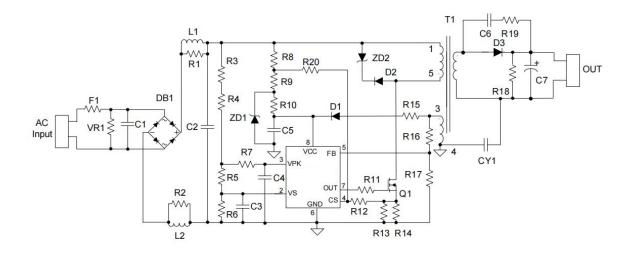
1. DESCRIPTION

The XL1682 is a high performance AC/DC universal input Primary Side Regulation Power Factor Controller for LED driver applications. The device uses Pulse Frequency Modulation (PFM) technology to regulate output current while achieving high power factor and low THD.

The XL1682 provides accurate constant current (CC)regulation while removing the opto-coupler and secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining stability. The XL1682 achieves excellent regulation and high efficiency, yet meets the requirement of IEC61000-3-2 harmonic standard.

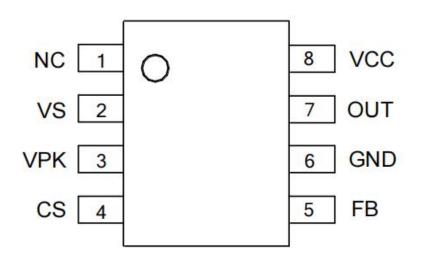
The XL1682 features low start-up current, low operation current and high efficiency. It also has rich protection features including over voltage, short circuit, over current protection etc.

2. FEATURES


- Primary Side Control for Output Current Regulation Without Opto-coupler and Secondary CV/CC Control Circuitry
- Low Start-up Current
- High Power Factor and Low THD for Universal Input Range
- Tight CC Regulation Performance for Universal Input Mains Voltage Range
- Eliminates Control Loop Compensation Circuitry
- Built-in Acceleration Start
- Open-load and Reload Detection
- Over Voltage and Short Circuit Protection
- Over Current Protection
- Cost Effective Total PFC LED Driver Solution

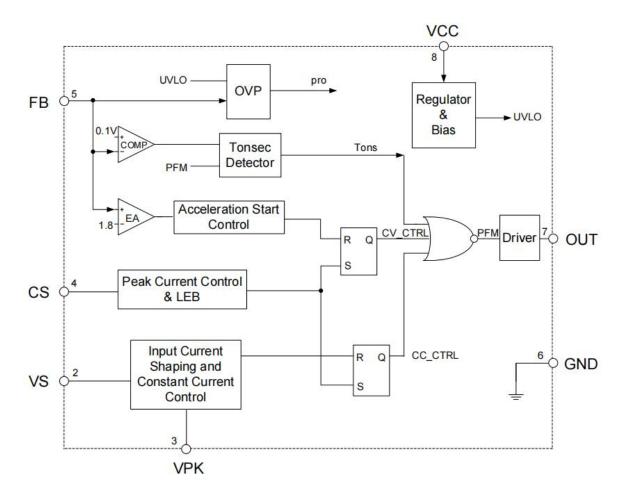
3. Applications

• Single Stage Power Factor Correction Power Supply for LED Lighting



4. TYPICAL APPLICATIONS CIRCUIT

5. PIN ASSIGNMENTS



6. PIN DESCRIPTIONS

Pin Number	Pin Name	Functions
1	NC	No connection
2	VS	The rectified input voltage sensing pin. The pin is detecting the instantaneous rectified sine waveform of input voltage
3	VPK	The rectified input voltage peak value sensing pin. The pin is detecting the rectified sine waveform peak value of input voltage
4	CS	Primary current sensing
5	FB	This pin captures the feedback voltage from the auxiliary winding.FB voltage is used to control no load output voltage and determine acceleration stop point at start-up phase
6	GND	Ground. Current return for gate driver and control circuits of the IC
7	OUT	Gate driver output
8	VCC	Supply voltage of gate driver and control circuits of the IC

