	"	"	"	"	"	"	"	"	"	"	"	"	"	P3	"	"
			34	"	35	"	"	"	"	"	"	"	"	7.0 V	"	"	7.0 V	"	P2	"	"
			35	"	36	"	"	"	"	"	"	"	"	5.5 V	"	"	5.5 V	"	\overline{PL}	"	"
			36	"	37	0.5 V	"	0.5 V	"	"	"	"	"	0.0 V	"	"	7.0 V	"	P0	"	"
			37	"	38	"	"	"	"	"	"	"	"	"	"	"	"	"	$\overline{P1}$	3/ μA	"
			38	"	39	"	"	"	"	"	"	"	"	0.5 V	"	"	0.5 V	"	\overline{UD}	"	"
			39	"	40	"	"	"	"	"	"	"	"	0.5 V	"	"	0.5 V	"	P3	"	"
I_{IL1}		3009	40	"	41	"	"	"	"	"	"	"	"	0.5 V	"	"	0.5 V	"	P2	"	"
			41	"	42	"	"	"	"	"	"	"	"	"	"	"	"	"	\overline{PL}	"	"
			42	"	43	"	"	"	"	"	"	"	"	0.5 V	"	"	0.5 V	"	CP	"	"
			43	"	44	"	"	"	"	"	"	"	"	0.5 V	"	"	0.5 V	"	P0	"	"
I_{IL2}		3009	44	"	45	"	"	"	"	"	"	"	"	"	"	"	"	"	\overline{CE}	"	"
			45	"	46	"	"	"	"	"	"	"	"	"	"	"	"	"	CE	"	"

See footnotes at end of table III.

TABLE III. Group A inspection for device type 03 - Continued.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Measured terminal	Limits	Unit			
			1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	17	18	19	20			
1	I_{OS}	$T_C = 25^\circ C$	45	5.5 V	0.0 V	5.5 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	Q1	-60	-150 mA
		3011	46	"	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	Q0	"	"
		47	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	Q2	"	"
		48	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	Q3	"	"
		49	"	5.5 V	"	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	TC	"	"
		50	"	5.5 V	"	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	RC	"	"
		CC	3005	"	51	0.0 V	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	V _{OC}	55	"
		2	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = +25^\circ C$ and V_{OC} tests are omitted.																					
		3	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = -55^\circ C$ and V_{OC} tests are omitted.																					
5	$T_C = 25^\circ C$	7	Functional test	3014	52	B	L	B	B	L	B	L	GND	B	B	B	B	B	B	B	B	A	A	All outputs
					53	A	H	H	"	H	H	H	"	A	A	A	A	A	A	A	A	A	A	"
					54	A	H	H	"	H	H	H	"	B	B	B	B	B	B	B	B	B	B	"
					55	B	L	L	"	L	L	L	"	B	A	A	A	A	A	A	A	A	A	"
					56	B	"	L	"	"	"	"	"	A	"	"	"	"	"	"	"	"	"	"
					57	A	"	H	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
					58	"	H	L	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
					59	"	H	H	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
					60	"	L	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					61	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					62	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					63	"	H	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					64	"	L	L	"	L	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					65	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					66	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					67	"	H	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					68	"	L	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					69	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					70	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					71	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					72	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					73	"	L	L	"	L	"	L	"	"	"	"	"	"	"	"	"	"	"	"
					74	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					75	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					76	"	H	L	"	A	"	A	"	"	"	"	"	"	"	"	"	"	"	"
					77	"	L	H	"	B	"	A	"	"	"	"	"	"	"	"	"	"	"	"
					78	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					79	"	L	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					80	"	"	"	"	A	"	A	"	"	"	"	"	"	"	"	"	"	"	"
					81	"	"	"	"	B	"	B	"	"	"	"	"	"	"	"	"	"	"	"
					82	"	"	"	"	B	"	B	"	"	"	"	"	"	"	"	"	"	"	"
					83	"	H	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					84	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					85	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					86	"	L	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					87	"	H	H	"	L	"	L	"	"	"	"	"	"	"	"	"	"	"	"
					88	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					89	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					90	"	L	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					91	"	H	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					92	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					93	"	L	H	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					94	"	L	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					95	"	H	H	"	L	"	L	"	"	"	"	"	"	"	"	"	"	"	"
					96	"	H	L	"	H	"	H	"	"	"	"	"	"	"	"	"	"	"	"
					97	"	L	L	"	B	"	B	"	"	"	"	"	"	"	"	"	"	"	"
					98	"	B	L	"	B	"	B	"	"	"	"	"	"	"	"	"	"	"	"

See footnotes at end of table III.

