

SGM7222 High Speed USB 2.0 (480Mbps) DPDT Analog Switch

GENERAL DESCRIPTION

The SGM7222 is a high-speed, low-power double-pole/double-throw (DPDT) analog switch that operates from a single 1.8V to 4.3V power supply.

SGM7222 is designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

The SGM7222 has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps). Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480 Mb/s) with good signal integrity.

The SGM7222 contains special circuitry on the D+/D-pins which allows the device to withstand a V_{BUS} short to D+ or D- when the USB devices are either powered off or powered on.

SGM7222 is available in MSOP-10, WQFN-10 and UTQFN1.8×1.4-10L packages. It operates over an ambient temperature range of -40°C to +85°C.

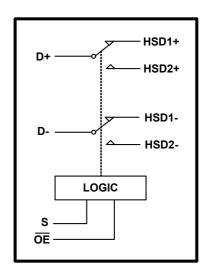
APPLICATIONS

Route Signals for USB 2.0
MP3 and Other Personal Media Players
Digital Cameras and Camcorders
Portable Instrumentation
Set-Top Box
PDAs

FEATURES

- R_{ON} is Typically 4.5Ω at 3.0V
- Low Bit-to-Bit Skew: 50ps (TYP)
- Voltage Operation: 1.8V to 4.3V
- Fast Switching Times:

t_{ON} 10ns t_{OFF} 22ns


- Low Crosstalk: -41dB at 250MHz
- Power-Off Protection when V₊ = 0V,

D+/D- Pins can Tolerate up to 5.25V

- High Off-Isolation: -35dB at 250MHz
- Rail-to-Rail Input and Output Operation
- Break-Before-Make Switching
- Extended Industrial Temperature Range:
 -40°C to +85°C
- Small Packages:

MSOP-10, WQFN-10 and UTQFN1.8×1.4-10L

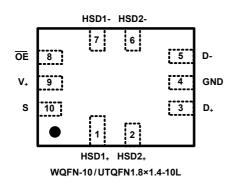
BLOCK DIAGRAM

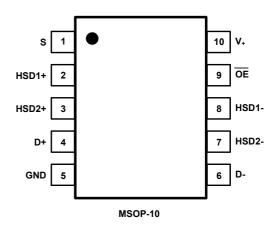
ORDERING INFORMATION

MODEL	MODEL PIN- PACKAGE		ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION	
	MSOP-10	-40°C to +85°C	SGM7222YMS10/TR	SGM7222YMS10	Tape and Reel, 3000	
SGM7222	WQFN-10	-40°C to +85°C	SGM7222YWQ10/TR	7222	Tape and Reel, 3000	
	UTQFN1.8×1.4-10L	-40°C to +85°C	SGM7222YUWQ10/TR	7222	Tape and Reel, 3000	

ABSOLUTE MAXIMUM RATINGS

V+ to GND	Storage Temperature65°C to +150°C
Analog, Digital voltage range0.3V to (V_+) + 0.3	/ Lead Temperature (soldering, 10s)
Continuous Current HSDn or Dn±100m. Peak Current HSDn or Dn±150m.	ESD Susceptibility
Operating Temperature Range40°C to +85°C	HBM4000V
Junction Temperature	


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

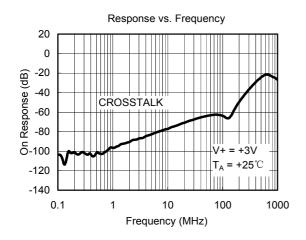
PIN		NAME	FUNCTION	
WQFN-10/UTQFN1.8×1.4-10L	MSOP-10	NAME	FUNCTION	
9	10	V ₊	Power Supply	
4	5	GND	Ground	
10	1	S	Select Input	
8	9	ŌE	Output Enable	
1, 2	2, 3	HSD1+, HSD2+		
7, 6	8, 7	HSD1-, HSD2-	Data Ports	
3, 5	4, 6	D+ , D-		

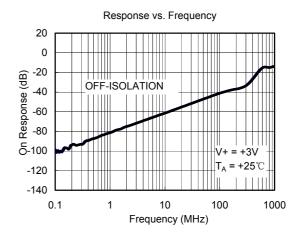
FUNCTION TABLE

ŌE	S	HSD1+ HSD1-	HSD2+ HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	×	OFF	OFF

