

FEATURES

- Low Voltage Operation: 1.24 V
- Programmable Out Voltage to 18V
- Sink Current Capability of 0.8mA to 100mA
- Equivalent full range Temperature Coefficient of 50ppm/°C
- Temperature Compensated for operation over full rated operating Temperature Range
- Low Output Noise Voltage
- Moisture Sensitivity Level 3

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
LMV431AIZ	TO-92	LMV431AI	TUBE	1000pcs/box
LMV431BIZ	TO-92	LMV431BI	TUBE	1000pcs/box
LMV431IZ	TO-92	LMV431I	TUBE	1000pcs/box
LMV431ACZ	TO-92	LMV431AC	TUBE	1000pcs/box
LMV431BCZ	TO-92	LMV431BC	TUBE	1000pcs/box
LMV431CZ	TO-92	LMV431C	TUBE	1000pcs/box
LMV431AIM3/TR	SOT-23-3	RLA,Y3TS,Y3TU	REEL	3000pcs/reel
LMV431BIM3/TR	SOT-23-3	RLB,Y3KS,Y3KU	REEL	3000pcs/reel
LMV431IM3/TR	SOT-23-3	Y3VS,Y3VS	REEL	3000pcs/reel
LMV431ACM3/TR	SOT-23-3	Y3PS,Y3PU	REEL	3000pcs/reel
LMV431BCM3/TR	SOT-23-3	Y3JS,Y3JU	REEL	3000pcs/reel
LMV431CM3/TR	SOT-23-3	Y3US,Y3UU	REEL	3000pcs/reel

DESCRIPSION

The LMV431 is a three-terminal Shunt Voltage Reference providing a highly accuracy 1.24V band-gap reference with 0.5% and 1.0% tolerance. The LMV431 thermal stability and wide operating current(100mA) makes is suitable for all variety of applications that are looking for a low cost solution with high performance. The LMV431 is an ideal voltage reference in an isolated feed circuit for 3.0V to 3.3V switching mode power supplies.

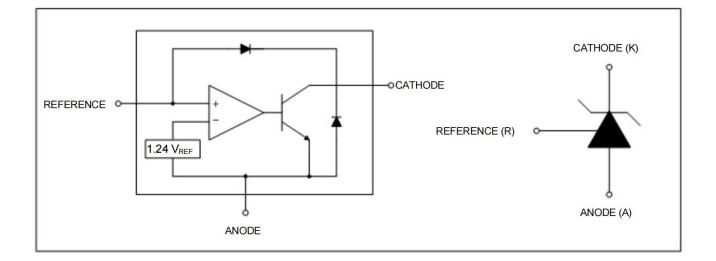
APPLICATION

- Shunt Regulator
- Voltage Monitoring
- Current Source and Sink Circuits
- Analog & Digital Circuits Requiring Precision References Low Out Voltage (3.0V to 3.3V) Switching Power Supply Error Amplifier

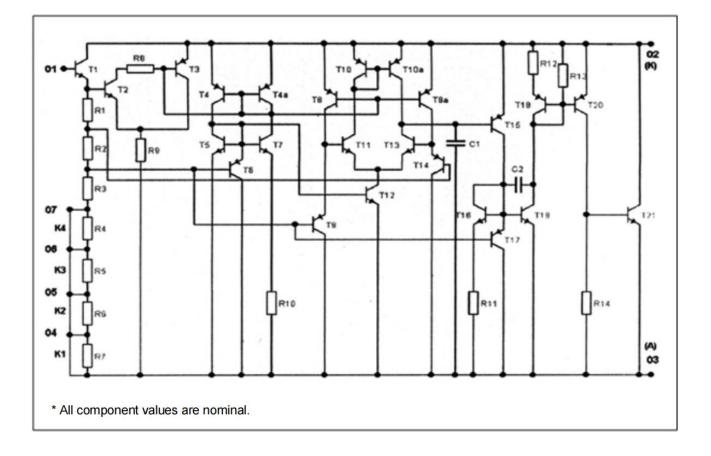
ABSOLUTE MAXIMUM RATINGS

(Full operating ambient temperature range applies unless otherwise noted.)