8 Repeat subgroup 7 at $T_C = 125^\circ C$ and $T_C = 55^\circ C$.

TABLE III. Group A inspection for device type 03 - Continued.

		Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																			
Subgroup	Symbol	MIL-STD-883 Cases E, F method	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits	Unit
9	f_{MAX}	2, X 1/ Fig. 4	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Q0	90	MHz
$T_C = 25^\circ C$		3003	99	OUT	Q1	Q0	\overline{CE}	\overline{UD}	Q2	Q3	GND	P3	P2	\overline{PL}	TC	\overline{RC}	CP	V_{CC}	5.0 V	"	
t	PLH1	"	100	OUT	"	OUT	GND	GND	"	"	"	"	"	"	2.7 V	"	"	"	Q1	"	"
t	PLH1	"	101	"	"	"	"	"	OUT	"	"	"	"	"	"	"	"	"	Q2	"	"
t	PLH1	"	102	"	"	"	"	"	OUT	"	"	"	"	"	"	"	"	"	Q3	"	"
t	PLH1	"	103	"	OUT	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q0	3.0	7.5
t	PLH1	"	104	"	OUT	"	"	"	"	"	"	"	"	"	"	"	"	"	CP to Q1	"	ns
t	PLH1	"	105	"	OUT	"	"	"	OUT	"	"	"	"	"	"	"	"	"	CP to Q2	"	"
t	PLH2	"	106	"	OUT	"	"	"	OUT	"	"	"	"	"	"	"	"	"	CP to Q3	"	"
t	PLH2	"	107	"	OUT	"	"	"	OUT	"	"	"	"	"	"	"	"	"	CP to Q0	5.0	11.0
t	PLH3	"	108	"	OUT	"	"	"	OUT	"	"	"	"	"	"	"	"	"	CP to Q1	"	"
t	PLH3	"	109	"	OUT	"	"	"	OUT	"	"	"	"	"	"	"	"	"	CP to Q2	"	"
t	PLH3	"	110	"	OUT	"	"	"	OUT	"	"	"	"	"	"	"	"	"	CP to Q3	"	"
t	PLH4	"	111	2.7 V	"	"	"	"	2.7 V	"	"	OUT	"	"	2.7 V	"	"	"	CP to RC	"	"
t	PLH4	"	112	"	"	"	"	"	OUT	"	"	OUT	"	"	2.7 V	"	"	"	CP to TC	5.0	11.0
t	PLH4	"	113	"	"	"	"	"	OUT	"	"	OUT	"	"	2.7 V	"	"	"	CP to RC	3.0	7.5
t	PLH4	"	114	"	"	"	"	"	OUT	"	"	OUT	"	"	OUT	"	"	"	CP to RC	"	"
t	PLH4	"	115	"	OUT	2.7 V	"	"	OUT	"	"	"	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH4	"	116	IN	OUT	"	"	"	OUT	"	"	IN	"	"	2.7 V	"	"	"	IN	"	"
t	PLH4	"	117	2.7 V	"	"	"	"	OUT	"	"	IN	"	"	2.7 V	"	"	"	IN	"	"
t	PLH4	"	118	"	"	"	"	"	OUT	"	"	IN	"	"	2.7 V	"	"	"	IN	"	"
t	PLH4	"	119	"	"	OUT	"	"	OUT	"	"	2.7 V	"	"	2.7 V	"	"	"	IN	"	"
t	PLH4	"	120	IN	OUT	"	"	"	OUT	"	"	OUT	"	"	2.7 V	"	"	"	IN	"	"
t	PLH5	"	121	2.7 V	"	"	"	"	OUT	"	"	IN	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH5	"	122	"	"	"	"	"	OUT	"	"	IN	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH5	"	123	"	"	IN	"	"	OUT	"	"	OUT	"	"	2.7 V	"	"	"	IN	"	"
t	PLH5	"	124	"	"	IN	"	"	OUT	"	"	OUT	"	"	OUT	"	"	"	IN	"	"
t	PLH6	"	125	"	OUT	2.7 V	"	"	OUT	"	"	IN	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH6	"	126	$\overline{2}/$	OUT	"	"	"	OUT	"	"	OUT	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH6	"	127	2.7 V	"	"	"	"	OUT	"	"	$\overline{2}/$	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH6	"	128	"	"	"	"	"	OUT	"	"	$\overline{2}/$	"	"	2.7 V	"	"	"	2.7 V	"	"
t	PLH6	"	129	"	OUT	"	"	"	OUT	"	"	2.7 V	"	"	2.7 V	"	"	"	0.0 V	5.5	12.0
t	PLH7	"	130	0.0 V	OUT	"	"	"	OUT	"	"	0.0 V	"	"	2.7 V	"	"	"	PL to Q1	"	"
t	PLH7	"	131	2.7 V	"	"	"	"	OUT	"	"	0.0 V	"	"	2.7 V	"	"	"	PL to Q2	"	"
t	PLH7	"	132	2.7 V	"	"	"	"	OUT	"	"	0.0 V	"	"	2.7 V	"	"	"	PL to Q3	"	"
t	PLH7	"	133	"	"	"	"	"	IN	"	"	$\overline{2}/$	"	"	OUT	"	"	"	\overline{UD} to RC	7.0	18.0
t	PLH7	"	134	"	"	"	"	"	OUT	"	"	"	"	"	OUT	"	"	"	\overline{UD} to \overline{RC}	5.5	12.0
t	PLH8	"	135	"	"	"	"	"	OUT	"	"	"	"	"	OUT	"	"	"	\overline{UD} to TC	4.0	10.0
t	PLH8	"	136	"	"	"	"	"	OUT	"	"	"	"	"	OUT	"	"	"	\overline{UD} to TC	4.0	10.0