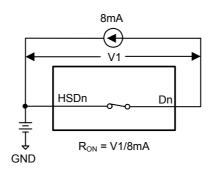
Switches Shown For Logic "0" Input

ELECTRICAL CHARACTERISTICS

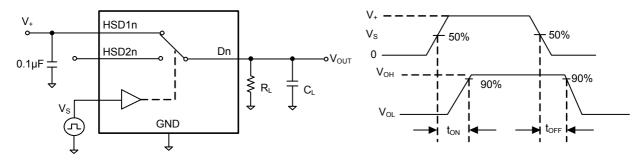

 $(V_+ = +1.8 \text{V to } +4.3 \text{V}, \text{GND} = 0 \text{V}, \text{V}_{\text{IH}} = +1.6 \text{V}, \text{V}_{\text{IL}} = +0.5 \text{V}, \text{T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{Typical values are at V}_{+} = +3.3 \text{V}, \text{T}_{\text{A}} = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

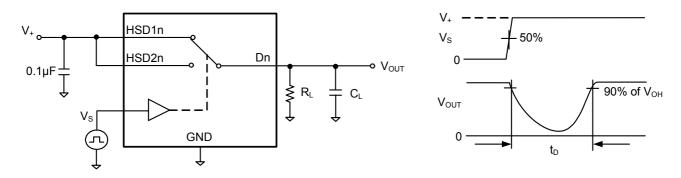

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	V _{IS}		-40°C to +85°C	0		V ₊	V
On Desigtance	Б	$V_{+} = 3.0V$, $V_{IS} = 0V$ to 0.4V, $I_{D} = 8mA$,	+25℃		4.5	8.5	Ω
On-Resistance	R _{on}	Test Circuit 1	-40°C to +85°C			9	
On-Resistance Match Between		$V_{+} = 3.0V$, $V_{IS} = 0V$ to 0.4V, $I_{D} = 8mA$,	+25°C		0.15	0.6)
Channels	ΔR_{ON}	Test Circuit 1	-40°C to +85°C			1.6	Ω
		$V_{+} = 3.0V$, $V_{IS} = 0V$ to 1.0V, $I_{D} = 8mA$,	+25°C		1.5	2.0	
On-Resistance Flatness	R _{FLAT(ON)}	Test Circuit 1	-40°C to +85°C			2.6	Ω
Power Off Leakage Current (D+, D-)	l _{OFF}	$V_{+} = 0V, V_{D} = 0V \text{ to } 3.6 \text{ V},$ $V_{S}, V_{\overline{OE}} = 0V \text{ or } 3.6 \text{ V}$	-40°C to +85°C			1	μA
Increase in I ₊ per Control Voltage	I _{CCT}	$V_{+} = 3.6 \text{V}, V_{\text{S}} \text{ or } V_{\overline{\text{OE}}} = 2.6 \text{ V}$	-40°C to +85°C			5	μA
Source Off Leakage Current	IHSD2(OFF) IHSD1(OFF)	$V_{+} = 3.6V, V_{ S} = 3.3V/0.3V,$ $V_{D} = 0.3V/3.3V$	-40°C to +85°C			1	μA
Channel On Leakage Current	I _{HSD2(ON)} , I _{HSD1(ON)}	$V_{+} = 3.6V$, $V_{IS} = 3.3V/0.3V$, $V_{D} = 3.3V/0.3V$ or floating	-40°C to +85°C			1	μA
DIGITAL INPUTS							
Input High Voltage	V_{IH}		-40°C to +85°C	1.6			V
Input Low Voltage	V _{IL}		-40°C to +85°C			0.5	V
Input Leakage Current	I _{IN}	$V_+ = 3.0V$, V_S , $V_{\overline{OE}} = 0V$ or V_+	-40°C to +85°C			1	μA
DYNAMIC CHARACTERISTICS							
Turn-On Time	t _{on}	$V_{IS} = 0.8V, R_L = 50\Omega, C_L = 10pF,$	+25°C		10		ns
Turn-Off Time	t _{OFF}	Test Circuit 2	+25°C		22		ns
Break-Before-Make Time Delay	t _D	V_{IS} = 0.8V, R_L = 50 Ω , C_L = 10pF, Test Circuit 3	+25°C		4		ns
Propagation Delay	t _{PD}	$R_L = 50\Omega, C_L = 10pF$	+25°C		0.3		ns
Off Isolation	O _{ISO}	Signal = 0dBm, $R_L = 50\Omega$, $f = 250MHz$, Test Circuit 4	+25°C		-35		dB
Channel-to-Channel Crosstalk	X _{TALK}	Signal = 0dBm, R_L = 50 Ω , f = 250MHz, Test Circuit 5	+25°C		-41		dB
–3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$ Test Circuit 6	+25°C		550		MHz
Channel-to-Channel Skew	t _{skew}	$R_L = 50\Omega$, $C_L = 10pF$	+25°C		0.05		ns
Charge Injection Select Input to Common I/O	Q	$V_G = GND, C_L = 1.0nF, R_G = 0\Omega,$ $Q = C_L \times V_{OUT}, Test Circuit 7$	+25°C		11		pC
HSD+, HSD-, D+, D- ON Capacitance	Con		+25°C		6.5		pF
POWER REQUIREMENTS	•	•		•	•		•
Power Supply Range	V ₊		-40°C to +85°C	1.8		4.3	V
Power Supply Current	I ₊	$V_{+} = 3.0 \text{V}, \text{ V}_{\text{S}}, \text{ V}_{\overline{\text{OE}}} = 0 \text{V or V}_{+}$	-40°C to +85°C			1	μA

Specifications subject to changes without notice.