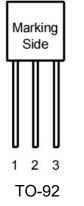
CHARA	ACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Cathode Voltage		Vka	-	20	V
Cathode Current Range(Continu	uous)	lκ	-	100	mA
Reference Input Current Range		I _{REF}	-	3	mA
Junction Temperature Range		TJ	-40	150	°C
Operating Temperature Range	LMV431AI,LMV431BI, LMV431I	Topr	-40	85	°C
	LMV431AC,LMV431BC,LMV431C	T _{OPR}	0	70	°C
Storage Temperature Range		Тѕтд	-65 150 °		
Total Power Dissipation		PD	7	70	mW
Lead Temperature (Soldering, 1	ΤL	245		°C	

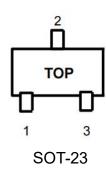

Note: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

RECOMMENDED OPERATING CONDITIONS


CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Cathode Voltage	VKA	V _{REF}	18	V
Cathode Current	lκ	0.1	100	mA

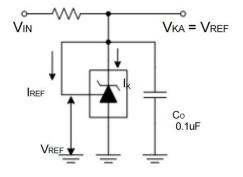
FUNCTION BLOCK DIAGRAM



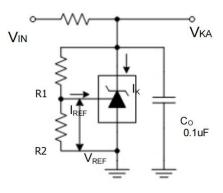

EQUIVALENT SCHEMATIC

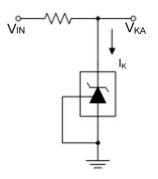
PIN CONFIGURATION

PIN DESCR

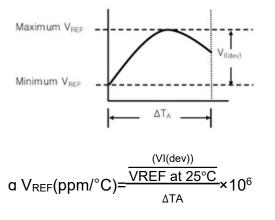

Pin No.	TO-92 / SOT-23						
PIII NO.	Name	Function					
1	Reference	Reference Voltage					
2	Anode	Ground					
3	Cathode	Input Supply Voltage					

ELECTRICAL CHARACTERISTICS(TA=25°C, unless otherwise specified)


CHARACTERISTIC	SYMBOL	TEST COND	ITION	MIN.	TYP.	MAX.	UNIT
		Vka =Vref.	LMV431B	1.234	1.240	1.246	
Reference Input Voltage	VREF	νκα – νκεε, Ικ =10mA	LMV431A	1.228	1.240	1.252	V
			LMV431	1.202	1.240	1.278	
Deviation of	$\Delta V_{REF} / \Delta T$	$V_{KA} = V_{REF}, I_{K} = 10$	mA		15	25	mV
Reference Input Voltage		T _A =Full Range			10	20	IIIV
Ratio of Change in Reference							
Input Voltage to the Change	$\Delta V_{REF} / \Delta V_{KA}$	V _{KA} = 1.25V to 14.	5V		1.0	2.7	mV/V
in Cathode Voltage							
Reference Input Current	I _{REF}	R1=10KΩ , R2=∞		0.25	0.5	uA	
Deviation of Reference		R1=10KΩ , R2=∞,			0.05	0.0	
Input Current	ΔIREF/ΔI	$\Delta I_{REF}/\Delta T$ T _A = Full Range		0.05	0.3	uA	
Minimum Cathode Current							
for Regulation	Ik(min)	V _{KA} = V _{REF}			60	80	uA
Off-State Cathode Current	I _{K(OFF)}	V _{KA} =16V, V _{REF} =0			0.04	0.5	uA
Durania laura dan sa	7	V _{KA} = V _{REF} , I _K =0.1mA~100mA					
Dynamic Impedance	Zka	f ≤ 1kHz		0.2	0.4	Ω	


TEST CIRCUITS

< Fig 1. Test circuit for V_{KA} = V_{REF} >



< Fig 2. Test circuit for $V_{KA} \ge V_{REF}$ >

< Fig 3. Test circuit for I_{KA(OFF)} >

The deviation parameters $\Delta V_{REF}/\Delta T$ and $\Delta I_{REF}/\Delta T$ are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, **q** V_{REF}, is defined as:

Where:

 ΔT_A is the recommended operating free-air temperature range of the device.