10 Same tests and terminal conditions as for subgroup 9, except $T_c = +125^\circ C$ and use limits from table I.

11 Same tests, terminal conditions and limits as for subgroup 10, except $T_c = -55^\circ C$.

See footnotes at end of table III.

TABLE III. Group A inspection for device type 04.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Unit
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
TC = 25°C	V _{OH}	3006	1	2.0 V	-1.0 mA														V
		"	2		3	4	5	7	8	9	10	12	13	14	15	17	18	19	"
		"	3																"
		"	4																"
		"	5	5.5 V															"
		"	6	0.0 V															"
		"	7	0.8 V	20 mA														"
		"	8																"
		"	9																"
		"	10																"
V _{OL}	V _{OL}	3007	7	0.8 V	20 mA														"
		"	8																"
		"	9																"
		"	10																"
		"	11	5.5 V															"
		"	12	0.0 V															"
		"	13	-18 mA															"
		"	14																"
		"	15																"
		"	16																"
V _{IC}	V _{IC}	3022	13	-18 mA															"
		"	14																"
		"	15																"
		"	16																"
		"	17																"
		"	18																"
		"	19																"
		"	20																"
		"	21	2.7 V															"
		"	22																"
I _{H1}	I _{H1}	3010	22																"
		"	23																"
		"	24																"
		"	25																"
		"	26																"
		"	27																"
		"	28																"
		"	29	7.0 V															"
		"	30																"
		"	31																"
I _{H2}	I _{H2}	3009	32																"
		"	33																"
		"	34																"
		"	35																"
		"	36																"
		"	37	0.5 V															"
		"	38																"
		"	39																"
		"	40																"
		"	41																"
I _{L1}	I _{L1}	3009	42																"
		"	43																"
		"	44																"
		"	IL2																"

See footnotes at end of table III.

TABLE III. Group A inspection for device type 04 - Continued.

See footnotes at end of table III.

TABLE III. Group A inspection for device type 04 - Continued.