7. FUNCTIONS BLOCK DIAGRAM

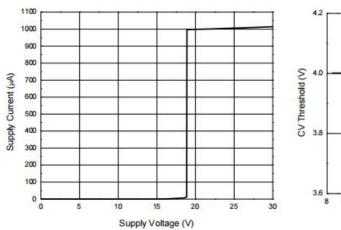
8. ABSOLUTE MAXIMUM RATINGS(Note)

Symbol Parameter		Rating	Unit
V _{CC}	Power Supply Voltage	-0.3 to +35	V
Ι _{Ουτ}	Driver Output Current	300	mA
$V_{VS}.V_{PK}.V_{CS}$	Voltage at VS,VPK, CS	-0.3 to 7	V
V _{FB}	FB Input Voltage	-40 to 10	V
T _J Operating Junction Temperature		+150	°C
T _{STG}	TstGStorage TemperatureTLEADLead Temperature(Soldering,10 sec)PDPower Dissipation(TA=+50°C)		°C
T _{LEAD}			°C
PD			W
θ_{JA}	θ _{JA} Thermal Resistance (Junction to Ambient)		°C/W
_	– ESD(Machine Model)		V
– ESD(Human Body Model)		3000	V

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliabilit.

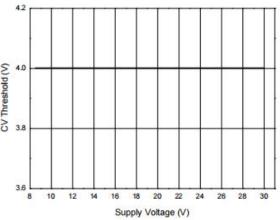
9. RECOMMENDED OPERATING CONDITINS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Power Supply Voltage	9	21	v
T _A	Ambient Temperature	-40	+85	°C

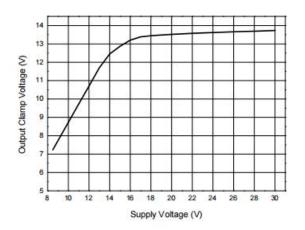

10. ELECTRICAL CHARACTERISTICS

1	VCC = 15V,	TA = +25	°C unle	ess other	wise snec	ified)
	VCC - 13V,	14 - 125	c, unit	ess other	wise spec	meu.j

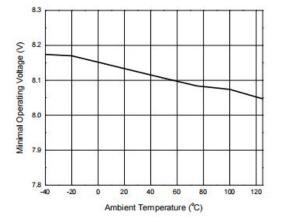
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
UVLO Section						
V _{TH} (ST)	Start-up Threshold	-	18	19	20	V
V _{OPR} (Min)	Minimal Operating Voltage	After turn on	7.5	8	8.5	V
V _{CC} OVP	VCC OVP Voltage	-	28	32	34	V
Standby Curre	ent Section	1				
i	Start-up Current	V _{CC} =V _{TH} (ST)-0.5V,		18 19 7.5 8	20	
I _{ST}		Before start up	_	-	20	μA
I _{cc} (Max)	Maximum Operating Current	V _{VS} =V _{PK} =3V	-	1000	1300	μA
Drive Output	Section		I			
V _{OH}	Output High Level Voltage	I _{GD-SOURCE} =20mA V _{CC} =12V	10	_	_	V
V _{OL}	Output Low Level Voltage	I _{GD-SINK} =20mA V _{CC} =12V	_	_	1	V
t _R	Output Voltage Rise Time	C _L = 1nF	100	140	190	ns
t⊧	Output Voltage Fall Time	C _L = 1nF	30	60	90	ns
V _{O-CLAMP}	Output Clamp Voltage	I _{GD-SOURCE} =5mA V _{CC} =20V	12	13.5	15	V
V _{UVLO}	UVLO Saturation Voltage	V _{CC} =0 to V _{CC-ONISINK} =10mA	_	_	1.1	V
VS Input Secti	on	1	1	1	1	
V _{VS} /V _{PK} (Max)	Maximum Ratio	V _{VS} =V _{PK} =3V	0.8	1	1.2	V
V _{VS} /V _{PK} (Min)	Minimum Ratio	V _{VS} =0V,V _{PK} =3V	_	_	0.2	V
Current Sense	Section	1	I		·	
t _{on} (Min)	Minimum On Time	-	500	750	1000	ns
	Short Circuit Protection	-	2			
V _{SOCP}	Voltage		3	4	_	V
Feedback Inp	ut Section	•	·			
I _{FB}	FB Pin Input Leakage Current	V _{FB} =4V	_	2	8	μA
V _{FB} (ACC)	Acceleration Start Threshold	-	1.4	1.8	2.2	V
V _{FB} (CV)	CV Threshold	-	3.8	4.1	4.4	V
V _{FB} (OVP)	Over Voltage Protection	-	5.6	6.25	6.9	V
Over Tempera	ature Protection Section					
_	Shutdown Temperature	-	_	+140	_	°C
	Temperature Hysteresis	-	_	+20	_	°C