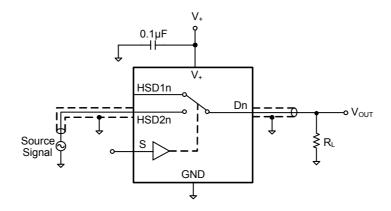


TYPICAL PERFORMANCE CHARACTERISTICS

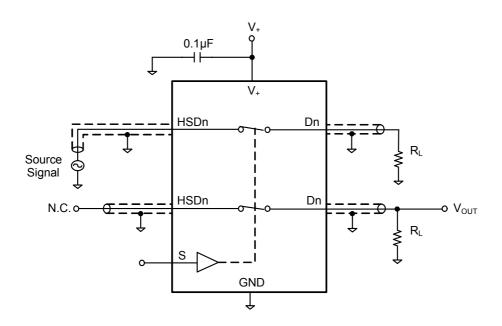



TEST CIRCUITS

Test Circuit 1. On Resistance

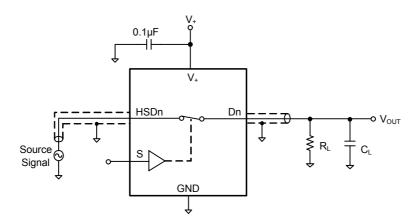


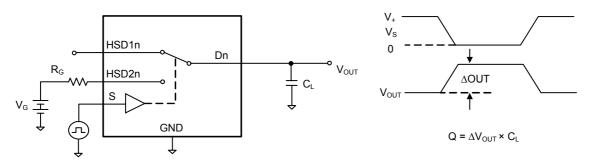
Test Circuit 2. Switching Times (t_{ON}, t_{OFF})



Test Circuit 3. Break-Before-Make Time (t_D)

TEST CIRCUITS (Cont.)


Test Circuit 4. Off Isolation


Channel To Channel Crosstalk = -20 \times log $\frac{V_{\text{HSDn}}}{V_{\text{OUT}}}$

Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS (Cont.)

Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)

APPLICATION NOTES:

Meeting USB 2.0 V_{BUS} Short Requirements

In section 7.1.1 of the USB 2.0 specification, it notes that USB devices must be able to withstand a V_{BUS} short to D+ or D- when the USB devices is either powered off or powered on The SGM7222 can be successfully configured to meet both these requirements.

Power-Off Protection

For a V_{BUS} short circuit the switch is expected to withstand such a condition for at least 24 hours. The SGM7222 has specially designed circuitry which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (D+, D-).

Power-On Protection

The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the V+ rail during the over-voltage event so current remains within the safe operating range. In this application, the switch passes the full 5.25V input signal through to the selected output, while maintaining specified off isolation on the un-selected pins.

SGM7222 USB2.0 Signal Quality Compliance Tests

Figures 1 and 2 show the test results for USB eye diagram tests. A summary of the USB tests is provided in Table 1. The SGM7222 passes the high speed signal quality, eye diagram and jitter tests.

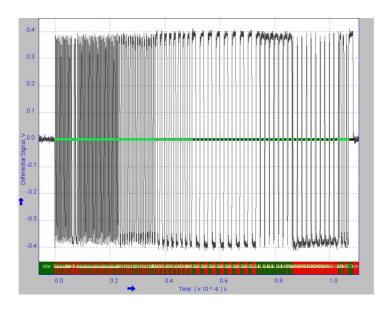


Figure 1. Waveform Plot

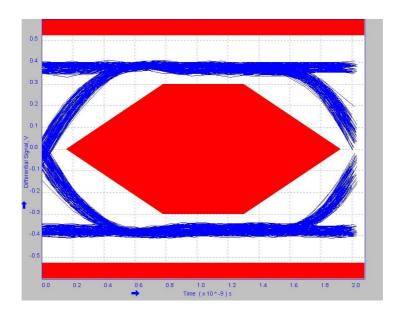


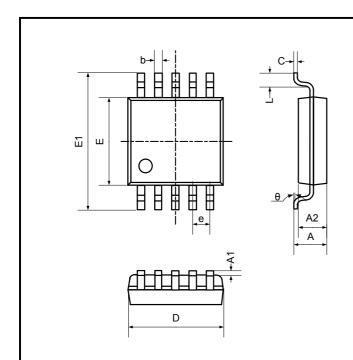
Figure 2. High Speed Signal Quality Eye Diagram Test (V+ = 3.3V)

SGM7222 USB2.0 Signal Quality Compliance Tests (Cont.)