Subgroup	Symbol	MIL-STD-883 method	Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																Unit	
			1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	Measured terminal	Limits	
Test no.	Test no.	Cases E, F 2, X 1/	P1	Q1	Q0	C/PD	CPU	Q2	Q3	GND	P3	P2	P/L	—T _Q	MR	P0	V _{CC}	Min	Max	
7	Functional	3014	93	A	H	L	A	A	H	H	GND	A	A	H	H	B	A	0/	All	
5	T _C = 25°C	/	94	"	H	L	B	"	"	"	"	"	"	"	"	"	"	"	"	outputs
			95	"	L	H	A	"	"	"	"	"	"	"	"	"	"	"	"	"
			96	"	H	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			97	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			98	"	L	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			99	"	H	A	"	L	"	"	"	"	"	"	"	"	"	"	"	"
			100	"	H	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			101	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			102	"	L	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			103	"	L	H	A	"	"	"	"	"	"	"	"	"	"	"	"	"
			104	"	H	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			105	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	B
			106	B	"	L	B	"	"	"	"	B	B	"	"	"	"	"	"	"
			107	"	H	H	A	"	H	L	"	"	"	"	"	"	"	"	"	"
			108	"	H	B	"	H	"	"	"	"	"	"	"	"	"	"	"	"
			109	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			110	"	L	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			111	"	L	H	A	"	"	"	"	"	"	"	"	"	"	"	"	"
			112	"	L	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			113	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			114	B	"	L	B	"	"	"	"	"	"	"	"	"	"	"	"	"
			115	"	H	H	A	"	L	"	"	"	"	"	"	"	"	"	"	"
			116	"	H	B	"	B	"	"	"	"	"	"	"	"	"	"	"	"
			117	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			118	"	L	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			119	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			120	"	H	B	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			121	"	L	A	"	"	"	"	"	"	"	"	"	"	"	"	"	"
8	Repeat subgroup T at T _C = 125°C and T _C = -55°C.			122	OUT	2.7 V	IN	"	GND	"	2.7 V	"	GND	"	5.0 V	CPU to Q0	90	"	MHz	
9	T _C = 25°C f _{MAX} Z/ 9/ Fig. 4			123	OUT	"	OUT	"	OUT	"	OUT	"	OUT	"	"	CPU to Q1	"	"	"	
				124	"	"	"	"	"	"	"	"	"	"	"	CPU to Q2	"	"	"	
				125	"	"	"	"	"	"	"	"	"	"	"	CPU to Q3	"	"	"	
				126	OUT	"	IN	2.7 V	"	"	"	"	"	"	"	CPD to Q0	"	"	"	
				127	OUT	"	"	"	OUT	"	"	"	"	"	"	CPD to Q1	"	"	"	
				128	"	"	"	"	OUT	"	"	"	"	"	"	CPD to Q2	"	"	"	
				129	"	"	"	"	IN	"	"	"	"	"	"	CPD to Q3	"	"	"	
t	P/LH			130	0.0 V	OUT	"	"	0.0 V	"	0.0 V	"	2/	"	0.0 V	0.0 V	3.5	8.5	ns	
				131	0.0 V	OUT	"	"	OUT	"	"	"	"	"	"	CPU to Q1	"	"	"	
				132	"	"	"	"	OUT	"	"	"	"	"	"	CPU to Q2	"	"	"	
				133	"	"	"	"	OUT	"	"	"	"	"	"	CPU to Q3	"	"	"	
				134	OUT	IN	"	"	OUT	"	"	"	"	"	0.0 V	CPD to Q1	"	"	"	
				135	0.0 V	OUT	"	"	OUT	"	"	"	"	"	"	CPD to Q2	"	"	"	
				136	"	"	"	"	OUT	"	"	"	"	"	"	CPD to Q3	"	"	"	
				137	"	"	"	"	OUT	"	"	"	"	"	"	CPD to Q1	5.5	12.5	"	
t	PhL1			138	0.0 V	OUT	2.7 V	IN	"	"	"	"	"	"	"	"	CPU to Q1	"	"	"
				139	0.0 V	OUT	"	"	"	"	"	"	"	"	"	CPD to Q2	"	"	"	
				140	"	"	"	"	OUT	"	"	"	"	"	"	CPD to Q3	"	"	"	
				141	"	"	"	"	OUT	"	"	"	"	"	"	CPD to Q0	"	"	"	
				142	0.0 V	OUT	IN	2.7 V	"	"	"	"	"	"	"	CPD to Q1	"	"	"	
				143	0.0 V	OUT	"	"	OUT	"	"	"	"	"	0.0 V	CPD to Q2	"	"	"	
				144	0.0 V	OUT	"	"	OUT	"	"	"	"	"	0.0 V	CPD to Q3	"	"	"	
				145	0.0 V	OUT	"	"	OUT	"	"	"	"	"	"	CPD to Q1	"	"	"	

See footnotes at end of table III.

TABLE III. Group A inspection for device type 04 - Continued.

See footnotes at end of table |||.

TABLE III. Group A inspection for device type 04 - Continued.

		Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.8 V; or open).																		
Subgroup	Symbol	MIL-STD-883 Cases E, F 2, X, 1	1	2	3	4	5	6	7	8	9	10	12	13	14	15	16	Limits	Unit	
9	t _{PLH0}	3003	180	0.0 V	0.0 V	2.7 V												Measured terminal		
			"	181	IN	"	"	"	"	"	"	"	"	"	"	"		Min	Max	
			"	182	0.0 V	"	"	"	"	"	"	"	"	"	"	"		P0 to \overline{TCD}	5.5	14.5 ns
			"	183	"	"	"	"	"	"	IN	"	"	"	"	"		P1 to \overline{TCD}	"	"
			"	184	"	"	"	"	"	"	0.0 V	"	"	"	"	"		P2 to \overline{TCD}	"	"
			"	185	IN	"	"	"	"	"	"	"	"	"	"	"		P3 to \overline{TCD}	"	"
			"	186	0.0 V	"	"	"	"	"	IN	"	"	"	"	"		P0 to \overline{TCD}	4.5	14.0 "
			"	187	"	"	"	"	"	"	0.0 V	"	"	"	"	"		P1 to \overline{TCD}	"	"
			"	188	"	OUT	"	"	"	"	0.0 V	"	"	"	"	"		P2 to \overline{TCD}	"	"
			"	189	2.7 V	OUT	"	"	"	"	2/	"	"	"	"	"		P3 to \overline{TCD}	"	"
			"	190	0.0 V	"	"	"	"	"	OUT	"	"	"	"	"		MR to Q1	5.0	14.5 "
			"	191	0.0 V	"	"	"	"	"	OUT	"	"	"	"	"		MR to Q2	"	"
10			Same tests and terminal conditions as for subgroup 9, except $T_C = +125^\circ C$ and use limits from table I.																	
11			Same tests, terminal conditions and limits as for subgroup 10, except $T_C = -55^\circ C$.																	

1/ For cases X and 2, pins not referenced are NC.

2/ Apply one pulse prior to measurement.

3/ For device type 02, Circuit A, the I_{L1} minimum and maximum test limits of measured terminal \overline{SR} , shall be the same as those listed for the I_{L2} test, Circuit A, herein.

Parameter	Device	Circuit A	Circuit B	Circuit C	Circuit D
I_{L1}	All	-25/-0.6	-0.3/-0.6	-25/-0.6	0/-0.6
I_{L2}	01, 02	-50/-1.2	-0.6/-1.2	-50/-1.2	0/-0.6
I_{L2}	03, 04	-75/-1.8	-0.9/-1.8	-50/-1.8	

4/ For types 01 and 02, set outputs to 15th count (P0, P1, P2, P3 = 1), prior to measurement.

5/ $H \geq 1.5$ V, $L \leq 1.5$ V, $A = 3.0$ V minimum; $B = 0.0$ V or GND.6/ Perform function sequence at $V_{CC} = 4.5$ V and repeat at $V_{CC} = 5.5$ V.7/ The f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

8/ For types 01 and 02, increment such that measurement of the specified output can occur on the next applied CP.

9/ f_{MAX} shall be measured only under the conditions of initial qualification and after process or design changes which may affect this parameter. For all other conditions, f_{MAX} shall be guaranteed, if not tested, to the limits specified in table III, herein.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

6.2 Acquisition requirements. Acquisition documents should specify the following:

- a. Title, number, and date of the specification.
- b. PIN and compliance identifier, if applicable (see 1.2).
- c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
- d. Requirements for certificate of compliance, if applicable.
- e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
- f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
- g. Requirements for product assurance options.
- h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
- i. Requirements for "JAN" marking.
- j. Packaging requirements (see 5.1).

6.3 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCL-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
V _{IN}	Voltage level at an input terminal
I _{IN}	Current flowing into an input terminal

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	54F161A
02	54F163A
03	54F191
04	54F193

6.8 Manufacturers' designation. Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturers' designations.

Device type	A	B	C	D
	National Semiconductor	Motorola Inc.	Signetics Corp.	Texas Instruments
01	X		X	X
02	X		X	X
03	X			
04	X			

6.9 Changes from previous issue. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:

Army - CR
Navy - EC
Air Force - 11
DLA - CC

Preparing activity:

DLA - CC

(Project 5962-2026)

Review activities:

Army - MI, SM
Navy - AS, CG, MC, SH, TD
Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at www.dodssp.daps.mil.