 α V_{ERF} can be positive or negative, depending on whether minimum V_{REF} of maximum V_{REF}, respectively, occurs at the lower temperature.

Example: Maximum V_{REF}=1190mV at 30°C, maximum V_{ERF}=1262mV at 0°C, V_{REF}=1241mV at 25°C,

 ΔT_A =125°C for LMV431

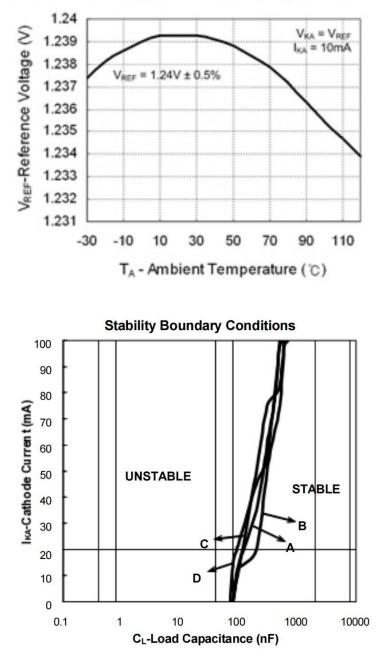
$$\alpha V_{REF} = \frac{(\frac{72mV}{1241mV}) \times 10^{6}}{\frac{1241mV}{125^{\circ}C}} \approx 46ppm/^{\circ}C$$

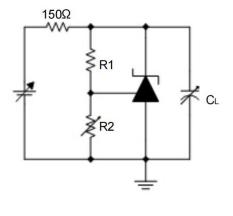
Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

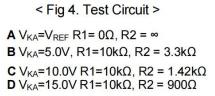
Calculating Dynamic Impedance

$$Z = \frac{\Delta V \kappa A}{\Delta I \kappa A}$$

The dynamic impedance is defined as: $\Delta I \kappa A$

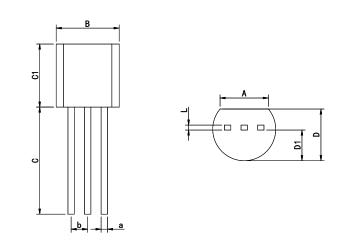

When the device is operating with two external resistors, the total dynamic impedance of the circuit is given by:


$$Z' = \frac{V}{\Delta I} \approx Z_{KA} (1 + R1 / R2)$$



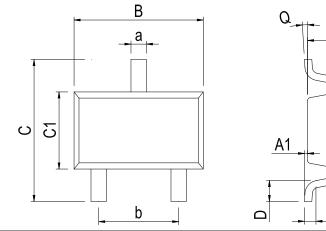
TYPICAL OPERATING CHARACTERISTICS

Reference Voltage vs. Junction Temperature



PHYSICAL DIMENSIONS

TO-92



Dimensions In Millimeters(TO-92)									
Symbol:	A	В	С	C1	D	D1	L	а	b
Min:	3.43	4.44	13.5	4.32	3.17	2.03	0.33	0.40	1.27BSC
Max:	3.83	5.21	15.3	5.34	4.19	2.67	0.42	0.52	

A

0.20

SOT-23-3

Dimensions In Millimeters(SOT-23-3)									
Symbol:	А	A1	В	С	C1	D	Q	а	b
Min:	1.00	0.00	2.82	2.65	1.50	0.30	0°	0.30	1.90 BSC
Max:	1.15	0.15	3.02	2.95	1.70	0.60	8°	0.50	1.90 030

REVISION HISTORY

DATE	REVISION	PAGE
2014-6-8	New	1-10
2023-9-14	Update encapsulation type 、 Update Lead Temperature 、 Add annotation for	
2020 0 11	Maximum Ratings.	.、 _
2024-10-25	Update TO-92 Physical Dimensions、Update SOT-23-3 Physical dimension	8

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.