
Product Introduction

1. Product Dimensions & Outline Drawing & marking (Unit:mm)

Model	A		E	3	С		D
Model	Min.	Max.	Min.	Max.	Min.	Max.	Min.
NSMD100	3.00	3.40	1.40	1.80	0.60	1.00	0.25

2. Mechanical construction (Typical construction)

3. Electrical Properties

Model	I _H (A)	I _T (A)	V _{max} (V)	I max (A)	1	ne to trip)	Pd typ (W)	R _{min} (Ω)	$R1_{max}$ (Ω)
NSMD100	1.00	2.00	6	100	8.00	0.10	0.60	0.070	0.280

I_H: Holding Current: maximum current at which the device will not trip in 25°C still air.

I_T: Tripping Current minimum current at which the device will trip in 25°C still air.

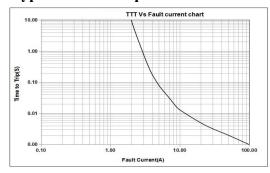
V_{max}: Maximum voltage device can withstand without damage at rated current.

I max: Maximum fault current device can withstand without damage at rated voltage.

T_{trip}: Maximum time to trip(s) at assigned current.

Pd_{typ}: Rated working power.

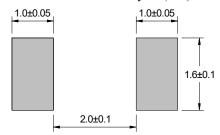
R min: Minimum resistance of device prior to trip at 25°C.


R1 $_{max}$: Maximum resistance of device is measured one hours post reflow at 25°C.

Noted: All electrical funtion test is conducted after PCB mounted.

4. Thermal Derating Chart – Ihold (Amps)

NSMD100	Ambient Operating Temperature								
	-40°C	-20℃	0℃	25℃	40℃	50°C	60°C	70°C	85℃
Hold Current(A)	1.60	1.40	1.30	1.00	0.90	0.80	0.75	0.70	0.60
Trip Current(A)	3.20	2.80	2.60	2.00	1.80	1.60	1.50	1.40	1.20


5. Typical time to trip at 25°C

◆ The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

6. Recommended Pad Layout(mm/Inch)and Solder Reflow Conditions

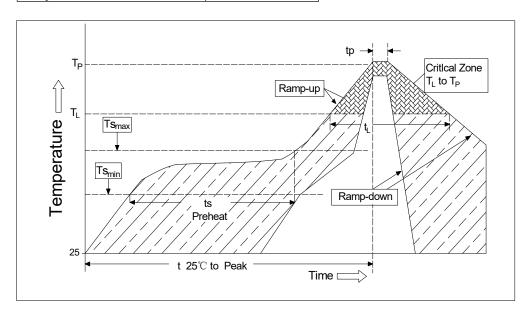
Recommended Pad Layout(mm)

Termination pad characteristics

- ◆ Terminal pad material:

 Tin-Plated Nickle-Copper or Au-Plated Nickle-Copper
- ◆ Terminal pad solderability:

 Meets EIA specification RS186-9E and ANSI/J-STD -002
 category 3.


Reflow Profile	Lead free	
Heating rate from Tsmax to Tp	Max.3°C/second	
Pre-heat:		
Tsmin	150℃	
Tsmax	200°C	
Tsmin to Tsmax	60~180seconds	
Soldering time:		
Temperature (T _L)	>217°C	
Time (t _L)	60~150seconds	
Peak temperature (Tp)	260℃	
Time at Peak temperature ± 5 °C	20~40seconds	
(tp)		
Cooling rate	Max.6℃/second	
Time from 25 °C to Peak	8 minutes max	
Temperature		

Warning for Reflow:

- 1. The printed solder thickness is not over 0.25mm, Excess solder may cause a short circuit, especially during hand soldering
- 2. If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements
- 3. Device can not be wave soldered. Please contact TLC for hand soldering and dip soldering recommendations.
- 4. Device can't contact solvent

 Note: All temperature in top chart

Note: All temperature in top chart is measured on the surface of devices

7. Environmental Characteristics

8. Conformance Requirement

NO.	Item	Test Condition	Spec.	Unit
1	Rmin	Resistance measurement at 25°C	0.07	Ω
2	Post Trip R1max	Resistance measurement one hour after post trip	0.28	Ω
3	2X Rmin Tsw	2 times of minimum Resistance value of R/T testing	100 ± 15	${\mathbb C}$
4	I-hold	Hold rated current 1800 second without trip, @ 6Vdc, 25°C	1.00	A
5	I-trip	Device must trip within 900 second under rated current, @ 6Vdc, 25°C	2.00	A
6	TTT	@6Vdc/ 8.00A,25°C	Max:0.10	Sec.
7	Cycle Life	6Vdc/ 100A,100cycles	No visible damage or burning	N/A
8	Trip Endurance	6Vdc/ 100A, hold under 24 hours	No visible damage or burning	N/A
9	Power dissipation	@ 6Vdc/ 8.00A,25°C	0.60 TYP	Watts

9. Reliability Requirement

NO.	Item	Test Condition	Spec.	
1	Humidity Aging	85℃, 85% R.H., 1000 Hours	±5%Typical Resistance Change	
2	Passive Aging	85°C, 1000 Hours	±5%Typical Resistance Change	
3	Thermal Shock	-40°C ~85°C,20 times	-33% Typical Resistance Change	
4	Resistance to Solvents	MIL-STD-202, Method 215	Marking Still legible	
5	Vibration	MIL-STD-833C,Method 2007.1,Condition A	Rmin. < R < R1max.	
6	Solderability	245°C ±5°C, 5 Seconds	>95% coverage	