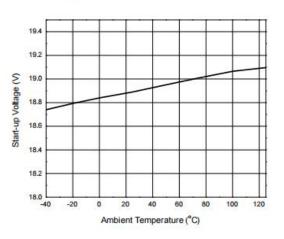


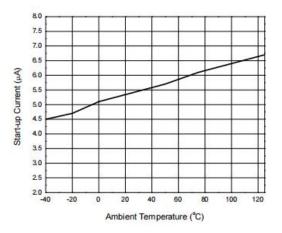
11. PERFORMANCE CHARACTERISTICS



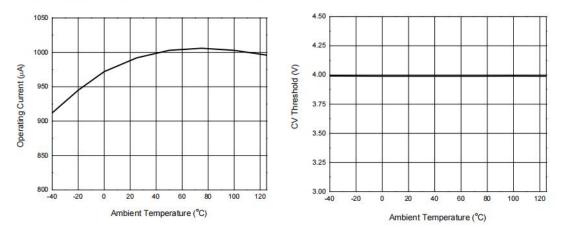
Supply Current vs. Supply Voltage

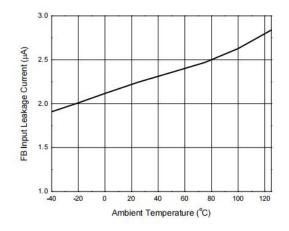

CV Threshold vs. Supply Voltage


Output Clamp Voltage vs. Supply Voltage


Minimal Operating Voltage vs. Ambient Temperature

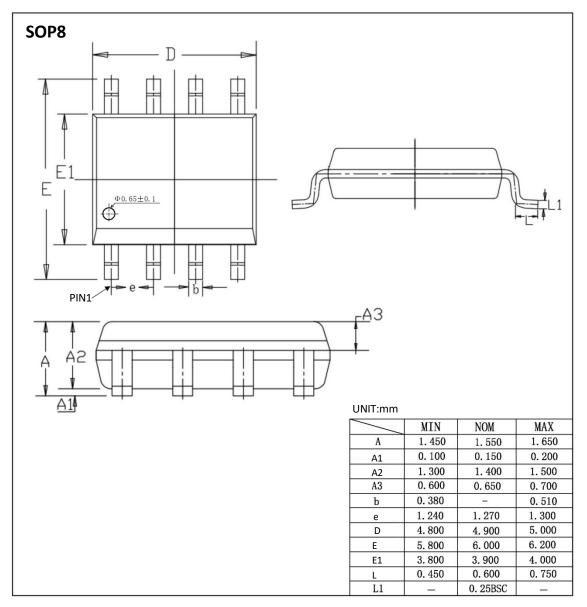
Start-up Voltage vs. Ambient Temperature


Start-up Current vs. Ambient Temperature



Operating Current vs. Ambient Temperature

CV Threshold vs. Ambient Temperature



12. ORDERING INFORMATIO

Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity	
XL1682	XL1682	SOP8	4.90 * 3.90	- 40 to 85	MSL3	T&R	2500	

Ordering Information

13. DIMENSIONAL DRAWINGS

[if you need help contact us. Xinluda reserves the right to change the above information without prior notice]