Table 1. Summary of the USB 2.0 Signal Quality Tests Results

Measurement Name	MIN	MAX	Mean	pk-pk	Standard Deviation	RMS	Population	Status
Eye Diagram Test	-	-	-	-	-	-	-	Pass
Signal Rate	469.9358 Mbps	493.4413 Mbps	479.9700 Mbps	0.0000 bps	5.586580 Mbps	480.4200 Mbps	512	Pass
EOP Width	-	-	16.58804ns	-	-	-	1	Pass
EOP Width (Bits)	-	-	7.961762	-	-	-	1	Pass
Falling Edge Rate	1.064231 kV/µs	1.228955 kV/µs	1.143136 kV/µs	164.7235 V/μs	35.43800 V/µs	1.143680 kV/µs	107	Pass
Rising Edge Rate	1.063269 kV/µs	1.227966 kV/µs	1.136558 kV/µs	164.6970 V/μs	31.49494 V/µs	1.136990 kV/µs	108	Pass

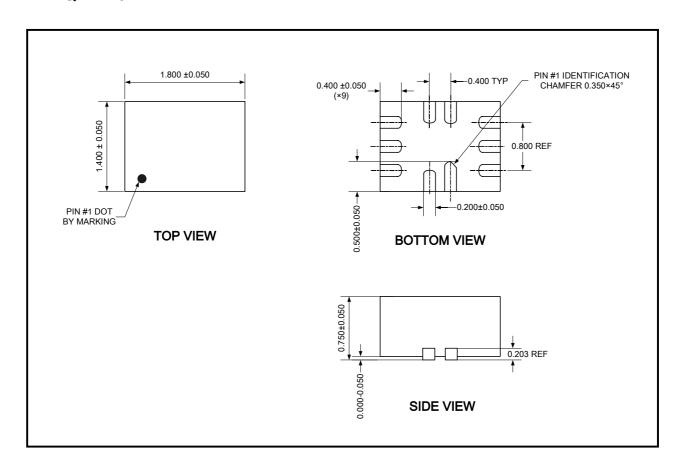
Additional Information:


Consecutive Jitter range: -82.97ps to 72.87ps RMS Jitter 35.08ps KJ Paired Jitter range: -25.05ps to 23.05ps RMS Jitter 9.259ps JK Paired Jitter range: -20.96ps to 30.12ps RMS Jitter 9.734ps

• Rising Edge Rate: 1.136558kV/µs (Equivalent Rise Time = 563.10ps)

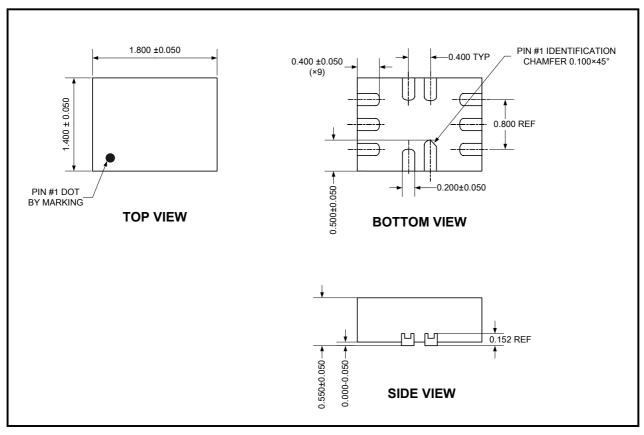
• Falling Edge Rate: 1.143136kV/µs (Equivalent Fall Time = 559.86ps)

PACKAGE OUTLINE DIMENSIONS


MSOP-10

Symbol		nsions imeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.800	1.200	0.031	0.047	
A1	0.000	0.200	0.000 0.008		
A2	0.760	0.970	0.030 0.038		
b	0.30	TYP	0.012 TYP		
С	0.152	Y TYP	0.006 TYP		
D	2.900	3.100	0.114 0.122		
е	0.50 TYP		0.020 TYP		
Е	2.900	3.100	0.114	0.122	
E1	4.700 5.100		0.185	0.201	
L	0.410	0.650	0.016	0.026	
θ	0°	6°	0°	6°	

PACKAGE OUTLINE DIMENSIONS


WQFN-10

Note: All linear dimensions are in millimeters.

PACKAGE OUTLINE DIMENSIONS

UTQFN1.8×1.4-10L

NOTE: All linear dimensions are in millimeters.

02/2010 REV. A. 2

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see www.sg-micro.com

